
LECTURE NOTES ON KOPPELMAN FORMULAS ON SINGULAR
SPACES

MATS ANDERSSON

These notes are based on a series of five lectures given at the workshop “Differential
forms on Singular Complex Spaces” in Bonn June 30 to July 04, 2014.

1. Lecture 1

I am grateful to the organizers for the opportunity to give this series of lectures
on integral formulas and the ∂̄-equation on singular varieties.

The ∂̄-equation plays a fundamental role in SCV and the most powerful tool
to study this equation is the L2-methods introduced in the 60’s by Hörmander,
Kohn and others, and further developed by many authors since then. However, for
various qualitative questions, for instance uniform estimates of solutions, integral
formulas are are a necessary tool. Such formulas were introduced in the early 70’s
by Henkin and Ramirez. A few years later Henkin and Skoda independently proved
the famous L1(∂D)-estimate bearing their name, by introducing the first weighted
integral formula in a strictly pseudoconvex domain. More general weighted integral
formlas were introduced together with by Berndtsson in the early 80’s and there has
been a further development since then by several authors.

Even in the singular case L2-methods play a central role to understand possible
obstruction for solvability on Xreg := X \ Xsing. By integral formulas however we
can obtain solutions that have a reasonable meaning also across the singularity. For
the moment we state the following result as a motivating aim for these lectures; later
on we will discuss more elaborated formulations from [2]. Throughout these lectures
X is a pure-dimensional reduced analytic space.

Theorem 1.1 (Theorem A). If φ ∈ E0,q(X), X is Stein, and ∂̄φ = 0, then there is
a current v that is smooth on Xreg such that ∂̄v = φ on X.

In particular, ∂̄v = φ holds on Xreg. Such a solution on Xreg was found by Henkin
and Polyakov -89 by an integral formula, [10], in the case when X is a complete
intersection. In general, there is no solution that is smooth across Xsing.

Theorem A is basically a local statement, and it is proved by a local Koppelman
formula. The main ingredients to construct and draw conclusions from such formulas
are multilinear algebra and multivariable residue theory. In these lectures I will focus
on some basic ideas and techniques and I will mainly consider a hypersurface X in a
domain Ω ⊂ Cn. The general case and all details, as well as various references, can
be found in [2] and in sketch of a monograph [1].

1.1. The Cauchy-Green formula in the plane. Integral representation of a holo-
morphic functions f is often used to expressed f as a superposition of some class of
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functions that are “simple” in some sense. For instance, by the Cauchy integral for-
mula in one variable a functions in a bounded domain D with reasonable boundary
is written as a superposition of simple rational functions z 7→ 1/(z − ζ), for ζ ∈ ∂D.

For fixed z ∈ C,

k =
1

2πi
dζ

ζ − z
is the Cauchy kernel with pole at z. It is holomorphic in C\{z} and locally integrable
in C. It is well-known that

(1.1) ∂̄ζω = [z],

where [z] is the (1, 1)-current “point evaluation at z”. If D ⊂⊂ Ω we get the Cauchy
integral formula

(1.2) φ(z) =
∫
∂D

kφ, φ ∈ O(Ω), z ∈ D.

It is often useful to have such a formula but where the integration is performed over a
thickened boundary. Let χ be a smooth approximation of the characteristic function
χD such that χ ≡ 1 on D. From (1.1) we then get

(1.3) φ(z) =
∫
∂D
−∂̄χ ∧ kφ, φ ∈ O(Ω), z ∈ D.

Notice that for degree reasons we can replace ∂̄ by d in (1.3) and that

−dχD = [∂D].

Thus we can think of the right hand side of (1.3) as an integral over “the boundary
of χ”.

We now turn our attention to the case n > 1. One can then solve (1.1) abstractly
and all possible solutions form a cohomology class in a punctured ball around z.
However, for qualitative questions a cohomology class is usually of no help as long
as one has no access to concrete representatives to look at. We thus are to find
locally integrable forms k that solves (1.1). To this end, however, it turns out that
it is convenient to stick to a seemingly more involved equation. This detour involves
some multilinear algebra that we first discuss.

1.2. Functional calculus for forms of even degree. Let E be an m-dimensional
vector space and recall that k:th exterior product ΛkE consists of all alternating
multilinear forms on the dual space E∗. If v ∈ E∗ we have contraction (interior
multiplication) with v, δv : Λk+1E → ΛkE, such that

(1.4) δvξ = v · ξ, ξ ∈ E = Λ1E, δv(α ∧ β) = δvα ∧ β + (−1)degαα ∧ δvβ.

One says that δv is an anti-derivation. From (1.4) follows that δ2
v = 0.

Now let ω1, . . . , ωm be even forms, i.e., in ⊕`Λ2`E, and let ωj = ω′j + ω′′j be the
decomposition in components of degree zero and positive degree, respectively. Notice
that ∧ is commutative for even forms. If p(z) =

∑
α cαz

α =
∑

α cαz
α1
1 · · · zαmm is a

polynomial, we therefore have a natural definition of p(ω) as the form
∑

α cαω
α1
1 ∧. . .∧

ωαmm . However, it is often convenient to be able to apply more general holomorphic
functions.
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If f is holomorphic in a neighborhood of the point ω′ = (ω′1, . . . , ω
′
m) ∈ Cm, then

we define

(1.5) f(ω) =
∑
α

f (α)(ω′)(ω′′)α,

where we use the convention that

wα =
wα1

1 ∧ . . . ∧ wαmm
α1! · · ·αm!

.

Thus f(ω) = f(ω′ + ω′′) is defined as the formal power series expansion at the point
ω′. Since the sum is finite, f(ω) is a well-defined form, and if ω depends continuously
(smoothly, holomorphically) on some parameters, f(ω) will do as well.

One can check that this definition coincides with the natural one in case f is a
polynomial. Notice that if f(z) − g(z) = O((z − ω′)M ) for a large enough M , then
f(ω) = g(ω). By the Cauchy estimates one can prove

Lemma 1.2. Suppose that fk → f in a neighborhood of ω′ ∈ Cm and that ωk → ω.
Then fk(ωk)→ f(ω).

Clearly

(af + bg)(ω) = af(ω) + bg(ω), a, b ∈ C.

From Lemma 1.2 one can prove

Proposition 1.3. If f, g are holomorphic in a neighborhood of ω′, then

(1.6) (fg)(ω) = f(ω) ∧ g(ω).

If f is holomorphic in a neighborhood of ω′ (possibly Cr-valued) and h is holomorphic
in a neighborhood of f(ω′), then

(1.7) (h ◦ f)(ω) = h(f(ω)).

If v is in E∗, then

(1.8) δvf(ω) =
m∑
1

∂f

∂zj
(ω) ∧ δvωj ,

and if ω depends on a parameter, then

(1.9) df(ω) =
m∑
1

∂f

∂zj
(ω) ∧ dωj .

For instance, if ω1 and ω2 are even forms, then

eω1+ω2 = eω1 ∧ eω2 .

We will frequently use the formula

1
1− ω′′

= 1 + ω′′ + (ω′′)2 + · · · (ω′′)m.
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1.3. Integral representation of holomorphic functions. For U ⊂ Cn and any
integer m, let Lm(U) = ⊕nk=0Ck,k+m(U). For instance, u ∈ L−1(U) can be written
u = u1,0 + . . .+un,n−1, where the indices denote bidegree in dζ. We let LmE (U) denote
the subspace of Lm(U) of smooth forms.

Fix a point z ∈ Cn, let δ = δζ−z : Ep,q(U) → Ep−1,q(U) be contraction with the
vector field

2πi
n∑
1

(ζk − zk)
∂

∂ζk
.

Since δζ−z∂̄f = −∂̄δζ−zf (this is verified, e.g., by induction over the degree of f) Ep,q
is a double complex with mappings ∂̄ and δ. If ∇ = ∇ζ−z := δζ−z − ∂̄, then ∇2 = 0,
and we have the associated total complex

· · · ∇−→ Lm ∇−→ Lm+1 ∇−→ · · · .
The usual wedge product extends to a mapping Lm(U)×Lm′(U)→ Lm+m′

E (U), such
that g ∧ f = (−1)mm

′
f ∧ g. Since δ and ∂̄ are both anti-derivations, so is ∇, i.e.,

(1.10) ∇(f ∧ g) = ∇f ∧ g + (−1)mf ∧∇g, f ∈ Lm(U).

In order to generalize Cauchy’s formula to higher dimensions we will look for
u ∈ L−1

E (U \ {z}) with integrable singularity at z ∈ U such that

(1.11) ∇u(ζ) = 1− [z].

If n = 1 the Cauchy kernel with pole at z, u(ζ) = dζ/2πi(ζ − z), is the only possible
solution. If n > 1, (1.11) means that

(1.12) δu1,0 = 1, δuk+1,k − ∂̄uk,k−1 = 0, 1 ≤ k ≤ n− 2, ∂̄un,n−1 = [z].

Outside our fixed z ∈ Cn we can define the form

b =
∂|ζ|2

2πi|ζ|2
=
∑n

1 ζ̄jdζj
2πi|ζ|2

.

It is clear that δb = 1, so if

(1.13) B =
b

∇b
=

b

1− ∂̄b
= b+ b ∧ ∂̄b+ · · ·+ b ∧ (∂̄b)n−1,

then ∇B = 1 outside z. In fact,

∇ b

∇b
=
∇b
∇b
− b

(∇b)2
∇2b = 1

since ∇2 = 0. (Of course one can also use that δ∂̄b = −∂̄δb = −∂̄1 = 0 so that
δ(b ∧ (∂̄b)k−1) = (∂̄b)k−1. Applying ∇ to the right hand side of (1.13) one gets a
telescoping sum.)

We have the following homogeneity property for the form b ∧ (∂̄b)k−1. If ξ is a
non-vanishing scalar function, then

(1.14) ξb ∧ (∂̄(ξb))k−1 = ξ`b ∧ (∂̄b)k−1

since b ∧ b = 0. Taking ξ = 2πi|ζ − z|2 we get

B`,`−1 = b ∧ (∂̄b)`−1 =
1

(2πi)`
∂|ζ − z|2 ∧ (∂̄∂|ζ − z|2)`−1

|ζ − z|2`
= O

( 1
|ζ − z|2`−1

)
.

Thus B is locally integrable and one can prove that B solves (1.11) in Cn.
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Notice that Bn,n−1 is the classical Bochner-Martinelli form with pole a z, so the
equality ∂̄Bn,n−1 = [z] is a compact formulation of the Bochner-Martinelli formula.
If D ⊂ Ω ⊂ Cn has reasonable boundary and z ∈ D, then as in case n = 1 we have
the representation

(1.15) φ(z) =
∫
∂D

kφ, φ ∈ O(Ω),

with k = Bn.n−1 = b ∧ (∂̄b)n−1.

Proposition 1.4 (The Cauchy-Fantappiè-Leray formula). Let z ∈ D and assume
that σ = σ1dζ1 + . . .+ σndζn is a smooth (1, 0)-form defined on ∂D such that

0 6= δσ = 2πi
∑

σj(ζj − zj) = 2πi〈σ, ζ − z〉

on ∂D. Then we have the repesentation (1.15) with

(1.16) k =
1

(2πi)n
σ ∧ (dσ)n−1

〈σ, ζ − z〉n
.

Proof. Let σ̃ be any smooth extension of σ to a neighborhood of ∂D. Then δσ̃ 6= 0 in
a neighborhood U of ∂D. If s = σ̃/δσ̃, then δs = 1 in U . Thus v = s/∇s is defined
in U and, as for B above, we have that ∇v = 1 in U . Thus

∇(v ∧B) = B − v,
so that ∂̄(v ∧B)n,n−2 = vn,n−1−Bn,n−1. It follows that ∂̄(v ∧B)n,n−2φ = vn,n−1φ−
Bn,n−1φ if φ ∈ O(Ω). For bidegree reasons we can replace ∂̄ by d. Since ∂D is
compact it follows that we can take k = vn,n−1 instead of k = Bn,n−1 in (1.15). By
a homogeneity argument as above we find that vn,n−1 is equal to the right hand side
of (1.16). �

One can also verify directly that v = σ̃/∇σ̃.

Example 1.5. If D = B is the unit ball, then for any z ∈ B we can take σ = ∂|ζ|2 on
∂B. In fact,

δσ = 2πi〈ζ̄, ζ − z〉 = 2πi〈|ζ|2 − ζ̄ · z〉 = 2πi(1− ζ̄ · z)
that is non-vanishing, and so we get (1.15) with

k =
1

(2πi)n
∂|ζ|2 ∧ (∂̄∂|ζ|2)n−1

(1− ζ̄ · z)n
.

Applying to φ ≡ 1 and z = 0 we see that

∂|ζ|2 ∧ (∂̄∂|ζ|2)n−1/(2πi)n

has total mass 1, and because of apparant rotation invariance it must be the nor-
malized surface measure on ∂B. �

2. Lecture 2

We say that a smooth form g ∈ L0(Ω) is a weight with respect to z ∈ Ω if ∇g = 0
and g0,0(z) = 1.

Example 2.1. If w ∈ L−1(Ω) is smooth, then

(2.1) g = 1 +∇w
is a weight. �
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Notice that if g1 and g2 are weights (with respect to z), then g1 ∧ g2 is a weight.
More generally, if g1, . . . , gm are weights and h(λ1, . . . , λm) is holomorphic on the
image on ζ 7→ (g1

0,0(ζ), . . . , gm0,0(ζ)) and g(1, . . . , 1) = 1, then g = h(g1, . . . , gm) is a
weight.

Example 2.2. If g is a weight in Ω and Re g0,0 > 0, then gα is a weight for any
α ∈ C. �

Example 2.3. If w ∈ L−1(Ω) and G(λ) is holomorphic on the image of ζ 7→ δw =
〈w, ζ − z〉, and G(0) = 1, then

g = G(∇w) = G(〈w, ζ − z〉 − ∂̄w) =
n∑
`=0

G(`)(〈w, ζ − z〉) 1
`!

(−∂̄w)`

is a weight in Ω with respect to z. �

Proposition 2.4. If g is a weight with respect to z, with compact support in Ω, then

φ(z) =
∫
gn,nφ, φ ∈ O(Ω).

Proof. Notice that

∇(B ∧ g) = (1− [z]) ∧ g = g − [z] ∧ g = g − g0,0[z] = g − [z]

since g0,0(z) = 1. Thus ∂̄(B ∧ g)n,n−1 = [z]− gn,n. Since B ∧ g has compact support
in Ω it follows, cf., the proof of Proposition 1.4, that

0 =
∫
d((B ∧ g)n,n−1φ) =

∫
[z]φ−

∫
gn,nφ = φ(z)−

∫
gn,nφ.

�

Example 2.5. Let s = ∂|ζ|2/2πi(|z|2 − ζ̄ · z), cf., Example 1.5, so that

s ∧ (∂̄s)k−1 =
∑
`

1
(2πi)`

∂|ζ|2 ∧ (∂̄∂|ζ|2)`−1

(|z|2 − ζ̄ · z)`
.

Let χ be a smooth approximation of χB such that χ ≡ 1 on B and with support in,
say, (1 + ε)B. Then

v =
s

∇s
is defined and δv = 1 on the support of ∂̄χ. Thus

g = χ− ∂̄χ ∧ s

∇s
= χ− ∂̄χ ∧ v

is a weight with respect to z ∈ B with compact support in Ω = (1 + ε)B. �

Notice that for any fixed z ∈ D ⊂⊂ Ω we can always choose v = b/∇b. The
advantage with the choice in Example 2.5 is that it depends holomorphically on z.

Corollary 2.6. Let g be any weight in Ω with respect to z ∈ D ⊂⊂ Ω, let χ be a
smooth approximand of χD and take v such that ∇v = 1 on suppχ. Then we have
the representation

(2.2) φ(z) = −
∫
∂̄χ ∧ (v ∧ g)n,n−1φ+

∫
χgn,nφ, φ ∈ O(Ω).
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In particular, in the ball we can choose v as in Example 2.5.
Letting χ→ χD in (2.2) or by a direct argument we get

(2.3) φ(z) =
∫
∂D

(v ∧ g)n,n−1φ+
∫
D
gn,nφ, φ ∈ O(Ω).

Notice that if we take g ≡ 1 and choose v = s/∇s we get back Proposition 1.4.

Example 2.7. Let z, ζ ∈ B. Notice that

1 +∇ζ−z
∂|ζ|2

2πi(1− |ζ|2)
=

1− ζ̄ · z
1− |ζ|2

+ ω,

where ω is the positive (1, 1)-form

ω =
i

2π
∂∂̄ log

1
1− |ζ|2

.

Therefore, cf., Example 2.2,

g =
(1− ζ̄ · z

1− |ζ|2
+ ω

)−α
is a weight for any α ∈ C. Notice that

gn,n = cn,α

(1− ζ̄ · z
1− |ζ|2

)α+n
ωn,

where ωn = ωn/n! and

cα,n = (−1)nn!
1
πn

Γ(−α+ 1)
Γ(n+ 1)Γ(−α− n+ 1)

.

Using that Γ(n+ 1) = n! and Γ(τ + 1) = τΓ(τ) we get

cα =
1
πn

Γ(n+ α)
Γ(α)

.

If Reα � 0, then g vanishes on ∂B so g has “compact supprt”, and and hence we
have the representation

φ(z) =
∫
|ζ|<1

cn,α

(1− ζ̄ · z
1− |ζ|2

)α+n
ωnφ(ζ), z ∈ B.

We claim that

(2.4) ωn =
dV (ζ)

(1− |ζ|2)n+1
.

To see this it is enough to check that both sides coincide after application by δ̂ =
δζ/2πi, since δ̂ is injective on (0, ∗)-forms when ζ 6= 0. Notice that

δ̂∂∂̄|ζ|2 = ∂̄|ζ|2, δ̂ω =
i

2
∂̄|ζ|2

(1− |ζ|2)2
.

Thus

δ̂ωn = δ̂ω ∧ ωn−1 =
( i

2

)n ∂̄|ζ|2

(1− |ζ|2)2
∧ ∂ ∂̄|ζ|2

(1− |ζ|2)2
=
( i

2

)n ∂̄|ζ|2 ∧ (∂∂̄|ζ|2)n−1

(1− |ζ|2)n+1( i
2

)n
δ̂

(∂∂̄|ζ|2)n

(1− |ζ|2)n+1
= δ̂

dV

(1− |ζ|2)n+1
,

and thus (2.4) holds. �
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There are a similar formulaa in a strictly pseudoconvex domains.

2.1. Singular weights. Fix z ∈ Ω. We say that g ∈ L0(Ω) is a singular weight with
respect to z if ∇g = 0 and

(2.5)
∫
g ∧ g′ = 1

for all smooth weights g′ (with respect to z) with compact support in Ω.
When g is non-smooth the point evaluation we cannot use point evaluation of g0,0

at z for normalization, so instead we use (2.5). For instance, g = [z] is a weight with
respect to z but g0,0 ≡ 0. Notice that if g is a smooth weight, then (2.5) holds, so
the new normalization is consistent with the usual one in this case.

Example 2.8. If w ∈ L−1(Ω), then g = 1 +∇w is a (singular) weight. In fact,∫
g ∧ g′ =

∫
g′ +

∫
∇w ∧ g′ = 1 +

∫
∇(w ∧ g) = 1 +

∫
d(w ∧ g′)n,n−1 = 1

since w ∧ g′ has compact support. �

One can prove that g ∈ L0(Ω) is a weight if and only if g = 1 + ∇w for some
w ∈ L−1(Ω).

We have the analogue of Proposition 2.4 for singular weights.

Proposition 2.9. If g is a (singular) weight with respect to z ∈ Ω with compact
support, then

φ(z) =
∫
gn,nφ, φ ∈ O(Ω).

Proof. Take g′ with compact support in Ω such that g′ ≡ 1 on the support of g. If
φ(z) = 1, then φg′ is a smooth weight with compact support and so

φ(z) = 1 =
∫
g ∧ g′φ =

∫
gn,nφ.

The general case follows by scaling. �

To define the singular weights of interest for us we first have to recall the Poincaré
residue.

2.2. The Poincaré residue. Let

i : X → Ω ⊂ Cn

be a complex hypersurface in Ω defined by X = {f = 0}, where df 6= 0 on X.
Then 1/f is locally integrable so ∂̄(1/f) is a well-defined (0, 1)-current. We have the
Poincaré-Lelong formula

(2.6) ∂̄
1
f
∧ df

2πi
= [X],

where [X] is the current of integration over X. In fact, since df 6= 0 one can assume
that f = z1, and then (2.6) follows from the analogous one-variable statement, which
is (1.1).

We claim that there is a unique holomorphic (n− 1, 0)-form ω on X such that

(2.7) i∗ω = ∂̄
1
f
∧ dζ,
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where dζ := dζ1 ∧ . . .∧ dζn. The uniqueness is clear since i∗ is injective. Possibly up
to a constant 2πi the form ω is the Poincaré residue of the meromorphic form dζ/f .
For the existence, let α be a smooth form such that

(2.8)
1

2πi
df ∧ α = dζ.

For instance, one can take

α =

∑
j ∂f/∂ζj d̂ζj

2πi|df |2
.

Locally one can also take

(2.9) α =
d̂ζj

∂f/∂ζj

for a suitable j. We claim that ω = i∗α will do. From the choice (2.9) of α it is clear
that ω is holomorphic. In view of (2.8) and (2.6) we have∫

Ω
i∗ω ∧ ξ =

∫
X
ω ∧ i∗ξ =

∫
Ω

[X] ∧ αξ =
∫

Ω
∂̄

1
f
∧ df

2πi
∧ αξ =

∫
Ω
∂̄

1
f
∧ dζ ∧ ξ.

Thus (2.7) holds.

2.3. Integral representation on X. We keep the notation from Section 2.2. Let
z be a point in Ω and let h be a (1, 0)-form such that

δh = f − f(z),

where f = f(ζ). If Ω is pseudoconvex, then one can choose h that is holomorphic in
both ζ and z. Since we are only interested in local questions we may assume that Ω
is convex, say a ball.

Remark 2.10. Such a form h is called a Hefer form for f . It can be obtained elemen-
tarily in a convex domain like the ball: In fact,

f(z)− f(ζ) =
∫ 1

0
dtf(z + t(ζ − z)) =

n∑
1

(ζj − zj)
∫ 1

0

∂f

∂wj
(z + t(ζ − z))dt

so one can take h = h1(ζ, z)dζ1 + · · ·+ hn(ζ, z)dζn where

hj(ζ, z) =
∫ 1

0

∂f

∂wj
(z + t(ζ − z))dt.

�

Notice that 1−∇(h/f) = 1− δh/f + ∂̄(1/f) ∧ h so that, cf., Example 2.8,

g′ :=
f(z)
f

+ ∂̄
1
f
∧ h

is a singular weight. Let g be a (smooth) weight with respect to z with compact
support in Ω. Then we have the representation

Φ(z) =
∫
g′ ∧ gΦ, Φ ∈ O(Ω).

If now z ∈ X, then f(z) = 0 and if moreover φ = i∗Φ we have

φ(z) =
∫
∂̄

1
f
∧ (h ∧ g)n,n−1Φ = φ(z) =

∫
∂̄

1
f
∧ h ∧ gn−1,n−1Φ.
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For a form α of bidegree (n, q) we define the (0, q)-form {α} by the equality

α = dζ ∧ {α}.
Then

φ(z) =
∫
∂̄

1
f
∧ dζ ∧ {h ∧ gn−1,n−1}Φ =

∫
X
ω ∧ {h ∧ gn−1,n−1}φ

in view of (2.7).

Proposition 2.11. With the notation above we have the intrinsic representation

(2.10) φ(z) =
∫
X
pX(ζ, z)φ(ζ), φ ∈ O(X),

where

(2.11) pX(ζ, z) = ω ∧ i∗{h ∧ gn−1,n−1}.

In fact, if Ω is pseudoconvex, then each φ ∈ O(X) is i∗Φ for some Φ ∈ O(Ω) and
so the proposition follows from the argument above. In the general case one has
to compare with the formula obtained from a weight g′′ with small support near z.
Since we are only interested in the local case we leave the details to the reader.

Remark 2.12. If g is chosen such that it depends holomorphically of z in Ω′ ⊂ Ω,
then the formula (2.10) provides an explicit extension of φ to Ω′. �

Example 2.13. If we are in the ball as above, and n ≥ 2, then, cf., Example 2.5,

gn−1,n−1 = −∂̄χ ∧ vn−1,n−1 = −∂̄χ ∧ 1
(2πi)n−1

∂|ζ|2 ∧ (∂̄∂|ζ|2)n−2

(|z|2 − ζ̄ · z)n−1
.

Thus the integration in (2.10) is performed over the “boundary” of i∗χ on X. �

3. Lecture 3

In order to study the ∂̄-equation we will now turn our attention to formulas that
also involve ∂̄φ for smooth forms, so-called Koppelman formulas. We first have to
discuss operators defined by integral kernels.

3.1. Integral operators. Let k(ζ, z) be a current on Ωζ × Ω′z ⊂ Cn × Cn, where
Ω′ ⊂ Ω ⊂ Cn. If φ is a smooth form in Ωζ such that k ∧ φ⊗ 1 has compact support
in Ωζ we define

(3.1)
∫
ζ
k(ζ, z) ∧ φ(ζ) := π∗(k ∧ φ⊗ 1),

where π is the natural projection (ζ, z) 7→ z. That is,∫
z

(∫
ζ
k(ζ, z) ∧ φ(ζ)

)
∧ ψ(z) =

∫
ζ,z
k ∧ φ⊗ 1 ∧ 1⊗ ψ

for test forms ψ. Here we have used the natural orientation on Cn
ζ × Cn

z . (Notice
that the definition of push-forward is unaffected if we put ψ “on the left hand side”
in this definition.) A moment of thought reveals that in practice the integral on the
right is computed by first moving all differentials of ζ to the right (or to the left)
and then performing the integration with respect to ζ. For instance, if ψ(ζ, z) is a
function, then ∫

ζ
ψ(ζ, z)dζ ∧ dz ∧ dζ̄ = −

[ ∫
ζ
ψ(ζ, z)dζ ∧ dζ̄

]
dz.
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3.2. Weighted Koppelman formulas in Cn. Previously we have kept z fixed but
now we want z to vary on a subset Ω′ ⊂ Ω. We define Lk(Ω,Ω′) as the direct sum
of all E`,`+k(Ωζ × Ω′z) but where we only consider forms without any dzj . That is,
we only incorperate forms that has bidegree (0, q) in z. It is convenient to use the
notation ηj = ζj − zj . Notice that δ, i.e., interior multiplication with∑

j

ηj
∂

∂ζj
,

as well as ∂̄, are well-defined on Lk(Ω,Ω′).
We say that a smooth form g ∈ L0(Ω,Ω′) is a weight with respect to Ω′ ⊂ Ω if

∇g = 0 and g0,0 = 1 on the diagonal ∆ ⊂ Ω× Ω′.
Notice that, as before, if w is any smooth form in L−1(Ω,Ω′), then 1 + ∇w is a

weight with respect to Ω′.

Example 3.1. If Ω = (1 + ε)B, Ω = B and s and χ = χ(ζ) are as in Example 2.5,
then g = χ+ ∂̄χ∧ s/∇s is a weight with respect to Ω′ that is holomorphic in z ∈ Ω′.
Moreover, g has compact support in Ωζ . �

We let b be as before. We define

B = b/∇b = b+ b ∧ ∂̄b+ · · ·+ b ∧ (∂̄b)n−1

but let ∂̄ now also act on the z-variable. One can prove that then

(3.2) ∇B = 1− [∆]′,

where [∆]′ is the component of [∆] of full degree in dζ. This means that∫
ζ,z

[∆]′ ∧ ξ(ζ) = ξ(z)

for test forms ξ of bidegree (0, q). If g is a weight, then

∇(B ∧ g) = (1− [∆]′) ∧ g = g − [∆]′

and hence

(3.3) ∂̄(B ∧ g)n,n−1 = [∆]′ − gn,n.
We let

k := (B ∧ g)n,n−1, p := gn,n.

If Φ is a smooth (0, k)-form with compact support (or such that k∧Φ⊗1 and p∧Φ⊗1
have compact support in ζ), then we get from (3.3) the Koppelman formula

(3.4) Φ(z) = ∂̄z

∫
k(·, z) ∧ Φ +

∫
k(·, z) ∧ ∂̄Φ +

∫
p(·, z) ∧ Φ, z ∈ Ω′.

The signs are correct! There is a similar formula where the integration is over D ⊂ ω′
and z ∈ D. Then also the boundary integral of k ∧ Φ appears in the formula (with
plus sign!).

If Ω′ is pseudoconvex, then one can choose g that it is holomorphic in z ∈ Ω′; for
the case of the ball, see Example 3.1 above. Then p = 0 if k ≥ 1, or more precisely,
the component of p that has bidegree (0, k) in z vanishes, since no dz̄j can appear in
p = gn,n. If in addition ∂̄Φ = 0 it follows from (3.4) that

Φ(z) = ∂̄

∫
k(·, z) ∧ Φ, z ∈ Ω′,
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so we get a solution to ∂̄v = Φ in Ω′.

3.3. A weighted Koppelman formula on X. Let X ⊂ Ω be a smooth complex
hypersurface as before, and let X ′ = X ∩ Ω′.

Assume that g is any weight with with respect to Ω′ with compact support in Ωζ ,
and that g′ is the singular weight from Section 2.3. If we formally replace g by g′ ∧ g
in (3.4) and only consider z ∈ X ′ we have that

k = (g′ ∧ g ∧B)n,n−1 = (∂̄
1
f
∧ h ∧ g ∧B)n,n−1 =

∂̄
1
f
∧ h ∧ (g ∧B)n−1,n−2 =

1
f
∧ dζ ∧ {h ∧ (g ∧B)n−1,n−2}.

In particular, it is O(|η|−(2n−3)) and thus locally integrable on X.
It follows, still by formal calulation, that∫

Ω
k ∧ Φ =

∫
Ω

1
f
∧ dζ ∧ {h ∧ (g ∧B)n−1,n−2} ∧ Φ =

∫
X
kX(·, z) ∧ φ,

where

(3.5) kX = ω ∧ i∗{h ∧ (g ∧B)n−1,n−2}.

If we define pX as before, cf., (2.11), i.e.,

(3.6) pX = ω ∧ i∗{h ∧ gn−1,n−1},

but this time ∂̄ acts on z as well, then we formally get the Koppelman formula

(3.7) φ(z) = ∂̄z

∫
X
kX(·, z) ∧ φ+

∫
X
kX(·, z) ∧ ∂̄φ+

∫
X
pX(·, z) ∧ φ, z ∈ X ′.

Notice that all the integrals make sense since k is integrable on X. Moreover we have

Lemma 3.2. If ξ is a smooth (0, k)-form on X then

z 7→
∫
X
kX(·, z) ∧ ξ

is smooth on X ′.

This follows from real analysis, see [2, Lemmas 6.1 and 6.2]. Intuitively it holds
since the only singularity comes from B and it gives rise to an approximate convo-
lution. The analogous statement for pX is obvious.

Again, if we are in a situation where g is holomorphic in z, for instance, Ω is the
ball, then p vanishes when k ≥ 1. If in addition ∂̄φ = 0 we thus get

φ(z) = ∂̄z

∫
X
kX(·, z) ∧ φ(ζ), z ∈ X ′,

and thus a solution to ∂̄v = φ on X ′.

Proposition 3.3. The Koppelman formula (3.7) holds.

Koppelman formulas on a submanifold X ⊂ Ω, with weights g of the form in
Example 2.3, appeared in [4].
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3.4. Proof of Proposition 3.3.

Lemma 3.4. Let χ be a smooth approximation of the characteristic function for the
interval [1,∞) and let χε = χ(|f |2/ε). Then

∂̄
χε
f
→ ∂̄

1
f

weakly as measures when ε→ 0.

Sketch of proof. Since df 6= 0 we may assume that f = z1. Then the lemma follows
from the corresponding one-variable statement. Thus it is enough to check that

∂̄
χε
z
∧ dz

2πi
→ ∂̄

1
z
∧ dz

2πi
= [0]

as measures. We leave the details to the reader. �

We now introduce the smooth regularization

gε := 1−∇
(
χε
h

f

)
= 1− χε + χε

f(z)
f

+ ∂̄
χε
f
∧ h

of g′. In view of the lemma gε → g′ as measures.
We know that the Koppelman formula (3.4) holds with g replaced by gε ∧ g, i.e.,

with k and p replaced by

kε := (gε ∧ g ∧B)n,n−1, pε := (gε ∧ g)n,n.

We thus have

(3.8)
∫
X′
φ(z) ∧ ψ(z) =

±
∫

Ω×X′
kε ∧ Φ ∧ ∂̄ψ(z) +

∫
Ω×X′

kε ∧ ∂̄Φ ∧ ψ(z) +
∫

Ω×X′
pε ∧ Φ ∧ ψ(z)

for test forms ψ in X ′.

Proposition 3.5. The equation (3.8) tends to∫
X′
φ(z)∧ψ(z) = ±

∫
X×X′

kX∧φ∧∂̄ψ(z)+
∫
X×X′

kX∧∂̄φ∧ψ(z)+
∫
X×X′

pX∧φ∧ψ(z).

This is just a reformulation of Proposition 3.3.

Proof. The term with pε is comparatively simple to handle so we prove that

(3.9)
∫

Ω×X′
(gε ∧ g ∧B)n,n−1 ∧ Φ ∧ ξ →

∫
X×X′

kX ∧ φ ∧ ξ

for each smooth (0, ∗)-form ξ.
Since f(z) = 0,

gε = 1− χε + ∂̄
χε
f
∧ h.

Since B is locally integrable on Ω,

(3.10)
∫

Ω×X′
((1− χε) ∧ g ∧B)n,n−1 ∧ Φ ∧ ξ → 0
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by dominated convergence. It remains to consider

I =
∫

Ω×X′

(
∂̄
χε
f
∧ h ∧ g ∧B

)
n,n−1

∧ Φ ∧ ξ =∫
Ω×X′

∂̄
χε
f
∧ h ∧ (g ∧B)n−1,n−2 ∧ Φ ∧ ξ.

Since Bk,k−1 is locally integrable on X if k ≤ n− 1 is is not hard to see that

ζ 7→
∫
X′
h ∧ (g ∧B)n−1,n−2 ∧ ψ

is continuous in Ω. It follows from Lemma 3.4 that I tends to∫
Ω×X′

∂̄
1
f
∧ h ∧ (g ∧B)n−1,n−1 ∧ Φ ∧ ξ =∫

X×X′
ω ∧ i∗{h ∧ (g ∧B)n−1,n−2} ∧ φ ∧ ξ =

∫
X×X′

kX ∧ φ ∧ ξ.

Together with (3.10) we get (3.9), and so the proposition is proved. �

4. Lecture 4

If f is holomorphic in Ω ⊂ Cn and we allow df to vanish, then in general 1/f
is not locally integrable. Nevertheless there is a distribution U such that fU = 1.
Then R = ∂̄U is a (0, 1)-current; clearly it vanishes outside the zero set V (f) of f .
It is easy to verify that a holomorphic function φ is in the ideal (f) generated by f
if and only if φR = 0. (If 0 = φR = φ∂̄U = ∂̄(φU), then a = φU is holomorphic
and af = φUf = φ so that φ ∈ (f). The converse is even simpler!) Thus, unless
V (f) = ∅, R does not vanish identically, so there is something left, a residue, and
therefore R is called a residue current.

However, U andR are by no means unique. There is however a canonical choice due
to Herrera and Liebermann in the early 70’s. See Section 4.1 below for a discussion
of currents on a singular space.

Theorem 4.1. If f is holomorphic and not vanishing identically on (the reduced
pure-dimensional analytic space) X and v is a smooth strictly positive function, then[ 1

f

]
:= lim

ε→0
χ
(
|f |2v/ε

) 1
f

=
|f |2λvλ

f

∣∣∣
λ=0

exists and f [1/f ] = 1. Moreover, if a is holomorphic and non-vanishing, then
[1/af ] = (1/a)[1/f ]

Here χ is either the characterstic function for [1,∞) or a smooth apporoximand.
The meaning of the rightmost member is the following: The function λ 7→ |f |2λvλ/f ,
that is elementarily defined for Reλ � 0, admits a current-valued analytic contin-
uation to Reλ > −δ, and the expression is the value at λ = 0. It is often more
convenient to use the definition definition with λ. However, in these notes we stick
to the ε-definition which is, perhaps, more conceptual.

It is clear that f [1/f ] = limχ(|f |2/ε) = 1. The last statement follows by replacing
v by v|a|2. It implies that if f is a holomorphic section of a line bundle, then the
principal value current [1/f ] has a well-defined meaning.
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4.1. Currents on a non-smooth reduced X of pure dimension n. Locally
there is an embedding

(4.1) i : X → Ω ⊂ CN .

Let Ker i∗ be the subsheaf of smooth forms ξ on Ω such that the pullback i∗ξ to
Xreg vanishes. Then EX := EΩ/Ker i∗ is the sheaf of smooth forms on X. Any
embedding at a given point has the form j : X ⊂ Ω′ → Ω′ × CN−M , where j is a
minimal embedding, and therefore unique. It follows that the definition of EX is
independent of the choice of embedding.

As in the smooth case the sheaf of currents CXp,q of bidegree (p, q) is the dual of
DXn−p,n−q. Given an embedding this means that each such current τ is represented
by a unique (N − n+ p,N − n+ q)-current T = i∗τ in Ω such that T.ξ vanishes for
all ξ such that i∗ξ = 0.

If p : X ′ → X is proper and τ is a current on X ′, then p∗τ , defined by p∗τ.ξ = τ.π∗ξ,
is a current on X. For more details, see, e.g., [1].

4.2. The case with monomials. Let us first consider the one-variable case.

Proposition 4.2. For each integer m ≥ 1 and test function ξ ∈ D(C) the limit

(4.2)
1
zm

.ξdz ∧ dz̄ = lim
ε→0

∫
χ(|z|2/ε)ξdz ∧ dz̄

zm

exists and defines a current. We have the following equalities:

(4.3) z
1

zm+1
=

1
zm

,

(4.4)
∂

∂z

1
zm

= −m 1
zm+1

, m ≥ 1,

(4.5) ∂̄
1
zm

.ξdz =
2πi

(m− 1)!
∂m−1

∂zm−1
ξ(0), m ≥ 1,

(4.6) z̄∂̄
1
zm

= 0, dz̄ ∧ ∂̄ 1
zm

= 0, m ≥ 1.

(4.7) ∂
1
zm

= −m 1
zm+1

dz, ∂∂̄
1
zm

= m∂̄
1

zm+1
∧ dz, m ≥ 1

(4.8) ∂̄
1
zm
∧ dz

m

2πi
= m[0].

This result is well-known and quite elementary, and we omit the proof. In Cn, let
zm := zm1

1 · · · zmrr , r ≤ n, mj ≥ 1. We can form tensor product[ 1
zm

]
:=
[ 1
zm1

1

]
⊗ · · · ⊗

[ 1
zmrr

]
.

Proposition 4.3. With χ as above we have

(4.9)
[ 1
zm

]
= lim

ε→0
χ
(
|z bm|2v/ε) 1

zm

if each factor of the monomial zm is a factor in z bm.

This proposition is not at all trivial. For a proof see, e.g., [1] or [5]. On the other
hand, the analogous statement with the λ-definition is immediate in case v ≡ 1, and
the general case follows then by a simple additional argument, see, e.g., [1].
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4.3. Proof of Theorem 4.1. Since currents are locally defined, it follows from
Proposition 4.3 that the principal value current[ 1

f

]
= lim

ε→0
χ
(
|f |2v/ε

) 1
f

exists, and is independent of v and χ, as soon as locally one can choose coordinates
with respect to which f is a monomial.

The case with a general f follows from the possibility to resolve singularities. Let
π : X ′ → X be a modification, i.e., π is proper and a biholomorphism outside a set
of positive codimension, so that X ′ is smooth and locally in X ′, π∗f is a monomial
in suitable local coordinates. Then∫

X
χ
(
|f |2v/ε

) 1
f
ξ =

∫
X′
χ
(
|π∗f |2π∗v/ε

) 1
π∗f

π∗ξ →
∫
X′

[ 1
π∗f

]
π∗ξ =

∫
X
π∗

[ 1
π∗f

]
ξ.

Thus the limit exists, and moreover [1/f ] is equal to the push forward π∗[1/π∗f ] of
the principal value current [1/π∗f ] in X ′.

4.4. The sheaf of pseudomeromorphic currents. Assume that m = (m′,m′′) =
(m1, . . . ,mν ,mν+1, . . . ,mr) and let

1
zm′

∂̄
1
zm′′

:=
1
zm′
⊗ ∂̄ 1

z
mν+1

ν+1

∧ . . . ∧ ∂̄ 1
zmrr

.

If α is a smooth form with compact support, then we say that

τ =
1
zm′

∂̄
1
zm′′

∧ α

is an elementary current. Notice that

(4.10) z̄jτ = dz̄j ∧ τ = 0

if zj is a factor in zm
′′
.

Fix a point x ∈ X. We say that a germ µ of a current at x is pseudomeromorphic
at x, µ ∈ PMx, if it is a finite sum of currents of the form π∗τ = π1

∗ · · ·πm∗ τ , where
U is a neighborhood of x,

(4.11) Um πm−→ · · · π2

−→ U1 π1

−→ U0 = U ,

each πj : U j → U j−1 is either a modification, a simple projection U j−1 × Z → U j−1,
or an open inclusion (i.e., U j is an open subset of U j−1), and τ is elementary on Um.

By definition the union PM = ∪xPMx is an open subset of the sheaf C = CX
and hence it is a subsheaf, the sheaf of pseudomeromorphic currents, of C. A section
µ of PM over an open set V ⊂ X, µ ∈ PM(V), is then a locally finite sum

(4.12) µ =
∑

(π`)∗τ`,

where each π` is a composition of mappings as in (4.11) (with U ⊂ V) and τ` is
elementary. The definition here is from [2] and it is in turn a slight elaboration of
the definition introduced in [3].

If ξ is a smooth form, then ξ ∧ π∗τ = π∗
(
π∗ξ ∧ τ

)
. Thus PM is closed under

exterior multiplication by smooth forms. Notice that if τ is an elementary current,
then ∂̄τ is a finite sum of elementary currents. Since moreover ∂̄ commutes with
push-forwards, PM is closed under ∂̄.
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Example 4.4. Let f be a holomorphic in X. By a partition of unity in X ′ (using the
notation in the proof of Theorem 4.1) we see that 1/π∗f is a locally finite sum of
elementary currents. It follows that [1/f ] = π∗[1/π∗f ] is pseudomeromorphic in X.
Thus also the residue current ∂̄[1/f ] is pseudomeromorphic. �

Proposition 4.5. If h is holomorphic and vanishes on suppµ, where µ is pseu-
domeromorphic, then h̄µ = dh̄ ∧ µ = 0.

Sketch of proof. Assume that µ has the representation (4.12). By further desingu-
larizations we may assume as well that π∗h locally is a monomial (with with respect
to the same local coordinates that are involved in τ`). Now,

0 = χ(|h|2/ε)µ =
∑
`

π∗(χ(|π∗h|2/ε)τ`).

If supp τ` ⊂ π−1V (h) then
Tε = χ(|π∗h|2/ε)τ`

vanishes. Otherwise, we may assume that π∗h is independent of the coordinates
involved in the the residue factors of τ`. It follows from Proposition 4.3 that then
Tε → τ`. We conclude that

µ =
∑

supp τ`⊂π−1V (h)

π∗τ`.

It now follows from (4.10) that

h̄µ =
∑

supp τ`⊂π−1V (h)

π∗(π∗hτ`) = 0.

In a similar way dh̄ ∧ µ = 0. �

By a standard argument, Proposition 4.3 leads to

Theorem 4.6 (Dimension principle). If T is pseudomeromorphic with bidegree (∗, p)
and has support on a variety V with codimV > p, then T = 0.

Assume that µ is pseudomeromorphic and V is a subvariety. Let h be a tuple of
holomorphic functions such that the common zero set is precisely V . Then the limit

1X\V µ := lim
ε→0

χ(|h|2v/ε)µ

exists, and it is a pseudomeromorphic current that is independent of χ and v. Clearly,

1V µ := µ− 1X\V µ

has support on V , and 1V µ = µ if µ has support on V . The existence of the limit
and the independence of h follow from the corresponding statements for elementary
currents. If µ has the form (4.12), then

1V µ =
∑

supp τ`⊂π−1V

π∗τ`.

It follows that
1V 1Wµ = 1V ∩Wµ = 1W1V µ.

Notice also that

(4.13) 1V (α ∧ µ) = α ∧ 1V µ

if α is smooth.
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In general pseudomeromorphic currents cannot be multiplied. However, if f is
holomorphic we can define a mapping

µ 7→
[ 1
f

]
µ := lim

ε→0
χ(|f |2v/ε) 1

f
µ

on PM. Although written as a multiplication, one should be careful and notice that

f
[ 1
f

]
µ = 1f 6=0µ.

We can also define

∂̄
[ 1
f

]
∧ µ = lim

ε→0
∂̄χ(|f |2v/ε) 1

f
∧ µ

so that the Leibniz rule

(4.14) ∂̄
([ 1
f

]
µ
)

= ∂̄
[ 1
f

]
∧ µ+

[ 1
f

]
∂̄µ

holds. Notice that ∂̄[1/f ] ∧ µ has support on {f = 0}.

Example 4.7. The current µ = log |z|2 is not pseudomeromorphic. In fact, ∂̄µ = dz̄/z̄
in the current sense, but the limit

limχ(|z|2/ε)1
z

dz̄

z̄

does not exist. �

Example 4.8. Assume that f is a meromorphic form. Then locally f = g/h where g
is a holomorphic form and h is a holomorphic function, not vanishing identically (on
any irreducible component of X). Let us define the pseudomeromorphic current

[f ] := g
[1
h

]
.

If f = g′/h′ is another representation of f , then g/h = g′/h′ where h 6= 0 and h′ 6= 0.
Thus the pseudomeromorphic current

T = g
[1
h

]
− g′

[ 1
h′

]
vanishes outside a set of positive codimension. By the dimension principle we con-
clude that T vanishes identically. Thus the pseudomeromorphic current [f ] is well-
defined. �

Example 4.9. Let f, g be holomorphic functions such that codim {f = g = 0} ≥ 2.
We claim that then

∂̄
[ 1
f

]
∧ ∂̄
[1
g

]
= −

[1
g

]
∧ ∂̄
[ 1
f

]
.

First notice that the pseudomeromorphic current

T =
[ 1
f

]
∂̄
[1
g

]
− ∂̄

[1
g

]
·
[ 1
f

]
vanishes outside {f = 0}, since [1/f ] is equal to the smooth function 1/f there. On
the other hand, both terms vanish outside the set g = 0. Thus T has support on
{f = g = 0}, and hence it vanishes identically in view of the dimension principle. �
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4.5. The Coleff-Herrera product. By similar arguments, for any tuple f1, . . . , fm
such that codim {f1 = · · · = fm = 0} ≥ m, we have the pseudomeromorphic current[

∂̄
1
fm
∧ · · · ∧ ∂̄ 1

f1

]
:= ∂̄

[ 1
fm

]
∧ · · · ∧ ∂̄

[ 1
f1

]
,

called the Coleff-Herrera product, that is alternating in the factors. It was introduced
by Coleff and Herrera in [7]. It is easy to check that it is annihilated by each function
fj , that is, by the ideal J = 〈f1, . . . , fm〉. It was proved independently by Passare,
[11], and by Dickenstein and Sessa, [8], that also the converse holds if X is smooth:
If φ annihilates this current, then φ is indeed in the ideal J .

Remark 4.10. If X is not smooth, then this fails already when m = 1, as 0 =
φ∂̄[1/f ] = ∂̄(φ[1/f ]) only implies that φ/f is holomorphic in the sense of Barlet-
Henkin-Passare, see, e.g., [9] or [1]. �

Notice that by our definition

(4.15)
[
∂̄

1
f
∧ ∂̄ 1

g

]
= lim

ε→0
lim
δ→0

∂̄χ(|f |2/ε) ∧ ∂̄χ(|g|2/δ)
fg

.

As suggested above one can take either χ as the characteristic function of [1,∞) or
a smooth approximand.

Coleff and Herrera originally took the limit when 0 < ε � δ or 0 < δ � ε and
proved that one gets the same result in either way. It was an open question for more
than a decade whether the limit exists unconditionally. In 1995 Passare and Tsikh
found an example, with χ = χ[1,∞), where the limit does not exist unconditiononally.
Shortly after that Björk proved that this phenomenon occurs for generic choices
of f and g. Thus the question was supposed to be settled, until Samuelsson 2004
surprisingly proved that if one instead uses a smooth χ, then indeed the function

(ε, δ) 7→ ∂̄χ(|f |2/ε) ∧ ∂̄χ(|g|2/δ)
fg

.

is even Lipschitz continuous on [0, 1]× [0, 1]. The same holds true for m > 2, see [6].

Remark 4.11. If one eases the condition codim {f = g = 0} ≥ 2, then things break
down. For instance,

∂̄
1
zw
∧ ∂̄ 1

z
= 0,

whereas

∂̄
1
z
∧ ∂̄ 1

zw
= ∂̄

1
z
∧ ∂̄ 1

w
6= 0.

�

5. Lecture 5

Now let i : X → Ω ⊂ Cn be a hypersurface, X = {f = 0}, such that df 6= 0 on
Xreg, and let X ′ = X ∩ Ω′, where Ω′ ⊂⊂ Ω as before, say Ω′ is a ball.

We can choose h and g as in Section 3.3 and define approximations of the kernels
k and p. Outside the singularities of X × X ′ we then get the Koppelman formula
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(3.7) which thus can be formulated as

(5.1) φ(z) = ∂̄z

∫
X
kX(·, z) ∧ φ+

∫
X
kX(·, z) ∧ ∂̄φ+∫
X
pX(·, z) ∧ φ, φ ∈ D0,k(Xreg), z ∈ X ′reg,

or alternatively as

(5.2) ∂̄kX = [∆]′ − pX

on Xreg ×X ′reg, where [∆]′ is the current on Xreg ×X ′reg such that, for test forms ψ
in Xreg ×X ′reg, ∫

X×X′
[∆]′ ∧ ψ(ζ, z)

is equal to ∫
X′
ψ(z, z)

if ψ has bidegree (0, ∗) in ζ and 0 otherwise. Clearly it has an extension to a current
on X ×X ′, that we also denote by [∆]′, such that the same holds for test forms in
X ×X ′. In fact, we can define the extension by

[∆]′ = lim
δ
χδ[∆]′,

where χδ = χ(|h|2/δ) and {h = 0} = (X ×X ′)sing. For the moment it is not clear
that this extended current [∆]′ is pseudomeromorphic in X×X ′, but this will follow
a posteriori from Theorem 5.2 below.

Remark 5.1. Assume that a is a current in Y \V , and that χδ cuts out the analytic set
V ⊂ Y of positive codimension. If the limit A = limδ χδa exists, and is independent
of the choice of χδ, one says that A is the standard extension of a. Notice that if A
is pseudomeromorphic, then A is the standard extension of a across V if and only if
A = a in X \ V and 1VA = 0. �

Theorem 5.2. The standard extensions of the currents kX and pX to X ×X ′ exist
and are pseudomeromorphic in X ×X ′, and (5.2) holds on X ×X ′.

It follows that (5.1) holds in the current sense for all φ ∈ E(X).

Lemma 5.3. If φ is smooth on X, then

v(z) =
∫
X
kX(·, z) ∧ φ

is smooth on X ′reg.

If we have chosen g so that the component of bidegree (0, k) in z of pX vanishes
when k ≥ 1 in Xreg ×X ′reg, then also its standard extension vanishes. If φ ∈ E0,k(X)
and ∂̄φ = 0 we thus get a current v on X ′ that is smooth on X ′reg and such that
∂̄v = φ in the current sense on X ′.
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5.1. Extension of ω. We first discuss the extension of ω across Xsing. In view of
(2.9) we see that ω := i∗α is meromorphic on X and hence we have an extension of
ω across Xsing as a principal value current, cf., Example 4.8. However, for simplicity
we write ω rather than [ω] even for the extension. We claim that

(5.3) i∗ω = ∂̄
[ 1
f

]
∧ dζ.

Proof of the claim. We already know that the equality holds outside Xsing that has
codimension at least 2, so if we also a priori knew that the left hand side is pseu-
domeromorphic, then the claim would follow from the dimension principle. It is true,
but a quite deep fact, that indeed i∗ maps PMX into PMΩ, see [1]. However, there
is a simpler way out: Assume that Xsing = {h = 0} so that χδ = χ(|h|2/δ) cuts out
Xsing in Ω. Then i∗χδ cuts out Xsing in X and thus

χδi∗ω = i∗(i∗χδ · ω)→ i∗1X\Xsingω = i∗ω

since 1Xsingω = 0 by the dimension principle. On the other hand we also have that

χδi∗ω = χδ∂̄
[ 1
f

]
∧ dζ → 1Ω\Xsing ∂̄

[ 1
f

]
∧ dζ = ∂̄

[ 1
f

]
∧ dζ,

since 1Xsing ∂̄[1/f ] ∧ dζ = 0 by the dimension principle, as already noted above. �

From (5.3) we have that

i∗∂̄ω = ∂̄i∗ω = ∂̄
(
∂̄
[ 1
f

]
∧ dζ

)
= 0,

where the last equality follows from the Leibniz rule (4.14). Since i∗ is injective we
conclude that

(5.4) ∂̄ω = 0

on X.

Remark 5.4. We claim that if φ is a smooth (n − 1, ∗)-form on X, then there is a
(unique) smooth form φ̂ on X, such that φ = φ̂∧ω. To see this, assume that φ = i∗Φ
where Φ is a smooth (n− 1, ∗)-form in Ω. Then there is a smooth (0, ∗)-form Φ̂ in Ω
such that Φ ∧ df = 2πiΦ̂ ∧ dz. If 2πidz = df ∧ α (close to X), then

Φ ∧ df = 2πiΦ̂ ∧ dz = ±Φ̂ ∧ α ∧ df,

and hence φ = i∗Φ = ±i∗Φ̂ ∧ i∗α = φ̂ ∧ ω. Since ω is non-vanishing on Xreg, the
form φ̂ must be unique. �

5.2. Extension of B. Let E be a trivial rank n-bundle over X × X ′ with global
frame e1, . . . , en, and let us form the exterior algebra over E ⊕ T ∗0,1(X ×X ′). Then
we can define the form

b′ =

∑
j η̄j ∧ ej
|ζ|2

,

and let
B′ = b′ + b′ ∧ ∂̄b′ + · · ·+ b′ ∧ (∂̄b′)n−1.

Similarly we let h′ and g′ be the forms obtained from h and g, respectively, by
replacing dζj by ej . Notice that we then have the equality

{h ∧ (B ∧ g)n−1,n−2} = {h′ ∧ (B′ ∧ g′)n−1,n−2}
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where the right hand side is defined by the equality

{h′ ∧ (B′ ∧ g′)n−1,n−2} ∧ e1 ∧ . . . ∧ en = h′ ∧ (B′ ∧ g′)n−1,n−2.

Thus it is enough to describe how the coefficients in B′ are extended pseudomero-
morphically across Xsing.

Let π : Y → X ×X ′ be a principalization of the ideal sheaf on X ×X ′ generated
by the ηj such that π is a biholomorphism Y \ π−1∆ ' X ×X ′ \∆. Then there is a
a holomorphic section σ on Y of a certain line bundle L→ Y and a smooth section
a on Y of L⊗ π∗E such that π∗b′ = a/σ in Y \ π−1∆. We thus have that

π∗(b′ ∧ (∂̄b′)`−1) =
a`
σ`
,

where a` is a smooth section of L` ⊗ Λ`π∗E. In view of Theorem 4.1 there is a
canonical pseudomeromorphic extension A of a`/σ` across Y \ π−1∆. We get the
desired pseudomeromorphic extension of B′` = b′ ∧ (∂̄b′)`−1 as π∗A. It coincides with
B′` outside ∆ since π is a biholomorphism there by assumption.

Notice that this extension of B′ is unique, in view of the dimension principle, since
since the highest bidegree of B′ that occurs is (0, n−2) and ∆ has codimension n−1
in X ×X ′. Let B′ also denote this extension.

5.3. The heart of residue theory. Assume that a and b are currents in Y \ V
that have standard extensions A and B, respectively, to Y . Moreover, assume that

∂̄a = b

in Y \ V . It is natural to ask whether

(5.5) ∂̄A = B

holds.

Proposition 5.5. Let χδ be a sequence as above that cuts out V . Then the limit

(5.6) lim
δ
∂̄χδ ∧ a

exists, and it is zero if and only if (5.5) holds.
If A is pseudomeromorphic, then

(5.7) lim
δ
∂̄χδ ∧ a = 1V ∂̄A.

If A is pseudomeromorphic, therefore (5.5) holds if and only if no residue appears
at V when applying ∂̄ to A.

Proof. By assumption, χδa→ A and χδb→ B, so

∂̄χδ ∧ a = ∂̄(χδa)− χδ∂̄a = ∂̄(χδa)− χδb→ ∂̄A−B.

Thus the first part follows.
If A is pseudomeromorphic, then also ∂̄A is, and we have

1V ∂̄A = ∂̄A− 1Y \V ∂̄A = ∂̄A− lim
δ
χδ∂̄A = ∂̄A− lim

δ
∂̄(χδA) + lim

δ
∂̄χδ ∧A =

∂̄A− ∂̄A+ lim
δ
∂̄χδ ∧A = lim

δ
∂̄χδ ∧ a.

�
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5.4. Proof of Theorem 5.2 and Lemma 5.3. We first define extensions of kX

and pX . In view of the preceding sections

{h ∧ (B ∧ g)n−1,n−2}

is pseudomeromorphic on X ×X ′ and since ω is meromorphic,

(5.8) kX := ω ∧ {h ∧ (B ∧ g)n−1,n−2}

is a well-defined pseudomeromorphic current on X ×X ′ that coincides with (3.5) on
Xreg ×X ′reg. In the same way we define the extension

pX := ω ∧ {h ∧ gn−1,n−1}

of pX in Xreg ×X ′reg.
We are to prove that they are the standard extensions across (X × X ′)sing. In

view of Remark 5.1 we thus have to check that

(5.9) 1(X×X′)singk
X = 0, 1(X×X′)singp

X = 0.

We will also prove that

(5.10) 1(X×X′)sing ∂̄k
X = 0.

We focus on the latter equality; (5.9) is obtained in the same way.
We use the equality

1(X×X′)sing ∂̄k
X = 1(X×X′)sing1X×X′\∆∂̄k

X + 1(X×X′)sing1∆∂̄k
X =: I + II.

Let us write kX = ω∧A, cf., (5.8). Outside ∆ the second factor A is smooth, and so

∂̄kX = ω ∧ ∂̄A,

since ∂̄ω = 0. Since ∂̄A is smooth thus

I = 1(X×X′)sing1X×X′\∆(ω ∧ ∂̄A) = 1(X×X′)sing1X×X′\∆ω ∧ ∂̄A = 0.

The last holds equality because 1(X×X′)sing(ω⊗ 1) vanishes by the dimension princi-
ple. We now consider II. Notice that ∆ ' X ′ and that the current in II has support
on ∆sing which has codimension (n − 1) + 1 = n in X ×X ′. Since the current has
bidegree (∗, n− 1) it therefore vanishes by the dimension principle.

In view of Section 5.3 Theorem 5.2 follows from (5.9) and (5.10).

Proof of Lemma 5.3. Fix a small neighborhood U ⊂ Xreg of a point in Xreg. If φ has
support close to Xsing, then v is smooth in U since B is smooth outside the diagonal.
If φ has support in Xreg, then v is smooth by Lemma 3.2. �

5.5. The strong ∂̄-operator on X. Assume that v and φ are pseudomeromorphic
in X, smooth in Xreg, and that

(5.11) 1Xsingv = 0 = 1Xsingφ.

We then say that ∂̄Xv = φ if

(5.12) ∂̄(ω ∧ v) = ω ∧ φ.

Lemma 5.6. If ∂̄Xv = φ, then ∂̄v = φ.
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Proof. Notice that (5.12) means that

(5.13)
∫
v ∧ ω ∧ ∂̄ξ = ±

∫
φ ∧ ω ∧ ξ

for test forms ξ of bidegree (0, ∗). By Remark 5.4, for any test form η of bidegree
(n − 1, 0) there is a smooth form ξ such that η = ξω in Xreg. Thus ∂̄η = ∂̄ξ ∧ ω in
Xreg. Because of the assumption (5.11), (5.13) implies that∫

v ∧ ∂̄η = ±
∫
φ ∧ η.

We conclude that ∂̄v = φ. �

We say that v as above is in the domain of ∂̄X if ∂̄Xv = φ for some φ as above.
One can check that this holds if and only if 1Xsing ∂̄(v ∧ ω) = 0. This is an intrinsic
boundary condition at Xsing.

With precisely the same arguments as in the proof of Theorem 5.2 we actually get
the equality

∂̄(ωz ∧ kX) = ωz ∧ [∆]′ − ωz ∧ pX .
This leads to a solution to ∂̄Xv = φ in X ′ if φ is smooth on X and ∂̄φ = 0.

If φ is as above and ∂̄Xφ = 0, then

v = Kφ :=
∫
X
kX ∧ φ

is a solution to ∂̄v = φ in Xreg. One can prove that 1Xsingv = 0 but we do not know
whether ∂̄v = 0 or ∂̄Xv = φ on X in general.

5.6. A fine resolution of OX . We already mentioned that v = Kφ1 is in the
domain of ∂̄X if φ1 is smooth. With similar arguments one can prove that also
K(φ2 ∧ v) is in the domain of ∂̄X if φ2 is smooth. Proceeding in this way we obtain
fine sheaves Ak of currents that are smooth on Xreg and in the domain of ∂̄X , and
one can prove that

0→ OX → A0
∂̄→ A1

∂̄→
is an exact sequence of sheaves, thus a fine resolution of the structure sheaf OX .

5.7. The case with a general reduced analytic space X. Let us conclude with
a few words about the case when X is an arbitrary reduced analytic space of pure
dimension n. Locally we have an embedding i : X → Ω ⊂ CN , and the analogues of
[1/f ] and the associated residue current ∂̄[1/f ] are currents U and R obtained from
a free resolution of the ideal sheaf JX in Ω associated with X.

In case X is locally Cohen-Macaulay, R is a vector-valued ∂̄-closed (0, N − n)-
current, and there is an associated form ω as before, called a structure form in [2],
such that i∗ω = R∧ dz in Ω. Thus ω is a tuple of (n, 0)-forms ωj such that ∂̄ωj = 0.
These forms actually generate the OX -module of all ∂̄-closed (n, 0)-forms. The form
g is as before, and h corresponds to a certain holomorphic matrix that acts on the
tuple ω. Besides various technicalities this case works pretty much in the same way
as for the hypersurface discussed in these lectures.

When we go beyond the Cohen-Macaualay case, several substantially new difficul-
ties arise. We still get solutions to ∂̄ and we get a fine resolution of OX but things
are more involved, and we refer to the paper [2] for details.
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