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Abstract
The card-cyclic-to-random shuffle is the card shuffle where the n cards

are labeled 1, . . . , n according to their starting positions. Then the cards are
mixed by first picking card 1 from the deck and reinserting it at a uniformly
random position, then repeating for card 2, then for card 3 and so on until all
cards have been reinserted in this way. Then the procedure starts over again,
by first picking the card with label 1 and reinserting, and so on. Morris, Ning
and Peres [3] recently showed that the order of the number of shuffles needed
to mix the deck in this way is n log n. In the present paper, we consider
a variant of this shuffle with relabeling, i.e. a shuffle that differs from the
above in that after one round, i.e. after all cards have been reinserted once,
we relabel the cards according to the positions in the deck that they now
have. The relabeling is then repeated after each round of shuffling. It is
shown that even in this case, the correct order of mixing is n log n.
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1 Introduction
The subject of mixing times for Markov chains an important and exciting research
field that has attracted a lot of attention in recent decades. An outstanding subclass
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of Markov chains that has been studied extensively is card shuffling, i.e. Markov
chains on the symmetric group Sn of permutations of n items that one can think
of as the cards of a deck.

One of the early card shuffles to be studied was the random transpositions
shuffle, where each step of shuffle is made by picking two cards uniformly and
independently at random and then swapping them. It was shown by Diaconis
and Shahshahani [2] that the mixing time of this shuffle has a sharp threshold at
1
2
n log n shuffles. It is easy to see that at least order of n log n shuffles is required,

since, by the coupon collector’s problem, it takes this order of shuffles until most
cards have been touched at all. Closely related to the random transpositions shuffle
is the top-to-random shuffle where at each step the card presently in position one
is moved to a uniform random position. The sharp threshold for this shuffle is
n log n and again is is easy to see that at least order of n log n steps is required for
mixing, for similar reasons.

In recent years some more systematic variants of these shuffles have been pro-
posed and analyzed. Mossel, Peres and Sinclair [4] and Saloff-Coste and Zuniga
[6] analyzed the cyclic-to-random shuffle, where at time t the card presently in
position t mod n is swapped with a uniformly random card. Clearly at least once
per n steps, each card will be touched and one of the interesting questions about
this shuffle was if O(n) shuffles is also sufficient to mix the whole deck. The
answer turns out to be negative; indeed the mixing time is still of order n log n.
Pinsky [5] later introduced the card-cyclic-to-random transpositions shuffle (CCR
shuffle), where at time t the card with label t mod n (i.e. the card that started
out in position t mod n) is moved to a uniformly random position. Again it is
obvious that every card will be touched once every n steps and again one main
question was if this way of systematically randomizing the cards, suffices to mix
the whole deck in O(n), or at least o(n log n), steps. Again the answer turns out
to be negative; Morris, Ning and Peres [3] prove that n log n is still the correct
order. In this paper we investigate the card-cyclic-to-random shuffle with relabel-
ing (the CCRR shuffle for short). For k = 1, 2, . . . let round k consist of steps
kn + 1, kn + 2, . . . , kn + n of shuffling. The CCRR shuffle is the shuffle that is
exactly as the card-cyclic-to-random shuffle for the first round. After that how-
ever, the cards are relabeled 1, . . . , n according to their positions after the first
round. Next a new round of CCR shuffling is carried out according to the new
labels. After that the cards are relabeled again and a new round of CCR is done,
and so on. The main result of this paper is that relabeling does not help to speed
up mixing either, at least not more than by a constant.
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Theorem 1.1 The mixing time of the card-cyclic-to-random transpositions with
relabeling is of order n log n.

Here, the mixing time is given by

τmix := min{t : ‖P(Xt ∈ ·)− π‖TV ≤
1

4
}

where Xt ∈ Sn is the state of the deck of cards after t steps of shuffling, π is the
uniform distribution on Sn and ‖ · ‖TV is the total variation norm, given in general
by

‖µ‖TV :=
1

2

∑
x∈S

|µ(x)| = max{µ(A) : A ⊂ S}

for a signed measure µ on a finite space S.

2 Proof of the main result
For the upper bound on τmix is suffices to note that the proof in [3] for the CCR
shuffle goes through exactly as it stands there. Hence we will focus entirely on
the lower bound. The idea of the proof of the lower bound draws on the idea
behind Wilson’s technique introduced in [8] and [9], namely to use an eigenvector
of the transition matrix for the movement of a single card to build a test function.
However since estimating the variance of the test function will in fact be quite
simple here, we will not need Wilson’s Lemma explicitly.

Because of the cyclic structure of the shuffle, the movement of a single card
is not time-homogenous if we consider individual steps of the shuffle. However
in terms of rounds, the movement of a given card is indeed a time-homogenous
Markov chain. Let A = A(n) denote the transition matrix of this chain on n
cards. It is difficult to come up with a closed-form expression forA, but the action
of A can be probabilistically described as follows. Consider a card that starts a
round in position a ∈ [n]. Let us refer to cards 1, . . . , a− 1 as white cards and to
cards a + 1, . . . , n as black cards. Now in a first stage the a − 1 white cards are
sequentially picked out and reinserted at independent uniform positions. During
this stage a certain number of cards will be reinserted above card a in the deck
whereas the others will be uniformly spread out among the black cards below
card a. The cards that in this stage end up above card a will form a well-mixed
layer of white cards. Note that during stage 1, card a will move gradually higher
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up in the deck. (Here we say that if i < j, then position i is higher up than, or
above, position j.)

Next, after stage 1, card a itself is picked out and reinserted at a uniformly
random position U ∈ [n]; this is stage 2. In the third and final stage, the black
cards are picked out and reinserted. If card a was reinserted in the white layer at
the top, then card a will move gradually down in the deck during the whole of
this stage, whereas if not, then stage 3 divides into the two sub-stages where in the
first of these, the black cards above card a are reinserted and amoves upwards and
in the second, the black cards below card a are reinserted and a moves down the
deck. Even though we will not need the exact distribution of where card a ends
up under this procedure, we will still need some degree of control. The following
two lemmas will be useful for that.

Lemma 2.1 Let the sequence Y0, Y1, . . . , Yn−y0 be recursively defined by Y0 = y0

and Yt+1 = Yt + 1 with probability Yt/n and Yt+1 = Yt with probability 1− Yt/n
(where these probabilities are conditionally independent of Y1−Y0, . . . , Yt−Yt−1

given Yt). Then

E[Yt] =

(
1 +

1

n

)t
y0

and

Var(Yt) ≤
y0

n

2t∑
j=t

(
1 +

1

n

)j
− y2

0

n2
t

(
1 +

1

n

)2t

.

In particular, for all t,

Var(Yt) <
11

20
n.

Proof. By conditioning on Yt we get that

E[Yt+1] = E
[
Yt
n

(Yt + 1) +

(
1− Yt

n

)
Yt

]
= E

[(
1 +

1

n

)
Yt

]
which proves the expression for the expectation. For the variance part, write vt :=
Var(Yt). Then v0 = 0 and recursively

Var(Yt+1) = E[Var(Yt+1|Yt)] + Var(E[Yt+1|Yt]).
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By definition of the Yt’s, Var(Yt+1|Yt) = Yt(n−Yt)/n2 and by the above E[Yt+1|Yt] =
(1 + 1/n)Yt. Hence

E[Var(Yt+1|Yt)] =
E[Yt]

n
− E[Y 2

t ]

n2

=
(1 + 1/n)ty0

n
− 1

n

(
vt + y2

0

(
1 +

1

n

)2t
)
.

Adding the second term and writing c := 1 + 1/n gives

vt+1 =

(
c2 − 1

n

)
vt +

cty0

n

(
1− cty0

n

)
< c2vt +

1

n
cty0 −

1

n2
c2ty2

0.

This recursion is readily solved and gives

vt <
y0

n

2t∑
j=t

cj − y2
0

n2
tc2t

< neα
(
e1−2α − e−α − α2(1− α)e1−2α

)
<

11

20
n,

where α = y0/n, the first inequality follows from that t ≤ n− y0 = n(1−α) and
the last inequality from standard optimization over α.

2

Lemma 2.2 LetX ∈ L2(R) be a random variable and f : R→ R be contractive,
i.e. |f(x)− f(y)| ≤ |x− y| for all x, y ∈ R. Then

Var(f(X)) ≤ Var(X).

Proof. Let X1 and X2 be two independent copies of X . Then

Var(X) =
1

2
Var(X1 −X2)

=
1

2
E[|X1 −X2|2]

≥ 1

2
E[|f(X1)− f(X2)|2]

= Var(f(X)).
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2

Let Z be the position that card a ends up in after one round of shuffling. We
want to estimate the expectation and variance of Z. LetW be the number of white
cards that go to the top layer of white cards in stage 1. We will start by estimating
the variance of Z given W = w and U = u. If u ≤ w, so that stage 2 moves card
a to the top white layer, then by Lemma 2.1

E[Z|U = u,W = w] =

(
1 +

1

n

)n−a
u

and
Var(Z|U = u,W = w) <

11

20
n.

The case u > w takes some more work. In order to not overly burden the notation,
we suppress until further notice the conditioning on {W = w,U = u}. Let S be
the number of black cards in positions w+ 1, . . . , u− 1; these are the black cards
that get reinserted in the first part of stage 3. Let N be the number of cards below
card a after these S black cards have been reinserted. Note that when the first part
of stage 3 starts, then card a is in u and at that point, the number of black cards
below a is n− a− S. Hence by Lemma 2.1,

E[Z|N,S] =

(
1 +

1

n

)n−a−S
(n−N)

and

E[N |S] =

(
1 +

1

n

)S
(n− u).

Hence

E[Z|S] = (n− E[N |S])

(
1 +

1

n

)n−a−S
= n

(
1 +

1

n

)n−a−S
−
(

1 +
1

n

)n−a
(n− u).

It follows that

E[Z] = nE

[(
1 +

1

n

)n−a−S]
−
(

1 +
1

n

)n−a
(n− u). (1)
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We also get that

Var(Z|S) = E [Var(Z|N,S)|S] + Var (E[Z|N,S]|S)

<
11

20
n+ Var

((
1 +

1

n

)n−a−S
(n−N)|S

)

=
11

20
n+

(
1 +

1

n

)2(n−a−S)
11

20
n.

Therefore

Var(Z) = E [Var(Z|S)] + Var (E[Z|S])

<
11

20
(1 + e2)n+ Var

(
n

(
1 +

1

n

)n−a−S)

≤ 11

20
(1 + e2)n+ Var(S) <

(
11

20
+

4

5
e2

)
n

by Lemma 2.2, since the map S → (n/e)(1 + 1/n)n−a−S is contractive and S
is hypergeometric with variance at most n/4. Let us now bring back the condi-
tioning on W and U into the notation. What we have just shown is among other
things, that Var(Z|W,U) < Cn with C := 11/20 + 4e2/5. Thus Var(Z|U) =
E[Var(Z|W,U)|U ] +Var(E[Z|W,U ]|U) < Cn+Var(E[Z|W,U ]|U). However,
by (2)

|E [Z|W = w,U ]− E [Z|W = w − 1, U ]|

=

∣∣∣∣∣E
[
n

(
1 +

1

n

)n−a−S ∣∣∣W = w,U

]
− E

[
n

(
1 +

1

n

)n−a−S ∣∣∣W = w − 1, U

]∣∣∣∣∣
≤ E

[
n

(
1 +

1

n

)n−a−S ((
1 +

1

n

)
− 1

) ∣∣∣W = w,U

]
≤ e,

where the first inequality uses that the conditional distributions of S givenW = w
and W = w − 1 respectively, can easily be coupled so that the realizations do not
differ by more than 1. It now follows that

Var
(
E[Z|W,U ]

∣∣∣U) ≤ e2Var(W ) <
11

20
e2n

by Lemma 2.1. Hence

Var(Z|U) <

(
11 + 27e2

20

)
n.

7



This allows us to write Z = E[Z|U ] +D, where D = Z − E[Z|U ] has

Var(D) = E [Var(D|U)] = E [Var(Z|U)] < 11n. (2)

Let us now write 1/n, 2/n . . . , 1 instead of 1, 2, . . . , n for the positions in the deck
and let n→∞. Then, by the above, the position of a card starting from a ∈ [0, 1]
converges in distribution to that of Ga(U) where U is uniform on [0, 1] and

Ga(u) =

{
e1−au, u ≤ u0(a) := 1− (1− a)ea

ee
−a(1−u) − (1− u)e1−a, u > u0(a)

(3)

Also, by (1), Lemma 2.1, the fact that S has variance at most n/4 and a Maclaurin
expansion of e−x, give that

E[n−1Z|U = u] ∈

(
1±
√

11

n

)
Ga(u). (4)

Recall that we write A = A(n) for the transition matrix of the movement of a
card under one round of CCRR. Write B = B(n) = [bij] for the transition matrix
of a card that moves according toGa(x). More precisely, letU be uniform on [0, 1]
and let bij be the probability that Ga(U) ∈ (j − 1/n, j), i, j ∈ {1/n, 2/n, . . . , 1},
where a is chosen uniformly at random in (i − 1, i). The next lemma states that
the matrix B has a nontrivial eigenvalue bounded away from 0.

Lemma 2.3 The transition matrix B(n) has a (possibly complex) second eigen-
value λ such that |λ| > 0.08.

Remark. Matlab evaluations up to n = 105 strongly suggest that the second
eigenvalue is real and in the interval (0.21, 0.22).

Proof. Write B = S + D where S is the symmetric matrix (B + BT )/2 and
D is the skew-symmetric matrix (B −BT )/2. We claim the following.

Lemma 2.4 The second largest eigenvalue of S is at least 0.21

Lemma 2.5 The (purely imaginary) eigenvalues λ of D satisfy |λ| < 0.13. In
particular, ‖D‖2→2 < 0.13.
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It is well known that eigenvalues are stable in the sense that if C is normal (i.e.
CCT = CTC), in particular if C is symmetric, with an eigenvalue λ0 and E is a
matrix with ‖E‖2→2 = ε, then B +E has an eigenvalue λ such that |λ− λ0| ≤ ε.
See e.g. [7] for an elementary proof of this fact. This means that Lemma 2.3
follows immediately from Lemmas 2.4 and 2.5. 2

Proof of Lemma 2.4 and Lemma 2.5. In the proof of these lemmas, it will be
convenient to use the following convention: when a function f is defined on
{1/n, 2/n, . . . , 1} we will identify it with its extension to [0, 1] defined by f(a) =
f(n−1dnae). By this convention, ‖f‖2 of the unextended n-dimensional vector f
is
√
n times ‖f‖2 of the extended f as a function in L2[0, 1].

Let us first study S. That (λ, φ) is an eigenvalue/eigenvector pair for S means
that E[φ(X1)|X0 = a] = λφ(a) for all a = 1/n, 2/n, . . . , 1, whereX1 = X1(n) is
the position of a card after one move according to S, starting from X0. Write Y =
Y (n) for a random variable distributed as the position after one move according
to B(n) and let Y ∗(n) be distributed according to the position after one step of
B(n)T . (Note that B is doubly stochastic, so that BT is the transition matrix of
the reversed CCRR.) Thus X1 is the (uniform) convex combination of Y and Y ∗.
The idea now is to find (κ, ψ) close enough to an eigenvalue/eigenvector pair to
allow us to draw the desired conclusion. We do this with the aid of Matlab. Some
more details on the Matlab computations, in particular the code, can be found in
the appendix.

We use Matlab to calculate the eigenvalue κ = 0.2293... and corresponding
eigenvector χ with n = 104, scaled so that ‖χ‖2 = 1. Now let n = 105 and
extend χ to ψ, the linear interpolation of (a slightly smoothed out version (see the
appendix) of) χ. Then we find that

‖E[ψ(X1(n))|X0(n) = ·]− κψ(·))‖2 < 0.0012. (5)

To arrive at the desired conclusion, a bound on the norm of the difference between
E[ψ(X1(m))|X0 = ·] and E[ψ(X1(n))|X0 = ·] for m > n = 105 must also
be established. This will be done by investigating the difference between the
distributions of Ga(U) and Ga+1/m(U). Note that the distribution function of
Ga(U) isG−1

a . We claim that |G−1
a (x)−G−1

a+1/m(x)| is maximized when either x =

x0 := Ga+1/m(u0(a+ 1/m)) or x = Ga(u0(a)) (recall that u0(a) = 1− (1− a)ea

is the breakpoint in the expression for Ga(u)).
Write b := a+1/m. To prove the claim, it suffices to show that (d/dx)(G−1

a (x)−
G−1
b (x)) is negative for x < Ga(u0(a)) and x > Gb(u0(b)) and positive for

Ga(u0(a)) < x < Gb(u0(b)), m > 105. This is equivalent to showing that
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G′a(G
−1
a (x))−G′b(G−1

b (x)) is positive for x < Ga(u0(a)) and x > Gb(u0(b)) and
negative for x between the two bounds. For x < Ga(u0(a)), the difference of the
derivatives is constantly e1−a−e1−a−1/m > 0. WhenGa(u0(a)) < x < Gb(u0(b)),
G′b(G

−1
b (x)) = e1−b, whereasG′a(G

−1
a (x)) ≤ e1−a−1, which is obviously smaller.

For x > Gb(u0(b)), let z = G−1
a (x) and y = G−1

b (x). Then, since G′′a > 0 so
that G′a is increasing, we have z − y ≥ (Gb(z) − Ga(z))/G′b(z). Bounding this
from below gives

Gb(z)−Ga(z)

Gb(z)
=

ee
−b(1−z) − e1−b − ee−a(1−z) + e1−a

e1−b − ee−b(1−z)

≥ m−1e1−b(1− z) + ee
−b(1−z)(1− em−1e−b(1−z))

e1−b − ee−b(1−z)

≥ (1− z)m−1.

Therefore

G′a(z)−G′b(y) = e1−a − e1−a−1/m − e−aee−a(1−z)(1−1/m)

+ e−a−1/mee
−a−1/m(1−z)

≥ e−a
(
em−1 − ee−a(1−1/m)(1−z)

+ (1−m−1)ee
−a(1−1/m)(1−z) − e

2
m−1

)
≥ e−am−1

(
e− ee−a(1−1/m)(1−z) − e

2
m−1

)
≥ e−am−1

(
e− e1−a − e

2
m−1

)
≥ 0,

since a ≥ 1/m. This proves the claim.
Now, we have that

0 ≤ G−1
a+1/m(Ga(u0(a)))−G−1

a (Ga(u0(a)))

= (ea+1/m−1 − ea−1)Ga(u0(a))

≤ m−1.

Also
0 ≤ G−1

a (x0)−G−1
a+1/m(x0) = G−1

a (x0)− u0(a+m−1).

NowGa(u0(a)) = e1−a−e(1−a) from which it readily follows thatGa+1/m(u0(a+
1/m))−Ga(u0(a)) ≤ 2ea/m. The derivative of Ga is given by

G′a(u) =

{
e1−a, u < u0(a)

e1−a − e−aee−a(1−u), u > u0(a)
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This is minimized for u = u0(a) and then becomes e1−a − e1−2a > a/2. Since
(d/dx)G−1

a (x) = 1/G′a(G
−1
a (x)), it follows that

G−1
a (x0) ≤ u0(a) + 4em−1.

Since u0(a+ 1/m) > u0(a), it follows that

G−1
a (x0)−G−1

a+1/m(x0) < 4em−1.

Hence, for a ∈ {1/n, 2/n, . . . , 1− 1/n} and all l,

|
l∑

j=1

ba+1/m,j −
l∑

j=1

ba,j| ≤ |G−1
a+1/m(l)−G−1

a (l)|

< 4em−1 < 11m−1.

This means that the total variation distance between the distributions of two cards
making a move according to B, starting from i and i + 1/m respectively, is
bounded by 11/m. Writing Ya(m) for a random variable distributed according
to the position after one round of CCRR for a card that starts in position a, a con-
sequence of this is that one can construct a coupling of Ya(m) and Ya+1/m(m)
such that P(Ya(m) 6= Ya+1/m(m)) < 11/m. More generally, for k < m, one
can couple so that P(Ya(m) 6= Ya+k/m(m)) < 11k/m. This entails, with ψ̂ =
maxx ψ(x)−minx ψ(x) < 4.5, that

|E[ψ(Ya(m))]− E[ψ(Ya+k/m(m))]| < 50km−1. (6)

Next we give a corresponding bound for BT . Note that G′a(j) = G′a(j+ 1/m) for
a such that j + 1/m < u0(a) and that when j > u0(a), G′a(j) < G′a(j + 1/m),
whereas when j < u0(a) < j+1/m, thenG′a(j) > G′aj + 1/m. Hence bi,j+1/m−
bi,j is zero for u0(i) > b + 1/m, negative for u0(i) < b and positive for the i’s
such that j < u0(i) < j + 1/m. Hence the sum

∑
i:j<u0(i)<j+1/m(bi,j+1/m − bi,j)

gives the total variation distance between the distributions of two cards making
one move according to BT and starting from j and j + 1/m respectively. The
number of i’s in the sum equals m(u−1

0 (j + 1/m)− u−1
0 (j)) and

bi,j+1/m ≤ 1 ∧ 1

mG′i(u0(i))
< 1 ∧ 2

mi
.

Each of the i’s correspond to a j < u0(i), i.e. i > u−1
0 (j). Hence the total variation

distance is bounded by 2(u−1
0 (j + 1/m)− u−1

0 (j))/u−1
0 (j). Now u′0(a) = aea, so

u−1
0 (j + 1/m)− u−1

0 (j) <
e−i

mi
≤ 1

mi
<

1

u−1
0 (j)

.
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Hence the total variation bound becomes 1∧2/mu−1
0 (j)2. Since u0(a) = 1−(1−

a)ea ≤ a2, we have u−1
0 (j) ≥

√
j, so the bound is no larger than 1 ∧ 2/mj. Now,

in analogy with the above, let Y ∗a (m) be distributed as the position of a card after
one amove according to BT , started from a. Then one can construct a coupling
such that P(Y ∗a (m) 6= Y ∗a+k/m(m)) < 1 ∧ 2k/ma and hence

|E[ψ(Y ∗a (m))]− E[ψ(Y ∗a+k/m(m))]| < ψ̂

(
1 ∧ 2k

ma

)
< 4.5

(
1 ∧ 2k

ma

)
. (7)

Let us now compare E[ψ(Ya(m)] with E[ψ(Ya(n))]. For convenience, assume
that n|m and set m = nl. For a = k/n − r/m, 0 ≤ r ≤ l − 1, we have that
E[ψ(Ya(n)] = E[ψ(Ya0(n))], where a0 := n−1dnae. Using (6) shows that

|E[ψ(Ya(m))]− E[ψ(Ya0(m))| < 50

n
= 0.0005.

From our Matlab calculations, we get maxx |ψ′(x)| < 100. Then it is clear that

|E[ψ(Ya0(m))]− E[Ya0(n)]| ≤ 100

n
= 0.001.

Hence
‖E[ψ(Y·(m))]− E[ψ(Y·(n))]‖2 < 0.0015. (8)

Analogously for comparing E[ψ(Y ∗a (m)] with E[ψ(Y ∗a (n))], use (7) to get

|E[ψ(Y ∗a (m))]− E[ψ(Y ∗a0(m))]| < 4.5

(
1 ∧ 2r

(k − 1)l

)
and hence some straightforward calculations give, using (7), that

∑l
1 k

2 ≤ l3/3
and that

∑∞
1 1/k2 = π2/6,

‖E[ψ(Y ∗· (m))]− E[ψ(Y ∗· (n))]‖2 < 0.001 +
2 · 4.5√

n

√
1 +

5

24
+

1

3

(
π2

6
− 1

)
< 0.001 +

10√
n
< 0.033.

Since X1 is the convex combination of Y and Y ∗, it follows from (8) that

E[ψ(X·(m))]− E[ψ(X·(n))]‖2 < 0.018. (9)
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Combining (9) with (5), we find that

‖E[ψ(X·(m)]− ψ‖2 < 0.0192

for all m ≥ 105. From this it follows that S has an eigenvalue λ with λ >
κ− 0.0192 > 0.21 as desired.

Next we prove Lemma 2.5 in a completely analogous way. We have that λ, φ)
is an eigenvalue/eigenvector pair for C if (1/2)(E[φ(Y )|X0 = i]−E[φ(Y ∗)|X0 =
i]) = λ(i) for all i, where Y and Y ∗ are, as above, random variables distributed
according one step of B and BT respectively, starting from X0. Again we take
n = 105 and use Matlab to get κ and ψ close to an eigenvalue and eigenvector
respectively. It turns out that κ = 0.0793...i, so |κ| < 0.08 and we get ψ̂ < 5.
In terms of variability however, this case turns out to be less well behaved. We
get maxx |ψ′(x)| < 400 and ‖1

2
(E[ψ(Y (n)|X0 = ·] − E[ψ(Y ∗(n))|X0 = ·]) −

κψ(·)‖2 < 0.017. Then the above calculations now give∥∥∥∥1

2
(E[ψ(Y (m)|X0 = ·]− E[ψ(Y ∗(m))|X0 = ·])− κψ(·)

∥∥∥∥
2

< 0.047 < 0.05.

The desired result follows. 2

For the remainder of the paper, in the light of Lemma 2.3, we fix λ to be
the eigenvalue of B with the second largest modulus. Let φ be an eigenvector
corresponding to λ with ‖φ‖2 = 1. The next lemma, which we extract from the
proof of Lemma 2.4, will be useful in order to show that φ(i) and φ(j) cannot
differ much if i and j are close.

Lemma 2.6 Let f : [n] → C and for i ∈ [n], let Xi be a random variable
distributed according to the law the position of card i after one move according
to B. Then for all i ∈ [n− 1],

|E[f(Xi+1)]− E[f(Xi)]| ≤
22

n
‖f‖∞.

Lemma 2.7 For the eigenvector φ, of B, we have

‖φ‖1 ≥ c1n
4/9,

‖φ‖∞ ≤ c2n
−4/9

and
|φ(i+ 1)− φ(i)| ≤ c3n

−13/9

for constants c1, c2 and c3 independent of n.
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Proof. Let, as in the previous proof, Xi be distributed as the position of
card i after one move according to B. By definition of eigenvalue/eigenvector,
Eφ(Xi) = λφ(i). Hence by Lemma 2.6,

|φ(i)− φ(i+ 1)| ≤ 22|λ|−1

n
<

275

n

since ‖φ‖∞ ≤ 1. Write ‖φ‖∞ = C1n
−a for a large constant C1. Since |φ(i) −

φi+1| < 275/n, it follows that

1 ≥ ‖φ‖2
2 >

2752

n2

C1n1−a/10∑
1

1

j2
> n1−3a

provided that C1 is large enough, which entails that a ≥ 1/3. This however
means that ‖φ‖∞ ≤ C1n

−1/3 so that the conclusion from Lemma 2.6 above can
be strengthened to

|φ(i)− φ(i+ 1)| < 275C1

n4/3
.

Now writing ‖φ‖∞ = C2n
−b for some large constant C2 gives that

1 ≥ ‖φ‖2
2 >

2752C2
1

n2

C2n1−a/10C1∑
j=1

1

j2
> n4/3−3b

for large enough C2, so that b ≤ 4/9. This shows that ‖φ‖∞ = O(n−4/9).
Once again bootstrapping the bound on |φ(i)− φ(i+ 1)| gives an upper bound of
O(n−13/9). Since ‖φ‖∞ ≥ n−1/2, it follows that

‖φ‖1 = Ω(n−13/9)

Ω(n17/18)∑
j=1

1

j
= Ω(n4/9).

2

Let St :=
∑

i:φ(i)>0 φ(X t
i ) where X t

i is the position of card i after t rounds
of CCRR. In accordance with the the above, we write for simplicity Xi for X1

i .
The random variable St is going to be the test statistic used to verify that order
log n rounds are necessary for the deck to mix. Let X∞ be the deck at stationarity
(i.e. uniform on Sn) and let S∞ =

∑
φ(i)>0 φ(X∞t ). Note that S0 = Ω(n4/9) by

Lemma 2.7. Since the cards now move according toA and notB, φ is not quite an

14



eigenvector. However, letting Y i
t be the position of a card after t steps according

to B and coupling X i
1 and Y i

1 by using the same uniform random variable for
updating, (i.e. we use n−1dnUe for X i

t ) (2) gives that |E[X i
1]−E[Y i

1 ]| = O(n1/2).
Hence by Lemma 2.7,

|E[φ(X i
1)|X i

0 = a]− E[φ(Y i
t )|Y i

0 = a]| = O(n−13/9n1/2) = O(n−17/18).

Hence summing over i with X i
0 > 0 and using the triangle inequality gives

|E[S1|S0]− λS0| < C1n
1/18.

for a sufficiently large constant C1. A straightforward recursion gives, using (12),

E[St] ≥ λtS0 −

(
t−1∑
r=1

λr

)
C1n

1/18 > C2λ
tn4/9 − C3n

1/18. (10)

We also need to bound the variance of St. Let fi(Ui) = E[Xi|Ui], where Ui
is the position where card i is reinserted in round 1. Then we can write Xi =
fi(Ui) + εi, where E[ε2i ] = O(n) by (2). Hence φ(Xi) = φ(fi(Ui)) + δi, where the
variance of δi is order n · (n−13/9)2 = n−17/9 by Lemma 2.7.

Now observe that fi(Ui) and fj(Uj) are independent and Cov(δi, δj) = O(n−17/9).
Also,

Cov(φ(fi(Ui)), δj) = Cov(φ(fi(Ui)),E[δj|Ui]) = O(n−4/9n−13/9) = O(n−17/9).

Summing up, we get

Cov(φ(Xi), φ(Xj)) = O(n−17/9) (11)

from which it follows that

Var(S1) = O(n1/9). (12)

From the considerations leading up to (10), we can write E[St+1|St] = λSt + Z
for a random variable Z, which is function of St such that |Z| ≤ n1/18. Hence

Var(E[St+1|St]) ≤ λ2Var(St) + 2λE[St]n
1/18 + n1/9

< λ2Var(St) + 2λn11/18 + n1/9.

By (12), R := maxx E[Var(St+1|Xt = x)] = O(n1/9). Hence, with vt :=
Var(St), we have the recursive inequality,

vt+1 ≤ R + 2λn11/18 + n1/9λ2vt
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with v0 = 0. It follows that

vt ≤ (R +O(n1/9))
t∑

j=0

λ2j + n11/18λ

t∑
j=0

λ2j,

so for all t,
Var(St)O(n11/18).

By continuity we also get Var(S∞) = O(n11/18).
Finally let τ := blog n/9 log λ−1c. Then by (10), E[Sτ ] ≥ c1n

1/3, so by
Chebyshev’s inequality,

P(Sτ ≤ n23/72)→ 0

as n→∞, whereas
P(S∞ ≤ n23/72)→ 1.

This proves the main theorem.
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3 Appendix
For the Matlab computations, we have used three functions, rimatris, riprod
and riprod2. Recall from Lemmas 2.3, 2.4 and 2.5, the transition matrix B(n)
for which there was established that the second eigenvalue has modulus at least
0.08, via considerations of approximate eigenvalues and eigenvectors for the ma-
trices S(n) = (B(n)+B(n)T )/2 andD(n) = (B(n)−B(n)T )/2. The command
rimatris(n) produces B(n). The two other functions take an n-dimensional
vector v as input and return S(n)v and D(n)v respectively. Since we needed n to
be as large as 105, computation time was an important issue. Therefore the code
has been optimized for computational speed and it is not quite as straightforward
as one would at first believe on knowing B(n). Here is the code.

function A=rimatris(n)

A=zeros(n,n);
r=zeros(1,n+1);
e=exp(1);
ep=1/n;
a=0;
ea=1;
ema=1;
eema=exp(1);
eep=exp(ep);
emep=1/eep;

for i=1:n,
a=a+ep;
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ea=ea*eep;
ema=ema*emep;
eema=eemaêmep;
u=0;

for j=0:n,
z=j*ep;
s=min(e*ema*u,eema(̂1-u)-e*ema*(1-u))-z;
while abs(s)>1e-12,
I=(u <= 1-(1-a)*ea);
u=u-s/(I*e*ema + (1-I)*(e*ema-ema*eema(̂1-u)));
s=min(e*ema*u,eema(̂1-u)-e*ema*(1-u))-z;
end
r(j+1)=u;
end
A(i,:)=r(2:n+1)-r(1:n);
end

function y=riprod(x);

n=length(x);
y=zeros(1,n);
e=exp(1);
ep=1/n;
z=ep*(0:n);
u=z;
a=0;
ea=1;
ema=1;
eema=exp(1);
eep=exp(ep);
emep=1/eep;

for i=1:n,
a=a+ep;
ea=ea*eep;
ema=ema*emep;
eema=eemaêmep;
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s=min(e*ema*u,eema.(̂1-u)-e*ema*(1-u))-z;
while max(abs(s))>1e-12,
I=(u <= 1-(1-a)*ea);
u=u-s./(I*e*ema + (1-I).*(e*ema-ema*eema.(̂1-u)));
s=min(e*ema*u,eema.(̂1-u)-e*ema*(1-u))-z;
end
r=u(2:n+1)-u(1:n);
y(i)=y(i)+r*x;
y=y+x(i)*r;
end
y=0.5*y’;

function y=riprod2(x);

n=length(x);
y=zeros(1,n);
e=exp(1);
ep=1/n;
z=ep*(0:n);
u=z;
a=0;
ea=1;
ema=1;
eema=exp(1);
eep=exp(ep);
emep=1/eep;

for i=1:n,
a=a+ep;
ea=ea*eep;
ema=ema*emep;
eema=eemaêmep;

s=min(e*ema*u,eema.(̂1-u)-e*ema*(1-u))-z;
while max(abs(s))>1e-12,
I=(u <= 1-(1-a)*ea);
u=u-s./(I*e*ema + (1-I).*(e*ema-ema*eema.(̂1-u)));
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s=min(e*ema*u,eema.(̂1-u)-e*ema*(1-u))-z;
end
r=u(2:n+1)-u(1:n);
y(i)=y(i)+r*x;
y=y-x(i)*r;
end
y=0.5*y’;

Given these functions, they have been used with the following set of com-
mands.
A=rimatris(10001);
B=(A+A’)/2;
C=(A-A’)/2;
[u,l]=eigs(B,2);
u=u(:,2);
u=100*u;
l=l(2,2);
[w,k]=eigs(C,1); w=100*w;
for i=2:25, u(26-i)=u(26)-i*(u(26)-u(25));, end
for i=2:75, w(76-i)=w(76)-i*(w(76)-w(75));, end
du=10000*(u(2:10001)-u(1:10000));
dw=10000*(u(2:10001)-w(1:10000));
x=0:10000;
xx=0:0.1:10000;
y=interp1(x,u,xx);
y=y’;
z=interp1(x,w,xx);
z=conj(z’);
r=riprod(y)-l*y;
s=riprod2(z)-k*z;
sqrt(r’*r/100000);
sqrt(s’*s/100000);
max(abs(du));
max(abs(dw));

Then u and w are first the normalized eigenvectors of B(n) and D(n) respec-
tively for n = 104. These are then smoothed out, whereupon y and z are the linear
interpolations of the smoothed-out vectors. The commands max(abs(du)) and
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max(abs(dw)) give φ̂ in the respective cases.
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