
Slow mixing for Latent Dirichlet Allocation

Johan Jonasson∗†

January 11, 2017

Abstract
Markov chain Monte Carlo (MCMC) algorithms are ubiquitous in prob-

ability theory in general and in machine learning in particular. A Markov
chain is devised so that its stationary distribution is some probability distri-
bution of interest. Then one samples from the given distribution by running
the Markov chain for a ”long time” until it appears to be stationary and then
collects the sample. However these chains are often very complex and there
are no theoretical guarantees that stationarity is actually reached. In this
paper we study the Gibbs sampler of the posterior distribution of a very sim-
ple case of Latent Dirichlet Allocation, an attractive Bayesian unsupervised
learning model for text generation and text classification. It turns out that in
some situations, the mixing time of the Gibbs sampler is exponential in the
length of documents and so it is practically impossible to properly sample
from the posterior when documents are sufficiently long.

AMS Subject classification : 60J10
Key words and phrases: mixing time, MCMC, Gibbs sampler, topic model
Short title: Slow mixing for LDA

1 Introduction
Markov chain Monte Carlo (MCMC) is a powerful tool for sampling from a given
probability distribution on a very large state space, where direct sampling is diffi-
cult, in part because of the size of the state space and in part because of normaliz-
ing constants that are difficult to compute.
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In machine learning in particular, MCMC algorithms are extremely common
for sampling from posterior distributions of Bayesian probabilistic models. The
posterior distribution given observed data is then difficult to sample from for the
reasons above. One then designs an (irreducible aperiodic) Markov chain whose
stationary distribution is precisely the targeted posterior. This is usually fairly easy
since the posterior is usually easy to compute up to the normalizing constant (the
denominator in Bayes formula). One usually uses Gibbs sampling or the related
Metropolis-Hastings algorithm.

Gibbs sampling in these situations can be described as follows. Our state space
is a finite set of random variablesX = {Xa}a∈A, whereXa ∈ T for some measur-
able space T , so that X ∈ TA and the targeted distribution is a given probability
measure P on TA. In order to sample from P one starts a Markov chain on TA

whose updates are given by first choosing an index a ∈ A at random and then
choosing a new value of Xa according to the conditional distribution of Xa given
all Xb, b ∈ A \ {a}. Under mild conditions, this chain converges in distribution
to P. The Markov chain is then run for a ”long time” and then a sample, hope-
fully approximately from P, is collected. A key question here is for how long the
chain actually has to be run, in order for the distribution after that time to be a
good approximation of P. Since A is usually large, the number of steps needed
should at least be no more than polynomial in the size of A for Gibbs sampling
to be feasible. In almost all practical cases, the structure of the sample space and
the probability measure P is so complex that is virtually impossible to make a rig-
orous analysis of the mixing rate. However it may be possible to consider some
very simplified special cases. In this paper, we will analyse a special case of La-
tent Dirichlet allocation, henceforth LDA for short, and demonstrate for such a
simple special case that mixing can indeed be a problem.

LDA is model used to classify documents according to their topics. We have
a large corpus of documents and we want to determine for each word in each
document which topic it comes from. Knowing this we can also classify the doc-
uments according to the proportion of words of the different topics it contains.
The setup in LDA is that one has a fixed number D of documents of lengths Nd

a fixed set of topics t1, t2, . . . , ts and a fixed set of words w1, w2, . . . , wv. These
are specified in advance. The number of topics is usually not large, whereas the
number of words is. Next, for each document d = 1, . . . , D, a multinomial dis-
tribution θd = (θd(1), . . . , θd(s)) over topics is chosen according to a Dirichlet
prior with a known parameter α = (α1, . . . , αs). For each topic ti a multinomial
distribution φi = (φi(1), . . . , φi(v)) according to a Dirichlet prior with parameter
β = (β1, . . . , βv) independently of each other and of the θd:s. Given these, the
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corpus is then generated by for each position p = 1, . . . , Nd in each document
d picking a topic zd,p according to θd and then picking the word at that position
according to φzd,p , doing this independently for all positions. Note that the LDA
model is a so called ”bag of words” model, i.e. it is invariant under permutations
within each document.

In this paper, we will consider the very simplified case with D = s = v = 2,
N1 = N2 = m and α = β = (1, 1) and study the mixing time asymptotics as
m → ∞. To simplify the notation, denote the two topics by A and B and the
two words by 1 and 2. Define nij as the number of occurrences of the word j in
document i, i, j = 1, 2 and write ni. = ni1 + ni2 (which by assumption equals
m) and n.j = n1j + n2j and n.. =

∑
i,j nij = 2m. We consider the mixing time

for Gibbs sampling of the posterior in a seemingly typical case, namely that the
number of 1:s in the first document is 3m/10 and in the second document 6m/10.
Our result is the following.

Theorem 1.1 Consider the case n11 = 3m/10 and n21 = 6m/10. Then there
exists a λ > 0 such that for each 0 < κ < 3/4,

τmix(κ) > eλn.

Remark. The point of this paper is to demonstrate that the mixing time issue
can be a real problem for Bayesian inference in machine learning in general and
not for LDA in particular. There are also other methods for estimation that seem to
work well for LDA, in particular variational inference. Furthermore, experimental
results seem to be fairly well in line with what one would expect from a topic
classification algorithm.

Before moving on to the proof of Theorem 1.1, we formally introduce the
concept of mixing time. Let {Xt}∞t=0 be a discrete time Markov chain on the finite
state space S and for s ∈ S, let Ps be the underlying probability measure under
X0 = s.

Definition 1.2 Let µ and ν be two probability measures on S. The the total vari-
ation distance between µ and ν is given by

‖µ− ν‖TV = max
A⊂S

(µ(A)− ν(A)) = 1

2

∑
s∈S

|µ(s)− ν(s)|.

Definition 1.3 For each κ ∈ (0, 1), the κ-mixing time of {Xt} is given by

τmix(κ) = max
s∈S

min{t : ‖Ps(Xt ∈ ·)− π‖TV ≤ κ}.
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The essence of Theorem 1.1 is that even after an exponentially long time,
the distribution of the state of the Gibbs sampler is concentrated on a set whose
probability mass according to the targeted posterior is at most 1/4.

2 Proof of Theorem 1.1
The following two combinatorial lemmas will be needed.

Lemma 2.1 Let X be a standard uniform random variable and 0 ≤ k ≤ n. Then

E[Xk(1−X)n−k] =
1

(n+ 1)
(
n
k

) .
Proof. First recall that for any m = 1, 2, . . .,

E[Xm] =
1

m+ 1
.

Next observe that the result holds true for any n with k = n. We want to prove
that the claimed result holds for (n, k) = (p, r) for some arbitrary 0 ≤ r ≤ p.
We do this by induction. We may then assume that the result is true with (n, k) =
(m, l) for any m and l with either m < p or m = p and l > r. Then, taking
Y = Xr(1−X)p−r−1,

E[Xr(1−X)p−r] = E[Y (1−X)]

= E[Y ]− E[Y X]

= E[Xr(1−X)p−r−1]− E[Xr+1(1−X)p−r]

=
1

p
(
p−1
r

) − 1

(p+ 1)
(
p
r+1

)
=

1

(p+ 1)
(
p
r

) ,
where the fourth equality follows form the induction hypothesis and the last equal-
ity holds because

1

(p+ 1)
(
p
r

) + 1

(p+ 1)
(
p
r+1

) =

(
p+1
r+1

)
(p+ 1)

(
p
r

)(
p
r+1

)
=

1
r+1

(
p
r

)(
p
r+1

) =
1

p
(
p−1
r

) .
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Lemma 2.2 For any nonnegative integers a, b, c and d,(
a+ b+ c+ d

a+ c

)(
a+ c

a

)(
b+ d

d

)
=

(
a+ b+ c+ d

a+ b

)(
a+ b

a

)(
c+ d

d

)
.

Proof. Both sides of the equality are equal to the multinomial coefficient(
a+ b+ c+ d

a, b, c, d

)
.

2

Let W = (w11, w12, . . . , w1m, w21, . . . , w2m) be the words in our corpus, let
Z = (z11, z12, . . . , z2m) be the latent topics and Zd be the latent topics in document
d. Let also θi be the probability that zd1 = A, d = 1, 2 and let φt be the conditional
probability that wdj = 1 given that zdj = t, t = A,B. In the case under study,
these four quantities are all independent standard uniform random variables. We
begin by determining the posterior distribution.

P(Z = z|W = w) ∝ P(W = w|Z = z)P(Z = z).

Now

P(Z = z) = E[P(Z = z|θ1, θ2)]
= E[θk1.1 (1− θ1)n1.−k1. ]E[θk2.2 (1− θ2)n2.−k2. ]

=
1

(n1. + 1)(n2. + 1)
(
n1.

k1.

)(
n2.

k2.

) .
Here we have used the notation kdj for the number words in document d with the
topic being A and the word being j and the same dot notation for the k:s as for the
n:s. The last equality is Lemma 2.1. For the second factor we have analogously,
again using Lemma 2.1,

P(W = w|Z = z) = E[φk.1A (1− φA)k..−k.1 ]E[φn.1−k.1B (1− φB)n..−(n.1−k.1)]

=
1

(k.. + 1)(n.. − k.. + 1)
(
k..
k.1

)(
n..−k..
n.1−k.1

) .
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Hence, ignoring factors that do not depend on the k:s and using Lemma 2.2
for the second equality

P(Z = z|W = w) ∝
(
(k.. + 1)(n.. − k.. + 1)

(
n1.

k1.

)(
n2.

k2.

)(
k..
k.1

)(
n.. − k..
n.1 − k.1

))−1
=

(
n..
k..

)
(k.. + 1)(n.. − k.. + 1)

(
n1.

k1.

)(
n2.

k2.

)(
n.1
k.1

)(
n.2
k.2

) .
This expression only depends on z via k = k(z) := (k11, k12, k21, k22). Identi-

fying all z having the same k(z), we have (regarding ,with some abuse of notation,
a k also as the equivalence class consisting of all z:s having that particular kdj:s)
that for any k1 and k2, all z ∈ k1 have the same probability of transitioning into
k2. Hence the process where we only record the k:s is a lumped Markov chain
and it suffices to regard this chain, whose state space is [n11]× [n12]× [n21]× [n22].
In particular the Gibbs sampler does not mix any faster than the lumped Markov
chain; this follows from the definition of the total variation norm and the triangle
inequality. The lumped Markov chain has the stationary distribution

f(k) = fw(k) := P(K = k|W = w) = C0

(
n..
k..

)(
n11

k11

)(
n12

k12

)(
n21

k21

)(
n22

k22

)
(k.. + 1)(n.. − k.. + 1)

(
n1.

k1.

)(
n2.

k2.

)(
n.1
k.1

)(
n.2
k.2

) ,
where of course K = k(Z) and C0 is the normalizing constant.

To prove Theorem 1.1, we will show that there are small neighborhoods of the
two states k0 = (3m/10, 0, 6m/10, 0) and k1 = (3m/10, 7m/10, 0, 0) that are
extremely difficult to leave.

Remark. By switching the names of the two topics, it follows that the states
(0, 7m/10, 0, 4m/10) and (0, 0, 6m/10, 4m/10) are equally difficult to leave. One
can on good grounds argue that these are really the same as k0 and k1 respectively.
Doing so, the result of Theorem 1.1 is still valid, at least for κ < 1/2, which is
”bad enough”.

Define
h(x) =

(
xx(1− x)1−x

)−1
, x ∈ (0, 1).

Then, for a ∈ (0, 1), by Stirling’s formula,(
m

am

)
= C1h(a)

m,
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where C1 is of order m−1/2. Hence

f(k0) = C0C2
h(9/20)2m

h(3/10)mh(3/5)m

= C0C2

(
h(9/20)2

h(3/10)h(3/5)

)m
,

where C2 is of order m1/2. Now consider f in a small neighborhood of k0: let
a, b, c, d be small positive numbers, say at most 1/10. Then

f(3m/10− am, bm, 3m/5− cm, dm)

= C0C3

(
h( 9

20
+ (b+d−a−c)

2
)2h(10a

3
)3/10h(10b

7
)7/10h(5c

3
)3/5h(5d

2
)2/5

h(10(a+c)
9

)9/10h(10(b+d)
11

)11/10h( 3
10

+ b− a)h(3
5
+ d− c)

)m

=: C0C3g(a, b, c, d)
m,

whereC3 is of order betweenm−1/2 andm1/2. We claim that all partial derivatives
of g are strictly negative at the origin. We do this with respect to a, leaving the
analogous calculations to the reader. Now

g(a, 0, 0, 0) =
h( 9

20
− a

2
)2h(10a

3
)3/10

h(10a
9
)9/10h( 3

10
− a)

so that
log g(a, 0, 0, 0)

= 2 log h

(
9

20
− a

2

)
+

3

10
log h

(
10a

3

)
− 9

10
log h

(
10a

9

)
− log h

(
3

10
− a
)
.

It is readily checked that

d

dx
log h(x) = log

1− x
x

.

Hence
∂

∂a
log g(a, 0, 0, 0) = log

( 9
20
− a

2
)(1− 10a

3
)10a

9
( 7
10

+ a)

(11
20

+ a
2
)10a

3
(1− 10a

9
)( 3

10
− a)

.

For a = 0, the right hand side equals − log(11/7) which is smaller than −9/20.
Analogously, the partial derivatives of log g with respect to b, c and d are less
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than −1/4 (we do not get exactly the same numbers here). It follows that for a
sufficiently small ε > 0,

f(k) < e−
ε
4
mf(k0)

whenever ‖k − k0‖∞ = εm. For such a k, let Vk be the number of visits to k of
the lumped Markov chain starting at k0 until it returns to k0. Then by an intuitive
and well known fact in Markov theory (see e.g. [1], Lemma 6 of Chapter 2)

E[Vk] =
f(k)

f(k0)
< e−

ε
4
m.

Hence

P(Vk > 0) =
E[Vk]

E[Vk|Vk > 0]
< e−

ε
4
m.

By a Bonferroni bound we get

P
(
∪k:‖k−k0‖∞{Vk > 0}

)
< 4(εm)3e−

ε
4
m < e−

ε
8
m

for sufficiently large m (εm > 170 is sufficient). Hence, starting at k0, the prob-
ability of getting more than distance εm from k0 in e

ε
9
m steps is at most e−

ε
72
m

which goes to 0 as m→∞.
Next, we make an analogous analysis of the neighborhood of k1. We get

f(k1) = C0C1

(
h(1

2
)2

h(1
3
)9/10h( 4

11
)11/10

)m
,

where C1 is of order n1/2, and

f(3m/10− am, bm, 3/5− cn, dm)

= C0C3

(
h(1

2
+ (c+d−a−b)

2
)2h(10a

3
)3/10h(10b

7
)7/10h(5c

3
)3/5h(5d

2
)2/5

h(1
3
+ 10(c−a)

9
)9/10h( 7

10
+ 10(d−b)

11
)11/10h(a+ b)h(c+ d)

)m

=: C0C3g(a, b, c, d)
m

This entails that

g(a, 0, 0, 0) =
h(1

2
− a

2
)2h(10a

3
)3/10

x
.

Taking the logarithm and differentiating with respect to a gives

∂

∂a
log g(a, 0, 0, 0) = log

( 1
2
− a

2
)(1− 10a

3
)(2

3
+ 10a

9
)a

(1
2
+ a

2
)10a

3
(1
3
− 10a

9
)(1− a)

)
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and taking a = 0, this becomes − log(5/3) < −1/2. Repeating the above argu-
ment, it follows for some ν > 0 that starting from k1, the probability of getting
more than distance νm from k1 in e

ν
9
m steps is at most e−

ν
72
m. Combining this

with the analogous result for k0, this proves Theorem 1.1.
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