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The spectrum and convergence rates of exclusion and
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Abstract We give a short and completely elementary method to find the full spec-
trum of the exclusion process and a nicely limited superset of the spectrum of the
interchange process (a.k.a. random transpositions) on the complete graph. In the case
of the exclusion process, this gives a simple closed form expression for all the eigen-
values and their multiplicities. This result is then used to give an exact expression for
the distance in L2 from stationarity at any time and upper and lower bounds on the
convergence rate for the exclusion process. In the case of the interchange process,
upper and lower bounds are similarly found. Our results strengthen or reprove all
known results of the mixing time for the two processes in a very simple way.
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1 Introduction

Let G = Gn = (V,E) be the complete graph on n vertices. The (unlabelled) exclusion
process (UEP) with parameter ` and intensity α (with `≤ n/2 a positive integer and
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α ∈ R+) on G is the continuous time Markov process {Xt}t≥0 on the set
(V
`

)
of `-

element subsets of V , defined by taking its generator Q = Q(n,`,α) = [qJ,J′ ]J,J′∈(V
`)as

qJ,J′ =

−α`(n− `), J = J′

α, |J∆J′|= 2
0, otherwise

Clearly Q is symmetric. We usually think of this process as having either a black or
a white ball at each vertex v ∈ V , letting the state denote the set of ` vertices where
there is a black ball. For each edge e = {u,v} ∈ E, we can associate a Poisson clock
of intensity α such that whenever the clock rings, the two balls at u and v switch
positions. (Since the black balls are not distinct, this means that the process jumps to
a new state only when the Poisson clock of an edge with one black and one white ball
rings.) We take X0 to be an arbitrary but fixed state J.

The labelled exclusion process (LEP) with parameters ` and α is the same process
with the exception that we replace the black balls with ` distinct balls, with labels (or
colors (not white) if you like) 1, . . . , `. Here we may also take n/2 < ` ≤ n. The
state space is now the set (V )` of ordered `-tuples of distinct elements of V . For
x=(v1, . . . ,v`)∈ (V )`, we will think of v j as the position of ball j. Obviously |(V )`|=
(n)` = n(n−1) . . .(n− `+1) and the generator Q=Q(n,`,α) = [qx,x′ ]x,x′∈(V )` is given
by qx,x = −α(`(n− `) +

(`
2

)
), qx,x′ = α whenever x and x′ differ for exactly one

ball or x′ can be obtained from x by interchanging two of its elements, and qx,x′ =
0 otherwise. Again Q is symmetric. The special case ` = n makes (V )` the set of
permutations of n balls, in which case the process is also known as the interchange
process or random transpositions on G.

The alert reader will have spotted an ambiguity in our notation: we have used
Q for the generator of two different processes. However, this should be no problem,
since it will always be clear which one is under consideration.

The spectrum of the UEP is known, see e.g. [2,3,5]:

Theorem 1 Let Q(n,`,α) be the generator of the UEP with parameters ` and α . Then
the eigenvalues of −Q(n,`,α) are

0,αn,2α(n−1),3α(n−2), . . . , `α(n− `+1)

with multiplicities

1,n−1,
(

n
2

)
−n,

(
n
3

)
−
(

n
2

)
, . . . ,

(
n
`

)
−
(

n
`−1

)
respectively.

To the best of our knowledge, most previous proofs of Theorem 1 require a fair
deal of background knowledge, whereas our short proof requires nothing beyond
standard undergraduate linear algebra. Moreover, our method generalizes fairly easily
to the LEP to find a nicely limited set which contains the full spectrum of that process.
This spectrum can be understood using representation theory (see e.g. Wimmer [6]),
but this requires much more theory.
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To present our main result for the spectrum of the LEP, we let An, n = 1,2, . . .
be the adjacency matrix for the Cayley graph of the symmetric group on n items
generated by the transpositions, i.e. the graph which for vertex set has all the n! per-
mutations and an edge between u and v iff u and v differ by exactly one transposition.
The eigenvalues µ j, 1 ≤ j ≤ n!, of An relate to the eigenvalues λ j of −Q(n,n,α), (i.e.
the generator for the LEP with `= n) by

λ j = α

((
n
2

)
−µ j

)
.

For any square matrix B, write S (B) for the set of eigenvalues of B. Let E n
0 = {0},

E n
1 = {0,αn} and inductively for k = 1,2, . . . ,n−2,

E n
k+1 = E n

k

⋃(
α

(
n(k+1)−

(
k+1

2

)
−S (Ak+1)

))
and E n

n = E n
n−1. Here, for x,y ∈R and A⊂R, we use x(y−A) to denote the set of all

real numbers which can be written as x(y−a) for some a ∈ A.

Theorem 2 Let Q(n,`,α) be the generator of the LEP with parameters n, α and `.
Then with n fixed and E n

0 , . . . ,E
n
n as defined above, S (−Q(n,`,α)) is increasing in `

and
S (−Q(n,`,α))⊂ E n

` .

Moreover, S (−Qn,n,α)) is contained in the largest subset of E n
n that is symmetric

around α
(n

2

)
or, equivalently S (An) is symmetric and is contained in the largest

subset of
(n

2

)
−E n

n that is symmetric around 0.
Furthermore, if `≤ n/2 and 1≤ k ≤ `, then the total multiplicity of the eigenval-

ues λ such that αk(n− k+1)≤ λ < α(k+1)(n− k), does not exceed (n)k
(`

k

)
. Also,

for all `, the multiplicity of the eigenvalue αn is exactly `(n−1).

Theorem 2 can be used recursively on n and ` to find supersets of S (−Q(n,`,α)):
having found supersets of E j

k for j < n and k ≤ j, we find supersets of S (A j) for all
j < n and then the E n

k :s.

Remark 1 Note that it is obvious that S (−Q(n,n,α)) = S (−Q(n,n−1,α)). Note also
that the eigenvalues for Ak are symmetrically spread out between −α

(k
2

)
and α

(k
2

)
.

As a consequence, for ` = o(
√

n), the sets E n
0 , . . . ,E

n
` are disjoint and for ` = o(n),

the spread-outs of E n
0 , . . . ,E

n
` are of smaller order than their centers.

The results of Theorems 1 and 2 have profound consequences for the time taken
for these processes to come close to uniformity. Common ways to quantify the dis-
tance between two probability measure are by the Lp-norm or the total variation norm.
Let π be a probability measure on a finite space S. If ν is a signed measure on S, then
we define the Lp(π) norm of ν for p≥ 1 by

‖ν‖p
p = Eπ

[∣∣∣∣ν(X)

π(X)

∣∣∣∣p]= ∑
s∈S

∣∣∣∣ν(s)π(s)

∣∣∣∣p π(s).



4 Malin P. Forsström, Johan Jonasson

For a probability measure µ on S, the Lp-distance from µ to π is then defined as
‖µ − π‖p. By Hölder’s inequality, ‖µ − π‖p is increasing in p. The total variation
distance is defined as

‖µ−π‖TV =
1
2
‖µ−π‖1.

To define what we mean by the mixing time for a Markov chain, let {Xt} be a
Markov chain on S having stationary distribution π and let Px0 be the underlying
probability measure when starting from X0 = x0. Then the mixing time of {Xt} is
defined for any ε ∈ (0,1) as

τmix(ε) = inf{t : max
x0
‖Px0(Xt ∈ ·)−π‖TV ≤ ε}.

For p > 1, the Lp-mixing time is defined as

τp(ε) = inf{t : max
x0
‖Px0(Xt ∈ ·)−π‖p ≤ 2ε}.

Hence τmix(ε) = τ1(ε)≤ τp(ε) and τp(ε) is increasing in p. One standard is to work
with p = 2, which is the norm that is most naturally associated to the spectrum of the
Markov chain. Note that

‖µ−π‖2
2 = ∑

s∈S

(µ(s)−π(s))2

π(s)

which in case π is uniform becomes

‖µ−π‖2
2 = |S|∑

s∈S
(µ(s)−π(s))2.

Often results on mixing times are very precise in an asymptotic sense as the size
of the state space goes to infinity. In such cases, we are in fact considering a sequence
of Markov chains {Xn

t } on state spaces Sn such that |Sn| → ∞ and we try to express
τn

mix(ε) or τn
p(ε) in terms of n. Usually there is an obvious natural way to define the

{Xn
t }:s and the Sn:s. In our case we will simply let the number of vertices, n, grow.
Our main results are the following. We set α to 2/n2 in order to get the standard

case of one state change per time unit, but the results easily generalize to arbitrary α

if you like. By symmetry, ‖Px0(Xt ∈ ·)−π‖p does not depend on x0, neither for the
UEP nor the LEP, so x0 has been dropped from the notation.

Theorem 3 Let {Xt}t≥0 be the unlabelled exclusion process with n balls in total and
`= `(n) black balls and set α = 2/n2. Then for any `≤ n/2,

‖P(Xt ∈ ·)−π‖2
2 =

`−1

∑
i=1

((
n
i

)
−
(

n
i−1

))
e−4i(n−i+1)t/n2

.

As a consequence, writing t = (1/4)n log(n−1)+ cn for a constant c,

e−2c ≤ ‖P(Xt ∈ ·)−π‖2 ≤ 2e−2c,

where the upper bound holds for c≥ 0 and sufficiently large n. In particular for all `
and all ε ∈ (0,1),

τ2(ε) =
1
4

n logn+C(ε)n

for a a constant C(ε) depending on ε .
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Remark 2 Lacoin and Leblond [4] proved that

τmix(ε) = (1+o(1))
1
2

n logmin(`,
√

n).

Our result confirms the upper bound of this result for ` ≥
√

n. For ` <
√

n we note
that there is a significant difference between τmix(ε) and τ2(ε) which comes from the
fact that the L2 norm is much less forgiving about any remaining traces of the starting
state. However, to establish the upper bound on τmix for ` <

√
n can be readily done

by a straightforward coupling argument.
For `≥

√
n, Theorem 3 shows that τmix(ε)≤ (1+o(1))(1/4)n logn. For a match-

ing lower bound, consider the number of black balls that at time t are in positions that
had a black ball at time 0. Taken together, these facts establish that there is a cutoff
in total variation at time (1/4)n logn.

Remark 3 One may analyze the exact expression for ‖P(Xt ∈ ·)−π‖2
2 in Theorem 3

asymptotically as n→ ∞. Using essentially the same computations as below in the
proof of Theorem 3, one fairly easily finds that if also `→∞, then ‖P(Xt ∈ ·)−π‖2

2 =

(1+o(1))(ee−4c −1). In case ` stays constant, the asymptotic expression on the right
hand side becomes (1+o(1))(ee−4c −1−∑

∞
i=` e−4ci/i!).

Theorem 4 Let {Xt}t≥0 be the labelled exclusion process with n balls in total and
`= `(n)≤ n/4 labelled balls and set α = 2/n2. For t = (1/4)n log(`(n−1))+ cn,

e−2c ≤ ‖P(Xn ∈ ·)−π‖2 ≤ 2e−2c,

where the upper bound applies for c≥ 0 and sufficiently large n. In particular for all
ε ∈ (0,1),

τ2(ε) =
1
4

n log(`n)+C(ε)n.

Remark 4 As for the UEP, straightforward probabilistic arguments prove that for
` = o(n), τmix(ε) = (1/2)(1+ o(1)) log`, so here we have a significant difference
between τmix(ε) and τ2(ε) for all `= o(n). Theorem 4 does not directly establish the
well-known fact that for ` = n, τ2(ε) = (1+ o(1))(1/2)n logn, see [3]. However, it
follows from Theorem 2 that the relaxation time is n/2 from which the upper bound
follows from applying standard L2 technique e.g. as in [1], Chapter 4. The lower
bound for ` = n follows easily by probabilistic arguments, even for total variation,
simply considering the number of labelled balls that are still in their starting posi-
tions.

Remark 5 Our proof of Theorem 4 can easily be extended to any ` ≤ αn for any
α ∈ (0,1/2) by simply adjusting the constants used.

An outline of the remainder of the paper is as follows. Theorems 1 and 2 are
proved in Section 2 and Section 3 respectively and the short proofs of Theorems 3
and 4 are then given in Section 4.
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2 Spectrum for the unlabelled exclusion process

In order to lighten the notation, we will assume here that α = 1; the generalization to
the case of arbitrary α is trivial. We will also consider n fixed. Hence we will simply
write Q(`) for Q(n,`,1). We will start by showing that if φ :

(V
`

)
→ R is an eigenvector

for Q(`), then it can be lifted to an eigenvector for Q(`+1). For a set J ∈
( V
`+1

)
and

v ∈ V , write Jv := J \ {v}. For an edge e = {u,v}, let Je be the state one gets from
flipping the balls at u and v.

Definition 1 For a function f :
(V
`

)
→ R, let the lift of f on

( V
`+1

)
be given by

f̂ (J) = ∑
j∈J

f (J j).

Lemma 1 Assume that φ is a nonzero eigenvector of −Q(`) with corresponding
eigenvalue λ ≤ `(n− `+1). Then φ̂ is a nonzero eigenvector of−Q(`+1) for the same
eigenvalue.

Proof The crucial observation is that for any J ∈
( V
`+1

)
, we have

∑
e∈E

φ̂(Je) = ∑
e∈E

∑
j∈Je

φ((Je) j) = ∑
e∈E

∑
j∈J

φ((J j)e).

This implies that

−Q(`+1)
φ̂(J) = ∑

e∈E
(φ̂(J)− φ̂(Je)) = ∑

e∈E
∑
j∈J

(φ(J j)−∑
e∈E

∑
j∈Je

φ((Je) j)

= ∑
e∈E

∑
j∈J

(φ(J j)−φ((J j)e) = ∑
j∈J
−Q(`)

φ(J j) = ∑
j∈J

λφ(J j)

= λ φ̂(J).

This proves that φ̂ is either an eigenvector of the desired form, or the zero vector.
To rule out the second possibility, we observe that if this were the case, then by
definition, for any J ∈

( V
`+1

)
,

∑
j∈J

φ(J j) = 0.

A given K ∈
(V
`

)
gives rise to a term in the left hand side sum for all J ∈

( V
`+1

)
such

that J ⊃ K. It follows that for any such J, we have

φ(K)+ ∑
K′⊂J : |K∆K′|=2

φ(K′) = 0.

Summing over J ⊃ K, we get

(n− `)φ(K)+ ∑
K′∈(V

`) : |K∆K′|=2

φ(K′) = 0.
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We recognize the sum above as (`(n− `)I` +Q(`))φ(K), where I` is the identity
matrix of dimension

(n
`

)
. Since this holds for all K, it follows that the system of

equations
((`+1)(n− `)I`+Q(`))φ = 0

holds. Since by assymption, the eigenvalue λ corresponding to φ satisfies −λ ≥
−`(n− `+1), no eigenvalue of Q(`) is smaller than −`(n− `+1) and ` < n/2, 0 is
not an eigenvalue of (`+ 1)(n− `)I`+Q(`) and hence φ ≡ 0 is the unique solution.
This contradicts that φ is a nonzero eigenvector.

Define the usual inner product on L2
((V

`

)
,π
)

by

〈φ ,ψ〉= Eπ [φ(X)ψ(X)] =

(
n
`

)−1

∑
J∈(V

`)

φ(J)ψ(J)

and say that φ and ψ are orthogonal if their inner product is 0.

Lemma 2 Assume that 1 ≤ k ≤ (n/2)− 1 and that φ ,ψ :
(V

k

)
→ R are orthogonal

eigenvectors of Q(k). Then φ̂ and ψ̂ are orthogonal eigenvectors of Q(k+1).

Proof Assume that φ ,ψ :
(V

k

)
→R are orthogonal eigenvectors of Q(k). By Lemma 1,

φ̂ and ψ̂ are eigenvectors of Q(k+1). As eigenvectors of a symmetric matrix, they must
be orthogonal unless they are eigenvectors for the same eigenvalue λ , so assume that
this is the case. Then(

n
k+1

)
〈φ̂ , ψ̂〉= ∑

J∈( V
k+1)

∑
K∈(V

k) : K⊂J
∑

K′∈(V
k) : K′⊂J

φ(K)ψ(K′)

= ∑
K∈(V

k)

(
(n− k)φ(K)ψ(K)+ ∑

K′ : |K∆K′|=2
φ(K)ψ(K′)

)

= ∑
K∈(V

k)

φ(K)

(
(k+1)(n− k)ψ(K)− k(n− k)ψ(K)+ ∑

K′ : |K∆K′|=2
ψ(K′)

)

= ∑
K∈(V

k)

φ(K)
(
(k+1)(n− k)ψ(K)+Q(k)

ψ(K)
)

= ∑
K∈(V

k)

φ(K)((k+1)(n− k)ψ(K)−λψ(K))

= ((k+1)(n− k)−λ ) ∑
K∈(V

k)

φ(K)ψ(K)

= 0

where we everywhere sum over K′ ∈
(V

k

)
and the final equality uses that φ and ψ are

orthogonal.

With these results at hand, we are ready to prove Theorem 1.
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Proof (Proof of Theorem 1) This will be done with induction over `. The result is
trivial for ` = 0 and well-known for ` = 1. Assume now that it also holds for ` =
2,3, . . . ,k, in particular that −Q(k) has the eigenvalues 0,n,2(n−1), . . . ,k(n− k+1)
of respective multiplicities 1,n− 1,

(n
2

)
− n, . . . ,

(n
k

)
−
( n

k−1

)
. Since Q(k) is symmet-

ric, we can find an orthogonal set of eigenvectors φ1, . . . ,φ(n
k)

. By Lemmas 1 and 2,

φ̂1, . . . , φ̂(n
k)

is an orthogonal set of eigenvectors of Q(k+1) for the same eigenvalues.

Let H := Span(φ̂1, . . . , φ̂(n
k)
). It then only remains to prove that any vector in the

orthogonal complement H⊥ of H is an eigenvector of −Q(k+1) with eigenvalue (k+
1)(n−k). To see this, note first that for any vector ψ ∈H⊥ and any I ∈

(V
k

)
, we must

have

∑
i 6∈I

ψ(I∪{i}) = 0. (1)

Also, if we spell out the equation −Q(k+1)ψ = λψ for some J ∈
( V

k+1

)
, we get

(k+1)(n− k−1)ψ(J)− ∑
K∈( V

k+1) : |K∆J|=2

ψ(K) = λψ(J). (2)

If we use (1), we sum in the previous equation becomes−(k+1)ψ(J) and the system
of equations simply becomes that for each J,

(k+1)(n− k)ψ(J) = λψ(J). (3)

Obviously this cannot hold for a nonzero ψ unless λ = (k+ 1)(n− k) and provided
that this is so, then any nonzero vector ψ ∈ R(

n
k+1) satisfies (3) for all J. Since (1)

imposes
(n

k

)
linear restrictions, it follows that when λ = (k+ 1)(n− k), we can find( n

k+1

)
−
(n

k

)
pairwise orthogonal vectors ψ ∈ R(

n
k+1) solving (1), and hence also (2).

3 Spectrum for the labelled exclusion process

As in the previous section, our notation of the generators will be Q(`) and we assume
that α = 1. (Note that then the E n

k :s contain only integer values.) In analogy with the
UEP, we will need to lift a function f : (V )k → R to a function on (V )k+1. However
since we can now identify the balls, lifts are in fact more straightforward; define for
each i = 1,2, . . . ,k+1, f i : (V )k+1→ R as

f i(v1, . . . ,vi−1,vi,vi+1, . . . ,vk+1) = f (v1, . . . ,vi−1,vi+1, . . . ,vk+1),

In other words, f i is derived from f by simply ignoring the position of the i’th la-
belled ball. It is then obvious that if φ : (V )k → R is an eigenvector of Q(k) for the
eigenvalue λ , then φ i is an eigenvector of Q(k+1) for the same eigenvalue and that
if φ ,ψ : (V )k → R are orthogonal, then so are φ i and ψ i. (Here of course the inner
product is defined in complete analogy with the UEP.)
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Proof (Proof of Theorem 2) Since for `≤ 1, there is no difference between the UEP
and the LEP, we know that Theorem 2 holds for all n and l ≤ 1. Assume for induction
that for some n, the result holds for ` = 0,1, . . . ,n− 1. It then suffices to prove the
result fo ` = k+ 1. Note that the induction hypothesis tells us that S (−Q(k)) ⊆ E n

k
and hence in particular contains only integers and ranges at most from 0 to nk.

Let 0 = λ1 < λ2 ≤ . . .≤ λ(n)k
be the eigenvalues of Q(k) and φ1, . . . ,φ(n)k

be a cor-
responding orthogonal set of eigenvectors. Then for any i ∈ {1, . . . ,k+1}, φ i

1, . . . ,φ
i
(n)k

are orthogonal eigenvectors of Q(k+1) for the same eigenvalues. In particular any
eigenvalue of Q(k) is also an eigenvalue for Q(k+1).

We claim that a vector φ is orthogonal to all vectors in the span of {φ i
j}1≤i≤k+1,1≤ j≤(n)k

if and only if for all 1≤ i≤ k+1 and all (v1, . . . ,vi−1,vi+1, . . . ,vk+1) ∈ (V )k,

∑
v∈V : v6∈{v1,...,vi−1,vi+1,...,vk+1}

φ(v1, . . . ,vi−1,v,vi+1, . . . ,vk+1) = 0. (4)

To see that the if direction holds, note simply that if φ satisfies (4) for all 1≤ i≤
k+ 1 and all (v1, . . . ,vi−1,vi+1, . . . ,vk+1), then for all φ i

j ∈ {φ i
j}1≤i≤k+1,1≤ j≤(n)k

we
have

(n)k〈φ i
j,φ〉= ∑

(v1,...,vk+1)∈Vk+1

φ(v1, . . . ,vk+1)φ
i
j(v1, . . . ,vk+1)

= ∑
(v1 ,...,vi−1 ,vi+1 ,...,vk+1)∈Vk

v∈V\{v1 ,...,vi−1 ,vi+1 ,...,vk+1}

φ
i
j(v1, . . . ,vi−1,v,vi+1, . . . ,vk+1)φ(v1, . . . ,vi−1,v,vi+1, . . . ,vk+1)

= ∑
(v1 ,...,vi−1 ,vi+1 ,...,vk+1)∈Vk

v∈V\{v1 ,...,vi−1 ,vi+1 ,...,vk+1}

φ j(v1, . . . ,vi−1,vi+1, . . . ,vk+1)φ(v1, . . . ,vi−1,v,vi+1, . . . ,vk+1).

= ∑
(v1,...,vi−1,vi+1,...,vk+1)∈Vk

φ j(v1, . . . ,vi−1,vi+1, . . . ,vk+1)∑
v∈V\{v1,...,vi−1,vi+1,...,vk+1}

φ(v1, . . . ,vi−1,v,vi+1, . . . ,vk+1).

(5)

As the second sum is zero by assumption, it follows that 〈φ ,φ i
j〉= 0. As this holds for

all φ i
j ∈{φ i

j}1≤i≤k+1,1≤ j≤(n)k
, then clearly φ is orthogonal with all ψ ∈Span{φ i

j}1≤i≤k+1,1≤ j≤(n)k
.

For the other direction, suppose that φ is orthogonal to all {φ i
j}1≤i≤k+1,1≤ j≤(n)k

,
i.e. that for any 1≤ i≤ k+1 and 1≤ j≤ (n)k, 〈φ i

j,φ〉= 0. For any (v1, . . . ,vi−1,vi+1, . . . ,vk+1)∈
Vk, define

ψi(v1, . . . ,vi−1,vi+1, . . . ,vk+1) := ∑
v∈V\{v1,...,vi−1,vi+1,...,vk+1}

φ(v1, . . . ,vi−1,v,vi+1, . . . ,vk+1).

Then clearly ψi : Vk → R. As {φ j} spans the set of all real valued functions from Vk
to R, it follows that ψi ∈ Span{φ j}1≤ j≤(n)k

. Using (5), it follows that

0 = (n)k+1〈φ i
j,φ〉

= ∑
(v1,...,vi−1,vi+1,...,vk+1)∈Vk

φ j(v1, . . . ,vi−1,vi+1, . . . ,vk+1) ψi(v1, . . . ,vi−1,vi+1, . . . ,vk+1)

= (n)k〈φ j,ψi〉.



10 Malin P. Forsström, Johan Jonasson

As ψi ∈ Span{φ j}1≤ j≤(n)k
and this holds for all j, we must have that ψi ≡ 0, or

equivalently,
∑

v∈V\{v1,...,vi−1,vi+1,...,vk+1}
φ(v1, . . . ,vi−1,v,vi+1, . . . ,vk+1) = 0

for all (v1, . . . ,vi−1,vi+1, . . . ,vk+1) ∈Vk.
Assume now that φ is an eigenvector of Q(k+1) that is orthogonal to all the φ i

j:s,
i.e. φ satisfies (4) and

−Q(k+1)
φ(x) = λφ(x) (6)

for all x = (v1, . . . ,vk+1) ∈ (V )k+1. Spelling out the left hand side gives(
(k+1)(n− k−1)+

(
k+1

2

))
φ(x)−∑

τ

φ(xτ)

−
k+1

∑
i=1

∑
v∈V : v6∈x

φ(v1, . . . ,vi−1,v,vi+1, . . . ,vk+1),
(7)

where τ ranges over all
(k+1

2

)
transpositions of two labelled balls and where we in the

second term identified the k+1-tuple x with its set of coordinates. Using (4), all the
inner sums in the double sum in (7) simplifies to −φ(x) and hence (7) simplifies to(

(k+1)(n− k)+
(

k+1
2

))
φ(x)−∑

τ

φ(xτ). (8)

Let Hx be the set of (k+1)! elements y∈ (V )k+1 that one can get from x by permuting
the labelled balls among themselves, but keeping the set of positions occupied by a
labelled ball fixed. Then considering (8) for y ∈ Hx and inserting in (6) becomes a
“local” system of equations(

(k+1)(n− k)+
(

k+1
2

))
φ(y)−∑

τ

φ(yτ) = λφ(y), (9)

y ∈ Hx. This local system simply states that((
(k+1)(n− k)+

(
k+1

2

))
Ik+1−Ak+1

)
φ |Hx = λφ |Hx (10)

To solve this, λ must be an eigenvalue of
(
(k+1)(n− k)+

(k+1
2

))
Ik+1−Ak+1. Since

S (−Q(k))⊆E m
k by the induction hypothesis, this proves precisely that S (−Q(k+1))⊆

E m
k+1 as desired.

To prove the claim of symmetry of S (An) for any n, note that A := An is the
adjacency matrix of a bipartite graph and can hence, by sorting the vertices of the
graph appropriately, be written in block form as

A=

[
0 A1
A2 0

]
However if φ = [φ1 φ2]

T is an eigenvector of A for the eigenvalue λ , then [−φ1 φ2]
T

is an eigenvector for −λ , proving the symmetry of the spectrum of A.
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It remains to prove the multiplicity statements, that is, we need to prove that if
1≤ k≤ `≤ n/2, then the total multiplicity of the eigenvalues λ of −Q(`) that is such
that

k(n− k+1)≤ λ < (k+1)(n− k)

is at most (n)k
(`

k

)
. To this end, note first that the total multiplicity of the eigenvectors

of Q(k) can be at most |(V )k|= (n)k. Secondly, note that for any k, the largest eigen-
value of Ak is

(k
2

)
. Using (10), it follows that any new eigenvalue λ we get on level k,

i.e. an eigenvalue that does not correspond to a lifted eigenvector, satisfies

λ ≥
(

k(n− k+1)+
(

k
2

))
−
(

k
2

)
= k(n− k+1). (11)

Consequently, it now follows that any eigenvalue λ ′ of −Q(`) that is such that

λ
′ < (k+1)(n− k)

must correspond to a lifted eigenvector from level at most k, and consequently, to a
lifted eigenvector of−Q(k). The number of eigenvectors of−Q(k) is exactly (n)k, and
these can be lifted in at most

(`
k

)
ways, why the desired conclusion follows.

For the final claim that the multiplicity of the eigenvalue λ = n of −Q(`) is
`(n− 1) follows from a simplified version of this argument: for one given ball we
know from the UEP that the multiplicity is n− 1 and there are thus n− 1 orthogo-
nal eigenvectors φ1, . . . ,φn−1. Then, when we have ` labelled balls to choose from,
we define for each ball i, φ i

j(v1, . . . ,v`) = φ j(vi). As befoore, φ i
j and φ i

k are orthog-
onal for j 6= k. Since ψ1, . . . , ψn−1 are all orthogonal to (1,1, . . . ,1), we obtain that
∑

n
v=1 φ j(v) = 0 for all j and it also follows that φ i

j and φ l
k are orthogonal for i 6= l for

any ( j,k). It follows that {φ i
j}i=1,...,`, j=1,...,n−1 is an orthogonal family of eigenvec-

tors. To prove the claim, we now only need to argue that there can be no eigenvectors
that are orthogonal to these vectors with the same eigenvalue. However, from (11) it
follows that any such eigenvector must be lifted from level at most 1. As these have
already been considered, the desired conclusion follows.

4 Proofs of L2-mixing times

Consider an irreducible continuous time Markov chain {Xt}t≥0 on a finite state space
S with a symmetric generator Q. Since Q is symmetric, the stationary distribution π

is uniform. Let N := |S|. In this section we will let 〈·, ·〉 be the usual inner product on
RN :

〈 f ,g〉= ∑
s∈S

f (s)g(s).

Note that as π is uniform, this inner product differs from the inner product used earlier
in this paper only by a scaling. Let 0 = µ1 < µ2 ≤ . . .≤ µN be the eigenvalues of Q
and let φ1, . . . ,φN be an orthonormal family of corresponding eigenvectors. Let x ∈ S
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be the starting state of {Xt}t≥0 and write the function ex(s) = 1x(s) in the eigenvector
basis as

ex =
N

∑
i=1

ci(x)φi,

where ci(x) = 〈ex,φi〉. Note that as with this scaling, φ1 ≡ 1/
√
|S| and

c1(x) = 〈ex,φ1〉= ∑
s∈S

ex(s)φ1(x) = φ1(x) = 1/
√
|S|

the term c1(x)φ1 = 1/
√
|S| ·1/

√
|S|= 1/|S|= π(x). Hence by standard arguments

Px(Xt ∈ ·)−π =
N

∑
i=2

ci(x)e−µitφi

and consequently

‖Px(Xt ∈ ·)−π‖2
2 = N

N

∑
i=2

ci(x)2e−2µit .

Let us now write 0 = λ1 < λ2 < .. . < λr = µN for the distinct eigenvalues of Q (so
r ≤ N). For each j = 1, . . . ,r, let C j(x)2 = ∑i : µi=λ j ci(x)2. Then we can rewrite as

‖Px(Xt ∈ ·)−π‖2
2 = N

r

∑
j=2

C j(x)2e−2λ jt . (12)

Now assume that our Markov chain is such that ‖Px(Xt ∈ ·)−π‖2 is independent of x,
such as is the case for the UEP and the LEP. It then follows that C j(x) is independent
of x. Let m j be the multiplicity of the eigenvalue λ j.

Lemma 3 If {Xt} is such that ‖Px(Xt ∈ ·)−π‖2 is independent of x, then for every j
and every x,

C j(x)2 =
m j

N
.

Proof For every x∈ S, let ex ∈RN be the corresponding unit vector. Fix j∈{1,2, . . . ,r}
and note that the eigenvectors for the eigenvalue λ j span a subspace U j of dimension
m j. By symmetry, we know that the projection of each ex onto U j has the same length.

Let ui = (ui1, . . . ,uiN), i = 1, . . . ,m j be an orthonormal basis for U j. The projec-
tion of ex onto ui is uix, so the square length, C j(x)2, of the projection of ex onto U j

is ∑
m j
i=1 u2

ix. Summing over x gives

N

∑
x=1

C j(x)2 =
m j

∑
i=1

N

∑
j=1

u2
i j = m j

since the ui:s are unit vectors. Since the C j(x)2:s are equal, they must all equal m j/N.
This proves the lemma.
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Applying Lemma 3 to (12), it follows that in situations where the L2-norm does
not depend on the starting state,

‖P(Xt ∈ ·)−π‖2
2 =

r

∑
j=2

m je−2λ jt . (13)

This together with Theorem 1, recalling that m j =
( n

j−1

)
−
( n

j−2

)
and that α = 2/n2

so that the eigenvalues are λ j = 2( j−1)(n− j+2)/n2, proves the exact formula for
the L2-distance of Theorem 3. It remains to check the estimates. For the lower bound,
it suffices to recall that t = (1/4)n log(n−1)+ cn and that the first term is

(n−1)e−4t/n = e−4c.

Taking the square root gives the result.
For the upper bound, take c≥ 0 and observe that

‖P(Xt ∈ ·)−π‖2
2 =

r

∑
j=2

m je−2λ jt

<
`

∑
j=2

(
n

j−1

)
e−( j−1)(n− j+2)(logn+4c)/n

=
`−1

∑
j=1

(
n
j

)
e− j(n− j+1)(logn+4c)/n

<
n/2

∑
j=1

n j

j!
e− j logne j( j−1) logn/ne−4 j(n− j+1)c/n

< e−4c
n/2

∑
j=1

n j( j−1)/n

j!
.

Let n ≥ 1000 and 10 ≤ j ≤ n/2. Taking logarithms and using the estimate log j! ≥
j log j− j, it is easy to see that for such n and j, n j( j−1)/n/ j! < e− j. Hence

n/2

∑
j=10

n j( j−1)/n

j!
<

∞

∑
j=10

e− j < e−9.

Also, for j < 10 and n≥ 1000, we have j < n1/3, so for n≥ 1000,

9

∑
j=1

n j( j−1)/n

j!
< n1/n1/3

∞

∑
j=1

1
j!
< 2(e−1).

Summing up gives

‖P(Xt ∈ ·)−π‖2
2 < (e−9 +2(e−1))e−4c < 4e−4c.

Now take square roots again to finish the proof of Theorem 3.
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Let us now move to the LEP. For the lower bound, we again simply consider the
first term of the the right hand side of (13). By Theorem 2, the multiplicity m2 is
`(n−1) and λ2 is still 2/n, so the first term now becomes

`(n−1)e−4t/n = e−4c,

using that t is now (1/4)n log(`(n− 1))+ cn. Taking square roots gives the desired
lower bound.

For the upper bound, take c≥ 0. Using the multiplicity bounds of Theorem 2 and
using that t = (1/4)n log(`(n−1))+ cn, we find that

‖P(Xt ∈ ·)−π‖2
2 ≤

`

∑
j=1

(
`

j

)
(n) je− j(n− j+1)(log(`n)+4c)/n

<
(`n) j

j!
e− j log(`n)e j( j−1) log(`n)/ne−4 j(n− j+1)c/n

< e−4c
`

∑
j=1

(`n) j( j−1)/n

j!

< e−4c
n/4

∑
j=1

n2 j( j−1)/n

j!
.

Taking logarithms and using Stirling’s formula, it follows that whenever n≥ 8000
and 20≤ j ≤ n/4, we have n2 j( j−1)/n/ j! < e− j. Hence

n/4

∑
j=20

n2 j( j−1)/n

j!
<

∞

∑
j=20

e− j < e−19.

For j < 20 and n≥ 8000, we have j ≤ n1/3, so for n≥ 8000,

19

∑
j=1

n2 j( j−1)/n

j!
< n2/n1/3

∞

∑
j=1

1
j!
< 2(e−1).

Summing up gives

‖P(Xt ∈ ·)−π‖2
2 < (e−19 +2(e−1))e−4c < 4e−4c.

This establishes the upper bound of Theorem 4.
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