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Abstract-

This thesis presents a study of five different Lagrangian heuristics applied to
the strictly convex quadratic minimum cost network flow problem. Tests are con-
ducted on randomly generated transportation networks with different degrees of
sparsity and nonlinearity according to a system devised by Ohuchi and Kaji [18].
The different heuristics performance in time and quality are compared. The un-
constrained dual version of the problem is first solved to near-optimality using the
conjugate gradient method with an exact line search. Then a Lagrangian heuris-
tic is applied to obtain (near-optimal) primal solutions to the original problem. In
the computational study, we show results for two modifications of the Lagrangian
heuristic Flowroute, FlowrouteBS and FlowrouteD, and one modification of the
Lagrangian heuristic Shortest Path, Shortest PathL. FlowrouteBS, FlowrouteD and
Shortest PathL are novel Lagrangian heuristics, but Flowroute and Shortest Path
are constructed according to Marklund [15]. The results demonstrate that although
FlowrouteBS has the drawback of being significantly slower than Flowroute and
FlowrouteD, it produces results of almost as good quality as Shortest Path and
Shortest PathL, and is therefore the most promising Lagrangian heuristic.

KEYWORDS: duality, Lagrangian heuristics, strictly convex quadratic minimum
cost network flow problem

Sammanfattning

Detta examensarbete presenterar en studie av fem olika Lagrangeheuristiker
applicerade på minkostnadsproblemet för nätverk med strikt konvex, kvadratisk
kostnad. Tester har genomförts på slumpmässigt genererade nätverk med olika
grader av gleshet och ickelinjäritet enligt ett system givet av Ohuchi and Kaji [18].
De olika heruristikernas prestanda jämförs med avseende på tid och kvalitet. Den
obegränsade duala versionen av problemet löses först till näroptimalitet med en
konjugatgradient metod i kombination med en exakt linjesökning. Sedan appliceras
en Lagrageheuristik för att uppnå (näroptimla) primala lösningar till det ursprung-
liga problemet. Vi presenterar resultat för två modifieringar av Lagrangeheuris-
tiken Flowroute, FlowrouteBS och FlowrouteD, samt en modifiering av Lagrange-
heuristiken Shortest Path, Shortest PathL. FlowrouteBS, FlowrouteD samt Short-
est PathL är tidigare okända Lagrangeheuristiker, men Flowroute och Shortest
Path är presenterade av Marklund [15]. Resultaten visar att FlowrouteBS pro-
ducerar resultat av nästan lika god kvalitet som Shortest Path och Shortest PathL
och är därmed den mest lovande Lagrangeheuristiken, trots att den har nackdelen
att vara signifikant långsammare än Flowroute och FlowrouteD.

NYCKELORD: dualitet, Lagrangeheuristiker, minkostnadsproblemet för nätverk
med strikt konvex, kvadratisk kostnad
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1 Introduction

The problem under consideration in this thesis is the minimum cost network
flow problem with a strictly convex quadratic cost function. In the minimum
cost network flow problem we aim to find the least cost of transporting a
commodity through a network in order to satisfy demands at certain ver-
tices from available supplies at other vertices. The arcs of the network have
a cost associated to them, as well as limits of how much flow that can be
transported through them. There are several applications within engineer-
ing, economics, and statistics when the cost of the arcs varies quadratically
with the amount of flow. Such situations occur for instance in resistive elec-
trical networks, equilibrium import-export trade problems, quadratic data-
fitting problems, and in urban traffic flows (Ventura [22]) . These problems
have in common that they are large-scale in structure, with many thousands
of variables and constraints. Thus, they are very complex to solve. More-
over, they tend to grow larger and more complex with time, and the algo-
rithms commonly used to solve them are approaching the limit of what is
feasible in terms of CPU time (for instance Ventura [22] gives a summary of
such algorithms).

In this thesis, an approach involving five Lagrangian heuristics is used
to solve the minimum cost network flow problem with a strictly convex
quadratic cost function. The unconstrained dual version of the problem
is first solved to near-optimality using the conjugate gradient method with
an exact line search, followed by the application of a Lagrangian heuristic
to obtain (near-optimal) primal feasible solutions to the original problem.
When the conjugate gradient method is stopped at a high level of accuracy,
we expect that the quality in solution for the Lagrangian heuristics will im-
prove compared to when it is stopped at a low level of accuracy. We base this
assumption on Marklund [15], Theorem 9, and on the experimental conver-
gence studies also presented by Marklund [15]. Randomly generated trans-
portation networks of different degrees of sparsity and nonlinearity will be
generated according to a system by Ohuchi and Kaji [18]. We expect that
the running times for the Lagrangian heuristics will be shorter when ap-
plied to smaller networks, and likewise to more dense networks. The first
assumption is based on the fact that solving problems for larger networks in-
volve more computations, and this inevitable leads to longer solution times.
The second assumption is based on the fact that solving problems for more
dense networks is easier, i.e. the running time becomes shorter, since there
are many options to reroute flow in the network. These assumptions have
also been verified by the experimental studies of the Lagrangian heuristics
Flowroute and Shortest Path by Marklund [15]. In this thesis, we suggest
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two new modifications of Flowroute, FlowrouteD and FlowrouteBS, and
one new modification of Shortest Path, Shortest PathL. Due to the modifi-
cations made to Flowroute and Shortest Path, we expect that FlowrouteD
and FlowrouteBS will produce results of similar quality, but faster than
Flowroute, and that Shortest PathL will produce results in similar running
time as, but with better quality than Shortest Path.

The contents and outline of this thesis is the following: first several terms
that are commonly used when dealing with network problems are intro-
duced. This is followed by a discussion on Lagrangian duality, and meth-
ods of how to solve the Lagrangian dual problem. Hereafter, the different
Lagrangian heuristics are presented, followed by a description of the data
structure used to model the problem, and the network generator used to
generate large-scale transportation networks. Eventually the computational
results of using the different Lagrangian heuristics on large-scale networks
are presented. The thesis ends with a discussion of the findings, and the
conclusions drawn when comparing the different Lagrangian heuristic per-
formance in time and quality.
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2 Terminology and notation

This section presents many of the terms that will be encountered through-
out the thesis. The contents rests on the facts presented in the text books by
Ahuja [1], Biggs [5], Cormen [6], Evans [9], and Migdalas&Göthe–Lundgren
[16].

2.1 Graphs, networks, and flows

A graph, G, consists of two finite sets; vertices, V , and edges, E. The vertices
are the connection points of the graph. Two vertices are joined by an edge.
A bipartite graph has the set of vertices partitioned in two subsets V1 andV2 so that for each edge fi; jg 2 E either i 2 V1 and j 2 V2 or j 2 V1 andi 2 V2. A vertex is usually identified by a label or coordinate and an edge by
a weight or cost. The degree of a vertex is the number of edges connected
to it. An edge can be directed or undirected depending on whether it is
traversed in a given direction only or in both. A directed edge is called an
arc and is identified by its origin (tail), and its destination (head). The set
of arcs is usually denoted A. An arc between a specific vertex i 2 V and
an adjacent vertex j 2 V , is either forward (outgoing) if it connects (i; j) or
backward (incoming) if it connects (j; i). A graph that does not contain any
undirected edges is called a digraph.

A walk in a graph is a sequence of vertices 1; 2; : : : ; k such that i; i+1 are
adjacent for i, 1 � i � k � 1. Vertex 1 is called the origin and vertex k is
called the destination of the walk. If all the vertices are distinct, the walk
is called a path. A path that starts and ends at the same vertex is called a
cycle. The length of a walk, path or cycle is the number of edges on the
walk, path or cycle respectively. A graph that contains no directed cycles is
called acyclic.

An acyclic layered digraph, ALD, has the set V divided into l � 2 differ-
ent subsets, so called levels, L(k), for some k 2 Z+, 0 � k � l � 1. Each
vertex is encountered exactly once at a certain level. For an arc (i; j) in anALD, if the vertex i is found at L(k), then vertex j is found at L(k + 1).

A network, N , is a digraph where all arcs have a weight associated to
them. A flow network is a network where all the arcs have, in addition
to a weight, a nonnegative capacity, (i; j) associated with them. The flow
networks we will study in this thesis, transport one commodity only. There
are two specific types of vertices in a flow network called a source, s, and a
sink, t. The source is the origin of the flow which provides a supply, and the
sink is the destination of the flow that possesses a demand. A pure source
(sink) has outgoing (incoming) arcs only. A vertex that has neither supply
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nor demand is called a pure transshipment. A minimum cost flow network
can consist of several sources and sinks, but it can be reduced to a regular
flow network by the introduction of a super-source and a super-sink.

A flow in a network is a real-valued function f : A ! < that assigns a
nonnegative value to each arc of the network and satisfies the following two
properties:

(i) Capacity constraint: f(i; j) � (i; j); 8(i; j) 2 A;
(ii)Flow conservation:

Xk2V f(k; i) =Xj2V f(i; j); 8i 2 V nfs; tg:
The value of a flow is defined as the total flow out of the source or, equiv-
alently, the total flow into the sink. An augmenting path with respect to a
given flow f is a directed path from the source to the sink along which more
flow can be transported.
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3 Lagrangian duality

The problem under consideration is the separable minimum cost network
flow problem with a strictly convex quadratic cost function for the networkN = (V;A). It is formulated as follows:

minimizev X(i;j)2A�ij(vij) = X(i;j)2A bijv2ij + aijvij; 8(i; j) 2 A; (1)

subject to
Xj:(i;j)2A vij � Xj:(j;i)2A vji = di; 8i 2 V; (2)lij � vij � uij; 8(i; j) 2 A: (3)

We want to solve the problem indirectly by using its dual formulation:

maximize� 8<:�Xi2V �idi + minimuml�v�u 8<: X(i;j)2A bijv2ij + (aij + �i � �j)vij9=;9=;
(4)

subject to � 2 <jV j: (5)

In the following sections, several theorems will be presented that explain
why solving the dual version of the problem is easier than solving the orig-
inal problem. The theory for this section is taken from the text books by
Andréasson et al. [2], Bazaraa et al. [3], and Bertsekas [4].

3.1 Duality theorems and properties of the dual function

Consider the general nonlinear network flow problem for the network N =(V;A):
minimizev �(v ); (6)

subject to Ev = d ; (7)l � v � u ; (8)

where � : <jAj ! < is a nonlinear, continuous function; l 2 <jAj, u 2 <jAj,
and d 2 <jV j are constant vectors; E 2 <jV j�jAj is the node-arc incidence
matrix of N ; v 2 <jAj is the vector of decision variables that represent the
flows on the arcs. It is assumed that �1 < �� < 1, lij < uij; 8(i; j) 2 A,
and that

Pi2V di = 0. The set
�v 2 <jAj : l � v � u	 will be denoted X ; the

set
�v 2 <jAj :Ev = d ; l � v � u	 will be denoted F . The statements (6)–

(8) will together be denoted the primal problem. For the vector of Lagrange
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multipliers, � 2 <jV j of the relaxed constraint (7), we define the Lagrange
function, L(v ;�), as: L(v ;�) = �(v) + �T (Ev � d):
The Lagrangian dual function, whose evaluation also is known as the La-
grangian dual subproblem, is defined as:�(�) = minimuml�v�u L(v ;�); � 2 <jV j: (9)

Consider then the Lagrangian dual formulation of the general network flow
problem which will be denoted the dual problem:

maximize� �(�) (10)

subject to � 2 <jV j: (11)

Any feasible solution to the dual problem will always constitute a lower
bound to any feasible solution of the primal problem. This relation is com-
monly known as weak duality, and is stated in Theorem 1.

Theorem 1 Let v � be an optimal solution to the primal problem, and let ��
be an optimal solution to the dual problem. Then,�(��) � �(v�):
Proof Take any dual feasible � 2 <jAj. By definition,�(�) = minimuml�v�u ��(v) + �T (Ev � d)	 :
It follows that for any primal feasible v 2 <jV j�(�) � �(v ) + �T (Ev � d):
Moreover, for such a primal feasible v , Ev � d = 0. Hence,�(�) � �(v) + �T (Ev � d) � �(v ):
In particular, �(�) � �(��) � �(v �) � �(v ):

Now we know that there is an association between the primal problem
and the dual problem, and more importantly, that it seems as that they can
have the same solution. Could it be that the dual problem has properties
that makes it easier to solve than the primal problem, and that the primal
solution somehow can be obtained from the dual solution? To be able to
answer those questions, we begin with the matter of what the Lagrangian
dual function looks like. Theorem 2 states that the dual function is concave.
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Theorem 2 The Lagrangian dual function, �, is a concave function of �.

Proof Take any v , �1 and �2, and � 2 [0; 1℄. We have thatL(v ; (��1 + (1� �)�2)) = �L(v ;�1) + (1� �)L(v ;�2):
If we take the minimum over v on both sides for l � v � u , the relation
becomes:

minimumv L(v ; (��1+(1� �)�2)) = minimumv f�L(v ;�1)+(1� �)L(v ;�2)g� minimumv �L(v ;�1)+ minimumv L(v ; (1� �)�2);
since taking the minimum over the two functions of the RHS gives us a
freedom of choice for v . It is therefore possible to obtain lower values in
the RHS than in the single function of the LHS.

The concavity of the Lagrangian dual function means that a local maximum
of � also is a global maximum of �. Hence, solving the dual problem is
equivalent to maximizing a concave function over <jAj. Provided that the
dual problem is differentiable, solving the dual problem is an easier task
than solving the primal problem.

Next, we are especially interested in situations when existence of opti-
mal solutions in both the dual and the primal problem are guaranteed, and
when the optimal values of the two problems are equal, i.e., when a duality
gap is absent. These situations occur if we impose stronger conditions on
the objective function in the primal problem. Firstly, we address the rela-
tion �(��) = �(v�), commonly known as strong duality, which is stated in
Theorem 3.

Theorem 3 Let � : <jV j ! < be a convex function of v such that �1 <�� <1. Then there exists a feasible v 2 X such that Ev = d , and
* there exists at least one optimal solution, ��, to the dual problem;
* if there exists an optimal solution, v �, to the primal problem, then:
(1) v � 2 arg minimum v L(v ;��)
(2) v � 2 X
(3) Ev � = d ;
* there is no duality gap.

Proof Andréasson et al. [2], Theorem 6.10.
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The objective function of our problem is convex, and satisfies �1 <�� <1, so we are guaranteed that there exist at least one optimal solution
to the dual problem. However, strong duality holds for our problem only
if there exist an optimal solution to the primal problem. Our primal ob-
jective function is not only convex, it is strictly convex and continuous, and
minimized over the set X which is non-empty and closed. By Weierstrass’
Theorem (Andréasson et al. [2], Theorem 4.7), we are therefore assured
that there exists a primal optimal solution. Knowing that strong duality
holds for our problem, the optimal primal vector v � is obtained by solving
the Lagrangian dual subproblem for the vector ��. Moreover, our primal
objective function is quadratic, and the expression for v � is thus available in
closed form: v � = �2B�1(a +ET��); (12)

where B 2 <jAj�jAj is the diagonal matrix of strictly positive coefficients,
and a 2 <jAj is the constant vector of linear coefficients.

What remains to determine is if our dual problem really is differentiable.
Theorem 4 presents the conditions that must be satisfied for this to be true:

Theorem 4 Let �(v) : <jV j ! < be a strictly convex function on a convex
set X . Then the Lagrangian subproblem has a unique solution, v(�) for all� 2 <jV j, and 5�(�) = Ev (�)� d :
Proof Andréasson et al. [2], Proposition 6.20.

Theorem 4 is applicable to our problem, since our primal objective func-
tion is strictly convex, and the set X is convex. It follows that our La-
grangian dual subproblem has a unique solution, and we can conclude that
our dual problem is differentiable.
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4 Gradient methods for solving the dual problem

Our Lagrangian dual problem is concave, and differentiable. Therefore,
it can be solved by any gradient method that provides dual ascent. The
essence of such an algorithm is to find a direction p� , and a step size �� > 0
in every iteration � such that the objective function value improves. The
direction p� is chosen such that the dual directional derivative in the di-
rection p� , �0(�� ;p� ) = 5�(�� )Tp� > 0, and the step size �� such that�(�� +��p� ) > �(�� ). However, to obtain a solution for �� , we also need a
solution v(�� ) to the Lagrangian dual subproblem. The generic algorithm
for a gradient method that provides dual ascent for our problem is shown
below:

Gradient method(�;�0)
1. determine v (�� ) by solving the Lagrangian dual subproblem
2. if

jj5�(�� )jjjjd jj = jjEv(�� )�d jjjjd jj < � (� > 0 is a small tolerance)
3. then goto 9.
4. else determine p� such that 5�(�� )Tp� > 0
5. determine �� > 0 such that �(�� + ��p� ) > �(�� )
6. ��+1 = �� + ��p�
7. � = � + 1
8. goto 1.
9. return ��

We will present two different methods for selecting the direction of as-
cent, and two methods for selecting the step size. The steepest ascent method
with the Armijo step size rule is a dual scheme that is guaranteed to gener-
ate a sequence f��g that converge to the optimal solution f��g (Theorem
11.4, Andréasson et al. [2]). The conjugate gradient method with the Hel-
gason step size rule also gives a convergence guarantee (Proposition 1:2:1,
Bertsekas [4]). We will also present one periodic basis ascent method, the
coordinate ascent method. The theory for this section is presented accord-
ing to the findings of Ventura [22] and Helgason [11], and according to the
facts in the textbooks by Andréasson et al. [2], Bertsekas [4], Heath [10],
and Nash&Shofer [17].

4.1 Solving the Lagrangian dual subproblem

To make the Lagrangian dual subproblem easy to solve, we impose another
condition on the objective function of the primal problem. We let the primal
objective function of our problem be separable. Thus, the Lagrange function
for our problem is formulated:
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L(v;�) = X(i;j)2A bijv2ij + aijvij +Xi2V �i0� Xj:(i;j)2A vij � Xj:(j;i)2A vji � di1A (13)= X(i;j)2A bijv2ij + (aij + �i � �j)vij �Xi2V �idi; (14)

and the Lagrangian dual subproblem becomes:�(�) = minimuml�v�u L(v ;�) (15)= �Xi2V �idi + minimuml�v�u 8<: X(i;j)2A tij(vij; �i; �j)9=; ; (16)

where tij(vij; �i; �j) = bijv2ij + (aij + �i � �j)vij . We refer to tij as the dual
cost function over arc (i; j).

Solving our Lagrangian dual subproblem for an iteration � , means per-
forming jAj minimizations over the dual cost function of each arc (i; j),
adding these results together, and then subtracting the term (�� )Td . The
minimum of the dual cost function tij over [lij; uij℄ when � is fixed, is found
at one of three possible locations: either at lij when dtij(lij ;�i;�j)dvij > 0; at uij
when dtij(uij ;�i;�j)dvij < 0, or at vij = �j��i�aij2bij when dtij(vij ;�i;�j)dvij = 0. Note that
our primal objective function is strictly convex, i.e. each bij > 0, so the last
expression for vij is well defined.

4.2 Selecting the ascent direction

Newton’s method is a commonly used gradient method for finding a station-
ary point of a function. Newton’s method assumes that � 2 C2, and uses the
second order Taylor expansion of �(�� ) in the direction p� to determine an
ascent direction:�(�� + p� )� �(�� ) = 5�(�� )Tp� + (p� )T 52 �(�� )p� + o(jjp� jj): (17)

The closer the RHS approximates the LHS in 17, assuming o(jjp� jj) � 0,
the better ascent directions can be found. The ascent direction in Newton’s’
method, the Newton direction, is selected as the best such direction that can
be obtained from the second order information, and constitutes the solution
to the following system of linear equations:52�(�� )p� = 5�(�� ):
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Although Newton’s method usually has the fastest convergence rate of the
gradient methods, with the Newton direction as the best ascent direction,
it cannot be applied to our problem. For our dual problem � 2 C1, i.e.� is not twice differentiable, and thus the matrix 52�(�� ) is not available.
To solve our dual problem, we must therefore use other methods that does
not require second derivatives. Two such methods are the steepest ascent
method and the conjugate gradient method.

4.2.1 Steepest ascent method

The steepest ascent method is an alternative to Newton’s method that does
not require the evaluation of second derivatives. Steepest ascent chooses
the ascent direction as the gradient of the function to be maximized. The
gradient points in the direction in which the function increases the fastest.
In our problem p� = 5�(�� ) = Ev(�� ) � d . The steepest ascent method
has the drawback of having a slow convergence rate, but it has the advantage
of always progressing as long as the gradient is nonzero.

4.2.2 Conjugate gradient method

The conjugate gradient method is another alternative to Newton’s method
that also uses the gradient of the function to be maximized, but neither re-
quires the evaluation of second derivatives. The conjugate gradient method
uses an updating formula to compute the ascent direction. The purpose of
the updating formula is to modify the gradient so that the current ascent di-
rection differs from the ascent directions in previous iterations. The updat-
ing formula includes the gradient of the function to be maximized, a scalar�� , and a previously computed ascent direction. Both the gradient and the
ascent direction is taken from the iteration prior to the current one.p�+1 = 5�(v �+1) + ��p� :�� is set to zero when � is zero or some multiple of a chosen number m > 0.
Otherwise, there are several suggestions of how to compute �� . We use the
Polak-Ribiere formula (shown below) in our problem, since the findings of
Ventura [22] suggest that this is the superior method:�� = 5�(v �+1)T (5�(v �+1)�5�(v � ))=jj 5 �(v � )jj2: (18)

If the ascent direction in the conjugate gradient method is not set to5�(v � )
everym:th iteration, but exclusively given by formula 18, the resulting search
directions actually approaches 52�(v � ) as the iterations proceed. The con-
jugate gradient method usually have a faster convergence rate than the
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steepest ascent method, since the former avoids to search in an already
visited direction, whilst the latter tends to perform searches in the same
direction several times.

4.3 Selecting the step size

4.3.1 Inexact line search

The Armijo step size rule performs an approximate line search. For our
problem, this means to find an �� = �ms for scalars � 2 (0; 1), � 2 (0; 1),
and s > 0 that satisfies the inequality below for the first nonnegative integerm: �(v � + �msp� )� �(v � ) � ��ms5 �(v � )Tp� :
According to Bertsekas [4], � is recommended to be within the interval
[0.00001, 0.1], � within the interval [0.1, 0.5], and s is suggested to be 1.

4.3.2 Exact line search

The Helgason step size rule suggested by Helgason et al. [11], gives a method
to perform an exact line search. By solving the line search subproblem be-
low, an optimal �� is obtained.

maximize� �(�� + �p� ) (19)

subject to � � 0 (20)

We first apply the Helgason rule to our problem in matrix form. The
expression of � then becomes:�(�� + �p� ) = minimuml�v�u vTBv + aTv + (�� + �p� )T (Ev � d):
Since � is concave and differentiable, its optimal solution � = �� for a solu-
tion v � to the minimization problem above, is found when:5�(�� + ��p� )Tp� = (Ev � � d)Tp� = 0: (21)

Using (21), the line search subproblem can be reformulated as follows:

minimizel�v�u vTBv + aTv + �� T (Ev � d) (22)

subject to p� T (Ev � d) = 0; (23)
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with �� being the optimal Lagrange multiplier of constraint (23). Since our
problem is separable, we can also apply the Helgason rule component-wise.
The line search subproblem is then formulated:

minimizel�v�u X(i;j)2A bijvij2 + X(i;j)2A(aij + �i� � �j� )vij �Xi2V �i�di (24)

subject to
X(i;j)2A(pi� � pj� )vij =Xi2V pi�di (25)

The solution to the problem (24)-(25) is found by considering its opti-
mality conditions, and finding the value of the Lagrange multiplier to the
equality constraint. From the KKT conditions, the solution as a function of�, vij(�), is, for each arc, given by the following expression (Ventura [22],
Theorem 4):vij(�) = MID

�lij;�(aij + �i� � �j� ) + (pi� � pj� )�2bij ; uij� ; 8(i; j) 2 A;
where MID is a function that selects the middle value of its three arguments.
Each vij(�) is a piece-wise linear and continuous nonincreasing function
with two breakpoints at � = �(2bijuij+aij+�i��j)pi�pj and � = �(2bij lij+aij+�i��j)pi�pj .
Let h(�) denote the function in the LHS of constraint (25):h(�) = X(i;j)2A(pi� � pj� )vij(�)= X(i;j)2A(pi� � pj� ) MID

�lij;�(aij + �i� � �j� ) + (pi� � pj� )�2bij ; uij�h(�) is also a piece-wise linear and continuous nonincreasing function (Ven-
tura [22], Theorem 5). By considering the at most 2jAj breakpoints of the
function h(�), the optimal �� such that h(�� ) = Pi2V pi�di, is found when
applying the bisection method to the sorted breakpoints in increasing order.
Either �� is found directly among the sorted breakpoints or defined by a lin-
ear interpolation between two consecutive breakpoints. We have chosen to
sort the breakpoints using Shellsort. The worst case running time of Shell-
sort is quadratic in the size of the input, but it has the advantage of having a
close to linear complexity if applied to a sequence of nearly sorted elements
(Sedgewick [20]). As the dual solution approaches optimality, there is a
good chance that the ordered sequence of breakpoints of two consecutive
iterations are identical. We have therefore chosen to start Shellsort with
the unsorted breakpoints from a current iteration in the same order as the
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sorted breakpoints from the previous iteration. Thus, we can conclude that
the running time of Shellsort for our problem will become closer to linear
than quadratic as the dual solution approaches its optimal value.

4.4 Coordinate ascent method

The coordinate ascent method maximizes the objective function along one
coordinate direction at each iteration. The coordinate ascent method con-
sists of selecting a coordinate direction i, and a step size � in that direction
such that the objective function eventually is maximized. The way the co-
ordinate directions are chosen varies. We will describe the approach that
is used in the Curet heuristic [7]. The essence of the coordinate ascent al-
gorithm, as described by Curet, is to select a vertex i with a violated flow
conservation constraint to determine the coordinate direction ei , whereei denotes the i:th coordinate vector in <jAj. The direction p is selected
as �ei such that �0(�;p) > 0, and the step size �� is chosen such that�(�� + ��p� ) > �(�� ). The generic algorithm for the coordinate ascent
method is shown below:

Coordinate ascent method(�;�0)
1. determine v(�� ) by solving the Lagrangian dual subproblem
2. if v (�� ) is feasible in the primal problem
3. goto 11
4. else

5. select a vertex i with a violated flow conservation constraint
6. p� = �ei such that �0(�� ;p� ) > 0
7. �� > 0 such that �(�� + ��p� ) > �(�� )
8. ��+1 = �� + ��p�
9. � = � + 1
10. goto 1
11. return v(�� )

In general the coordinate ascent method has a convergence rate similar
to the steepest ascent method. A convergence guarantee for the coordi-
nate ascent method is present if the objective function to be maximized is
strictly convex, and differentiable. The convexity assumption is needed as
the method performs a search for a unique maximum along each coordi-
nate; the differentiability assumption is needed as the method is known to
get stuck at nondifferentiable points. If not the prerequisites for the objec-
tive function are met, the coordinate ascent method is known to cycle with-
out approaching any stationary point. The coordinate ascent method have
the advantage of being suitable for parallel computing if the objective func-
tion is separable. The method can then be applied independently to each
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coordinate subset, where a coordinate subset consists of those coordinates
that are not coupled through the objective function.
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5 Lagrangian heuristics

So, why not be satisfied with the solution to the Lagrangian dual problem
as produced by some dual gradient method? Our problem is strictly con-
vex and quadratic; the primal and dual problem are feasible. Thus, we are
guaranteed by the theorems presented i Section 3.1 that the dual optimal
solution and the primal optimal solution exists and have the same objective
value. Moreover, we have an explicit method to obtain the primal solution
from the dual solution. The dilemma is that the dual solution is not primal
feasible until we reach optimality, and finding the optimal dual solution can
take forever if we are unlucky. Fortunately, we can still make use of the
non-optimal dual solutions.

The purpose of a Lagrangian heuristic is to find near-optimal primal solu-
tions by solving the Lagrangian dual problem and manipulate the solutions
obtained to make them primal feasible. Even if the solutions produced by
a Lagrangian heuristic are non-optimal in the primal problem, they provide
a (primal) upper bound, and as we have the lower bound from the dual
solution, we can estimate how far from optimum we actually are.

In the following sections, seven Lagrangian heuristics that are used in
combination with a gradient method that is guaranteed to converge to the
optimal solution will be presented. Three of them have been presented
in the M.Sc. thesis by Marklund [15], and in the textbook by Patriksson
[19]. One is presented according to the findings of Curet [7]. FlowrouteD,
FlowrouteBS and Shortest PathL are novel approaches that have not been
presented in the literature before. Note that all function names used in the
pseudocode for this section are either commonly used names for functions,
operations on ordinary data structures, or names used in the computer code
presented in Appendix A. The graph search techniques in Sections 5.3–5.6
are presented according to the descriptions in the textbooks by Ahuja [1],
Biggs [5], Cormen [6], and Migdalas&Göthe–Lundgren [16].

5.1 A projection-like property

That the dual solution will not be primal feasible until the optimal solu-
tion to the dual problem is found has already been stated. Let �� 2 <jV j
denote the dual solution at iteration � , and let v(�� ) 2 <jAj denote the cor-
responding solution to the Lagrangian dual subproblem (9) for �� . We want
to find a primal feasible point by projecting v(�� ) onto the primal feasible
set F . A good candidate to perform such an operation onto F is the Eu-
clidian projection, Proj; the vector-valued mapping that produces a primal
feasible point of minimum distance from v(�� ). Unfortunately, finding the
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Euclidian projected point is nearly as hard as solving our original problem.
Therefore, a “fake projection”, P , is required. P should be computationally
cheaper than the Euclidian projection, but with similar characteristics. A
point projected by P must not be worse than a point projected by Proj in
the sense that if the distance between v(�� ) and the projected point given
by Proj becomes very small, so must the distance between v(�� ) and the
projected point given by P . Thus, to make sure that P converges towards
the optimal solution, the following properties must be established. Firstly,P must have a projection-like property. Secondly, P must produce a primal
feasible point that approaches v � as �� approaches ��.
Definition 5 (Patriksson [19], Definition 10.2.1.)
We say that for a sequence fv(�� )g � <jAj, the vector-valued mapping P :<jAj ! F is projection-like onto F , if P has the property thatProj(v(�� ))� v(�� )! 0 jAj =) P (v(�� ))� v(�� )! 0 jAj: (26)

If a Lagrangian heuristic with the projection-like property is used, The-
orem 6 shows that the primal feasible points, P (v(�� )), produced by the
heuristic will approach v � in the limit.

Theorem 6 (Liu [14], Theorem 5.) Consider the dual sequence f��g with
the property that v(�� ) ! v � as � ! 1, and the primal sequence fv �g =fP (v(�� ))g generated by a Lagrangian heuristic with a projection-like prop-
erty. Then v � ! v �.
Proof We have thatjjv � � v �jj = jjP (v(�� ))� v �jj= jjP (v(�� ))� v(�� ) + v(�� )� v �jj� jjP (v(�� ))� v(�� )jj+ jjv(�� )� v �jj:
Since v(�� )! v � by assumption, we must have that Proj(v(�� ))�v (�� )!0 jAj as � ! 1. By the projection-like property of P , also P (v(�� )) �v(�� )! 0 jAj, and hence, v � ! v �.

A dual gradient method produces a sequence,fv (�� )g, that converges tov � in the limit. Since the Lagrangian heuristics we present in the following
sections are used in combination with a dual gradient method, the condi-
tion v(�� )! v � is satisfied automatically. Hence, Theorem 6 holds for each
Lagrangian heuristic if the relation P (v(�� )) ! v(�� ) is proven. There-
fore, that P (v(�� )) ! v(�� ) holds for each Lagrangian heuristic will be
established along with its presentation.
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5.2 Minimum Deviation

The Minimum Deviation heuristic was first presented by Marklund [15].
Minimum Deviation aims to minimize the total amount of flow that needs to
be rerouted in the network from the flow produced by the dual solution in
order to accomplish primal feasibility. By associating a deviation variable,Æij, with each arc (i; j) of the network, the original problem is converted to
a linear programming problem that can be solved by a regular linear mini-
mum cost network flow solver. The purpose of the deviation variable is to
find the minimum amount of flow that needs to be adjusted from the initial
infeasible flow given by the dual solution in order to satisfy the constraints
of the primal problem. Hence, for v(�� ), the problem is formulated as the
following linear program:

minimize(Æ+;Æ�) (Æ+ + Æ�)T (1jAj); (27)

subject to E (Æ+ � Æ�) = d �E (v(�� )); (28)Æ+ � u � v(��); (29)Æ� � �l + v(��); (30)Æ+; Æ� � 0 jAj: (31)

Minimum Deviation introduces a deviation variable, Æij = Æij+ � Æij�, that
denotes the deviation for each arc of the network. Æij+ denotes the addi-
tion of flow needed for adjustment on the current arc, and Æij� denotes the
subtraction of flow needed for adjustment on the current arc. Using the
original structure of the network, an arc in the same direction as the orig-
inal arc models the variable Æij+, and a new arc in the opposite direction
as the original arc models the variable Æij�. The pseudocode for Minimum
Deviation is presented below, and as suggested on line 9, the problem for
the altered network is solved by a linear minimum cost network flow solver.

Minimum Deviation heuristic(N)
1. for all arcs a 2 A
2. associate the decision variable Æ+ with a
3. set the upper limit of a to (Upper(a) - Flow(a))
4. make a copy arev of a in the opposite direction
5. associate the decision variable Æ� with arev
6. set the upper limit of arev to (-Lower(a) + Flow(a))
7. for all vertices v 2 V
8. set the demand of v to (Demand(v) - Balance(v))
9. Æ� = MCFSolver(N , Æ+, Æ�)
10.return(v (�� ) + Æ�)
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Minimum Deviation satisfies property (26), and therefore the sufficient
conditions in Theorem 6.

Theorem 7 Consider the Lagrangian heuristic Minimum Deviation, PMD,
and the by PMD generated primal sequence fv �g = fPMD(v(�� ))g starting
at v(�� ). If PMD has the property that PMD(v(�� )) � v(�� ) ! 0 jAj, thenfv �g ! v �.
Proof The expression jjPMD(v(�� )) � v(�� )jj is closely related to the ex-
pression

P(i;j)2A jPMD(v(�� ))i;j � v (�� )i;jj. If one of the expressions is
equal to zero, the other expression must also be equal to zero. Moreover,
the vector Æ� = (Æ+)� � (Æ�)� is the solution to the problem:

minimize(Æ+;Æ�) 8<: X(i;j)2A jÆijj ���� E (v(�� ) + Æ) = d ;(v(�� ) + Æ) 2 X 9=; :
The maximum amount of flow that is rerouted by Minimum Deviation can
be no more than

P(i;j)2A jÆijj. Therefore, this value constitutes an upper
bound for the maximum amount of flow that can be adjusted on any arc.
Since v(�� ) ! v � as � ! 1, it follows that

P(i;j)2A jÆijj ! 0 jAj. ThenP(i;j)2A jPMD(v(�� ))i;j � v(�� )i;jj = P(i;j)2A jÆij�j � P(i;j)2A jÆijj ! 0 jAj.
Hence, we can conclude that jjPMD(v(�� ))� v(�� )jj ! 0 jAj.
5.3 Flowroute

The Flowroute heuristic was first presented by Marklund [15]. Flowroute
aims to accomplish primal feasibility by rerouting flow in a residual graph
constructed from the dual solution. As the dual solution does not respect
the flow conservation constraints, situations where these constraints are vi-
olated will occur. When more flow is entering a vertex than leaving it, the
vertex will become a source in the residual graph. When more flow is leav-
ing a vertex than entering it, the vertex will become a sink in the residual
graph. Using the breadth first search technique (BFS) augmenting paths
with the minimum number of arcs from the residual sources to the resid-
ual sinks are found. While respecting the limits of the involved arcs along
the paths, the flow is transported from the residual sources to the residual
sinks. When the supply at the residual sources satisfies the demand at the
residual sinks we have obtained a primal feasible solution, since rerouting
flow in the residual graph also means rerouting flow in the original network.
The pseudocode for Flowroute is presented below. The algorithm for BFS
is found in the textbook by Cormen [6], and has a running time bounded byO(jV j+ jAj) when applied from a single vertex.
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Flowroute heuristic(N)
1. for all sources s 2 V
2. BFS(N , s)
3. for all sinks t 2 V connected to s
4. while Supply(s) > 0
5. find an augmenting path from s to t
6. augment as much flow as possible along the path
7. return

Flowroute satisfies property (26), and therefore the sufficient conditions
in Theorem 6.

Theorem 8 Consider the Lagrangian heuristic Flowroute, P F , and the byP F generated primal sequence fv �g = fP F (v(�� ))g starting at v(�� ). IfP F has the property that P F (v(�� ))� v(�� )! 0 jAj, then fv �g ! v �.
Proof The expression jjP F (v(�� ))�v(�� )jj is closely related to the expres-
sion

P(i;j)2A jP F (v (�� ))i;j � v(�� )i;jj. If one of the expressions is equal to

zero, the other expression must also be equal to zero. Let gi(�� ) = ���(�� )��� i
denote the flow imbalance at vertex i. The maximum amount of flow that is
rerouted by Flowroute can be no more than

Pi2V jgi(�)j. Hence, this value
constitutes an upper bound for the maximum amount of flow that can be ad-
justed on any arc. Since v(�� )! v � as � !1, it follows that gi(�� )! 0 jAj.
Then jjP F (v(�� ))� v(�� )jj � jAjPi2V jgi(�)j ! 0 jAj. Hence, we can con-
clude that jjP F (v(�� ))� v (�� )jj ! 0 jAj.
5.4 FlowrouteD

The FlowrouteD heuristic is a modification of the Flowroute heuristic. As
in Flowroute, primal feasibility is accomplished by rerouting flow in a resid-
ual graph constructed from the dual solution. However, in FlowrouteD the
depth first search technique (DFS) is used to find augmenting paths from
the residual sources to the residual sinks. The running time for DFS is�(jV j + jAj) (Cormen [6]), but by using the information provided by DFS
instead of BFS it is possible to find residual sinks faster. The DFS algorithm
favors deep progress in the network, and can be truncated as soon as any
sink has been found, usually before all of the vertices in the network have
been visited. The BFS, on the other hand, is normally truncated at a later
stage, since the algorithm favors broad progress, and usually visits more ver-
tices in the network before any sink can be found. So, with DFS replacing
BFS in step 2 of the pseudocode for Flowroute presented above, the pseu-
docode for FlowrouteD is identical to the pseudocode for Flowroute.
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FlowrouteD satisfies property (26), and therefore the sufficient condi-
tions in Theorem 6.

Theorem 9 Consider the Lagrangian heuristic FlowrouteD, P FD, and the
by P FD generated primal sequence fv �g = fP FD(v(�� ))g starting at v(�� ).
If P FD has the property that P FD(v(�� ))� v(�� )! 0 jAj, then fv �g ! v �.
Proof Apply the proof of Theorem 8 with P FD replacing P F .

5.5 FlowrouteBS

The FlowrouteBS heuristic is another modification of the Flowroute heuris-
tic. The graph search technique used in FlowrouteBS is the multiple breadth
search technique (BS). At termination, the BS algorithm produces an acyclic
layered digraph (ALD) which is used in the polynomially bounded max
flow algorithm (MFALD) presented by Migdalas&Göthe–Lundgren [16] to
reroute flow along many paths simultaneously in the residual graph con-
structed from the dual solution.

The BS algorithm is a modification of the BFS algorithm. The modifi-
cation lies in how the information about reaching a vertex is stored. In the
BFS algorithm a scalar with the index of the vertex that proceeds the current
vertex in the graph search is kept. In the BS algorithm this is changed to a
set of vertices (predecessors) that give the same path length to the current
vertex. The running time of BS is O(jV j+ jAj) (Migdalas&Göthe–Lundgren
[16]).

The information provided by keeping the set of predecessors at each
vertex makes it possible to transport the flow along several paths simul-
taneously. The MFALD is a modification of the maximum flow algorithm
by Ford–Fulkerson (Cormen [6]) that uses this possibility. The MFALD is
based on the BS search technique, and uses a push and pull principle to up-
date the flows of the ALD as long as there exist paths from the source to the
sink, or until the source has a supply equal to zero. First, each vertex v 2 V
is assigned a capacity:

VertexCap(v) =MIN
nX�uij;X�ujio ; 8i 2 V nfs; tg;

where �uij denotes the residual capacity of an arc, and MIN is a function
that selects the minimum of its two arguments. The value of �uij is de-
fined as the upper capacity of the arc minus the current flow of the arc.
The capacity of the source is calculated as the sum of the residual capac-
ities of the outgoing arcs from the source, and the capacity of the sink is
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calculated as the sum of the residual capacities of the incoming arcs to the
sink. The vertex with the minimum capacity is then chosen as the start ver-
tex. In the push procedure, a flow equal to the minimum capacity value is
transported from the start vertex along increasing layers towards the sink.
In the pull procedure, the flow is transported from the start vertex along
decreasing layers towards the source. If there are more paths from the
source to the sink, the next push and pull procedure is performed in the
residual graph of the current digraph. The residual graph has the vertices
with a capacity equal to zero removed along with the incoming and outgo-
ing arcs connected to them. The arcs with a flow equal to the arcs’ upper
capacity are also removed. Each vertex is assigned a new vertex capacity
based on the appearance of the residual graph, and the procedure repeats
until the sink is unreachable from the source, or the source has a supply
equal to zero. The running time for one iteration of the MFALD algorithm
is O(jV j2 + jAj) (Migdalas&Göthe–Lundgren [16]). The pseudocode for
FlowrouteBS is presented below. The algorithms for BS and MFALD are
found in the textbook by Migdalas&Göthe–Lundgren [16]; together they
have a running time bounded by O(jV j3).

FlowrouteBS heuristic(N)
1. for all sources s 2 V
2. link s to a supersource s0
3. for all sinks t 2 V
4. link t to a supersink t0
5. while Supply(s0) > 0
6. ald = BS(N , s0)
7. MFALD(ald, s0, t0)
8. return

FlowrouteBS satisfies property (26), and therefore the sufficient condi-
tions in Theorem 6.

Theorem 10 Consider the Lagrangian heuristic FlowrouteBS, P FBS, and
the by P FBS generated primal sequence fv �g = fP FBS(v(�� ))g starting
at v(�� ). If P FBS has the property that P FBS(v(�� ))� v(�� )! 0 jAj, thenfv �g ! v �.
Proof The expression jjP FBS(v(�� )) � v(�� )jj is closely related to the ex-
pression

P(i;j)2A jP FBS(v(�� ))i;j � v(�� )i;jj. If one of the expressions is
equal to zero, the other expression must also be equal to zero. Let �uij =uij � v(�� )ij denote the remaining capacity of arc (ij), and let i(v(�� )) =minfP�uij;P�ujig denote the capacity at vertex i. For the super-source
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s0, us0s =Ps2V Supply(s), and s0(v(�� )) = minfP�us0s; 0g. For the super-
sink t0, utt0 = Pt2V Demand(t), and t0(v(�� )) = minf0;P�utt0g. The
maximum amount of flow that is rerouted by FlowrouteBS can be no more
than (v(�� )) = Pkn=0 mini2V fi(v(�� ))g, where k denotes the maximum
number of flow augmenting sweeps in the MFALD algorithm. Hence, this
value constitutes an upper bound for the maximum amount of flow that can
be adjusted on any arc. Since fv(�� )g ! v � as � ! 1, it follows that(v(�� )) ! 0 jAj. Then jjP FBS(v(�� )) � v(�� )jj � jAjPi2V (v(�� )) !0 jAj. Hence, we can conclude that jjP FBS(v(�� ))� v(�� )jj ! 0 jAj.
5.6 Shortest Path

The Shortest Path heuristic was first presented by Marklund [15]. As in
the Flowroute heuristic, Shortest Path aims to accomplish primal feasibility
by rerouting flow in a residual graph constructed from the dual solution.
However, in Shortest Path the rerouting of flow is done along the cheapest
paths in the residual graph. The cost to traverse an arc is defined as the
derivative of the arcs’ quadratic cost function. The graph search algorithm
used in Shortest Path is the Bellman–Ford algorithm. The Bellman–Ford
algorithm finds the shortest (cheapest) paths from a start-vertex to all other
vertices in a graph with possibly negative arc costs, provided that the graph
does not contain any negative cycles. A negative cycle means that the cost
of a path can be reduced infinitely. The residual graph, as constructed in
Section 5.3, will include arcs with negative costs. Therefore, to find feasible
solutions by using Bellman–Ford, we must show that the residual network
does not contain any negative cycles, and this is done by contradiction in the
theorem below.

Theorem 11 The residual graph constructed from the dual solution, v(�� ),
does not contain any negative cycles, C.

Proof By Everett’s theorem (Andréasson et al. [2], Theorem 6.31), v(�� )
is also an optimal solution to the following problem:

minimizev �(v);
subject to Ev = Ev(�� );l � v � u : (32)

If the residual graph contains a negative cycle for the fixed flow v(�� ),P(ij)2C aij < 0, where aij denotes the linearized cost of arc (i; j). Let pij
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define an addition of flow on arc (i; j):pij = 8<: 1; if (i; j) 2 C; and (i; j) is used in forward direction�1; if (i; j) 2 C; and (i; j) is used in the backward direction;0 otherwise.

By the definition of p, any cycle satisfies Ep = 0 jAj, but a negative cycle
also fulfils:

P(ij)2C aij < 0,5�(v(�� ))Tp < 0 jAj.
If a negative cycle exists, the circulating flow must satisfy l � v +�p � u

for some small scalar � > 0. Moreover, the point (v(�� ) + �p) is feasible
in the problem (32), since E (v(�� ) + �p) = Ev(�� ) + �Ep = Ev(�� ) +�0 jAj = Ev(�� ). Let us therefore study the Taylor expansion of � aroundv(�� ) in the direction p :�(v (�� ) + �p) = �(v (�� )) + �5 �(v(�� ))Tp +O(�2)
By using 5�(v(�� ))Tp < 0 jAj, and assuming that O(�2) � 0, we see that�(v(�� ) + �p) < �(v(�� ). This contradicts the optimality of v(�� ) by
Everett’s theorem. Hence, we can conclude that the residual graph cannot
contain any negative cycles.

With Bellman–Ford replacing BFS in step 2 of the pseudocode for Flowroute
presented in section 5.3, the pseudocode for Shortest Path is identical to the
pseudocode for Flowroute. The algorithm for Bellman–Ford is found in
Cormen [6], and has a running time bounded by O(jV jjAj).

Shortest Path satisfies property (26), and therefore the sufficient condi-
tions in Theorem 6.

Theorem 12 Consider the Lagrangian heuristic Shortest Path, P SP , and the
by P SP generated primal sequence fv �g = fP SP (v(�� ))g starting at v(�� ).
If P SP has the property that P SP (v(�� ))� v(�� )! 0 jAj, then fv �g ! v �.
Proof Apply the proof of Theorem 8 with P SP replacing P F .

5.7 Shortest PathL

The Shortest PathL is a modification of the Shortest Path heuristic. As
in Shortest Path, primal feasibility is accomplished by rerouting flow in a
residual graph constructed from the dual solution. However, in Shortest
PathL the cost to traverse an arc is defined as the derivative of the arcs’
Lagrangian function. This is motivated by considering the results in Lars-
son&Patriksson [13]. The relaxed primal–dual optimality conditions are for

28



our problem formulated:�(v) + �T (Ev � d) � �(�) + �; (33)Ev � d = 0 jAj; (34)� � �; (35)�; � � 0: (36)

From (33) we see that v is �-optimal in the Lagrangian dual subproblem
for a given �, and from (34) that v satisfies �(v) � �(�) + �. Therefore,
adjusting a primal infeasible v(�) towards feasibility, means adjusting the
value of the Lagrangian function also. Assuming that � is non-optimal in
the dual problem, but that �(�) is at most � � 0 from the optimal value��, it follows that v 2 X��� (Larsson&Patriksson [13], Corollary 12). Here,X��� denotes the set of vectors that is feasible in the primal problem, and
deviates in objective value at most � � � from the optimal one. Note, if� = �, then v is optimal in the primal problem. Note also, if � = � = 0,
then � is optimal in the dual problem since by (35) it follows that � = 0, andv = v(�) is optimal in the primal problem. Hence, if � is very small and the
system (33)–(36) is consistent, v is a very good approximation of the pri-
mal optimal solution, and it follows that � also is very small. A Lagrangian
heuristic that wants to obtain primal feasibility should therefore aim to ad-
just the Lagrangian function as little as possible. Therefore, minimizing the
Lagrangian function, as done in Shortest PathL, is motivated. Note, how-
ever, that when � ! ��, the term �T (Ev � d) ! 0 jAj, and the value of
the Lagrangian function is almost the same as the value of the primal cost
function.

As in the Shortest Path heuristic, the graph search algorithm used in
Shortest PathL is the Bellman–Ford algorithm. Hence, with the derivative
of the arcs’ quadratic cost function replaced with the derivative of the arcs’
Lagrangian function, the pseudocode for Shortest PathL is identical to the
pseudocode for Shortest Path.

Shortest PathL satisfies property (26), and therefore the sufficient condi-
tions in Theorem 6.

Theorem 13 Consider the Lagrangian heuristic Shortest PathL, P SPL, and
the by P SPL generated primal sequence fv �g = fP SPL(v(�� ))g starting atv(�� ). If P SPL has the property that P SPL(v(�� )) � v(�� ) ! 0 jAj, thenfv �g ! v �.
Proof Apply the proof of Theorem 8 with P SPL replacing P F .
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5.8 Curet

The Curet heuristic was first presented by Curet [7], but a modified version
that is used in combination with the steepest ascent method appears in the
thesis by Marklund [15] and in the textbook by Patriksson [19]. The essence
of the Curet heuristic is to truncate the coordinate ascent method prior to
the optimal dual solution, and yet produce a near-optimal primal solution.
The Curet heuristic follows the coordinate ascent method as described in
section 4.4, but uses a perturbed directional derivative, D�(�� ;p� ), by in-
troducing a small number � > 0 in the real directional derivative when ap-
proaching the solution to the Lagrangian dual problem. The purpose of the� factor is twofold. Firstly, it determines bounds within which the current
primal infeasible flow can be adjusted to become primal feasible. Secondly,
it determines the perturbation of the gradient in the Lagrangian dual prob-
lem. If a primal feasible flow is found within the given bounds, the heuristic
terminates. Otherwise, the coordinate ascent method continues, and a new
dual point is determined by taking a step �� in a direction p� such thatD�(�� ;p� ) > 0. �� is in the Curet heuristic determined by an exact line
search.

The perturbed directional derivative acts as a lower bound for the true di-
rectional derivative, meaning that a step in the direction determined by the
perturbed gradient improves the dual function sufficiently, but not as much
as a step in the direction determined by the gradient of the Lagrangian dual
function. The perturbed directional derivative used in the Curet heuristic is
defined as follows:D�(�� ;p� ) = (p� )Td � Xwij>0wijuij(�� ; �) + Xwij<0wijlij(�� ; �)
where w = ETp� , anduij(�� ; �) =( uij; if d�ij(uij)dvij < 0 or vij(�� ) + �ij > uij;vij(�� ) + �ij; otherwise; 8(i; j) 2 Alij(�� ; �) =( lij; if d�ij(lij )dvij > 0 or vij(�� )� �ij < lij;vij(�� )� �ij; otherwise; 8(i; j) 2 A:
The terms uij(�� ; �) and lij(�� ; �) replace the current flow v ij(�� ) in the true
directional derivative, and �ij denotes the � perturbation for each vij(�� ). By
definition, uij(�� ; �) � uij and lij(�� ; �) � lij, which means that the capacity
constraint of the primal problem will never be violated. The search for a
primal feasible solution in the Curet heuristic is thus performed on the fol-
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lowing problem:

find a v such that:Xj:(i;j)2A vij � Xj:(j;i)2A vji = di; 8i 2 V; (37)lij(�� ; �) � vij � uij(�� ; �); 8(i; j) 2 A: (38)

That the Curet heuristic produces a primal feasible solution from the so-
lution by the truncated coordinate ascent method in a finite number of iter-
ations is shown in Curet [7], Proposition 3.1 and Proposition 3.2. Theorem
14 states that the primal feasible solution produced by the Curet heuristic
in fact is arbitrarily close to the primal optimal solution.

Theorem 14 (Curet, Proposition 3.3.) Let v �(�� ) be the primal feasible so-
lution produced by the Curet heuristic, PC , at termination. Then,�(v �(�� ))� �(�� ) � X(i;j)2A �ij�ij
where �ij = max f(�0ij(vij)��0ij(wij)) : lij � wij; vij � uij; jwij�vij j � �ijg.

Proof By the definition of �, we have that�(v �(�� ))� �(�� ) = �(v �(�� ))� �(v(�� ))� �� TEv(�� ) + �Td : (39)� is a convex and differentiable function so for any v ; � 2 <jV j the following
relation holds: �(�)� �(v) � (� � v )T 5�(v ):
The expression (39) can therefore be rewritten as follows:�(v �(�� ))� �(�� ) � (v �(�� )� v(�� ))T 5 �(v �(�� ))� �� TEv(�� ) + �� Td :
By adding and subtracting the term Ev �(�� ) (which is feasible in problem
(37)-(38)), we obtain the following relation:�(v �(�� ))� �(�� ) � (v �(�� )� v(�� ))T (5�(v �(�� ))� ET�� )� X(i;j)2A �ij(�0ij(v �(�� ))� �� TE ij);
where E ij denotes the corresponding column for arc (i; j) in matrix E . By
the definition of v �(�� ), if d�ij(uij)dvij = �0ij(uij)��� TE ij < 0 then v �(�� ) = uij,
and if d�ij(lij )dvij = �0ij(lij)� �� TE ij > 0 then v �(�� ) = lij. So each term in the
sum is bounded by �ij(j�0ij(v �(�� ))� �0ij(v(�� ))j). Hence, we can conclude
that given bound

P(i;j)2A �ij�ij in the theorem holds, since �ij is an upper
estimation of �0ij(v �(�� ))� �0ij(v(�� )).
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6 Network modeling and generation

This section describes our choices of data structure and network genera-
tor needed for the computational studies in Section 7. The object oriented
(OO) principle was used to create the minimum cost flow network data
structure described in Section 6.1. Section 6.2 describes a system accord-
ing to Ohuchi and Kaji [18] that generates transportation networks.

6.1 Network modeling

The straightforward way to represent a minimum cost flow network, without
considering any specific method of modeling, is to use vectors (arrays) and
matrices (Evans [9]). Characteristics connected to the arcs can for instance
be stored in matrices of size jV j� jAj, so called node-arc incidence matrices,
and characteristics connected to the vertices can be stored in arrays of sizejV j. This is an easy way to model a network, but not the most descriptive
one. The OO principle, on the other hand, takes into account the inherent
relations of the ingoing objects that the network is made of. Hence, a data
structure that provides easy access to specific elements of the network, as
well as a good environment to speed up critical computational steps was
developed using OO design. The data structure supports both bipartite and
non-bipartite networks.

The network data structure have three main objects; the Vertex, the Arc,
and the Network. The Vertex is modeled as an object that is recognized
by its index, demand, and prie (dual variable). A source has a positive
demand, a sink a negative demand, and a transshipment a demand equal
to zero. Moreover, each Vertex has two arrays of indices, in and out, of
those vertices connected to the current Vertex by incoming and outgoing
arcs respectively. Because of graph searching reasons, the variables from,marked, ost, level, predeessors, and apaity are also stored in the Vertex
object. from denotes the index of the vertex preceding the current Vertex,
and is used in the BFS and DFS algorithms. marked indicates, in any graph
search, whether the current Vertex can be reached. ost denotes the total
cost (weight) to reach the current Vertex, and is used in the shortest path
algorithm. level denotes the level at which the current Vertex is found, and
is used in the BS and DS algorithms. predeessors denotes the set of indices
of vertices preceding the current Vertex, and is used in the BS and DS algo-
rithms. apaity denotes the capacity of the current Vertex, and is used in
the MFALD algorithm.

The Arc object stores the variables from and to to denote the indices of
the vertices at the current Arcs tail and head respectively. Further, infor-
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mation about the lower and upper capacities of the Arc are stored in lower
and upper. The decision variable for the primal problem is stored in flow.
The cost function for the current Arc is modeled as a freestanding object,
a QuadFun, in which information about the linear a, quadratic, b, and con-
stant coefficient, , of the function is stored. We also store the variablesresidual, marked, alphal, and alphau in the Arc object. residual indicates
whether the current Arc is contained in an original network or in a residual
copy of a network. marked, alphal, and alphau are used in the Helgason step
length rule algorithm. marked indicates if the current Arc should be con-
sidered when calculating h(�). alphal and alphau stores the values for the
breakpoints vij(�) evaluated at the lower and upper limits of the current
Arc.

The Network object itself keeps an jV j-length array of vertices, verties,
and a jV j � jV j matrix of arcs, ars. Further, the Network contains two
arrays, soures and sinks, with indices of those vertices that have theirdemand > 0 and demand < 0 respectively. Several, mainly dual elements
are stored in the Network object; dual_grad (Ev�d), an array of length jV j;dual_grad_norm_square (jjEv � d jj2), a scalar; balane (Ev), an array of
length jV j; prie (�), an array of length jV j; demand_norm_square (jjd jj2),
a scalar. The variables path_length and max_push are stored for graph
searching reasons. path_length denotes the length of a path along which
a specific amount of flow can be pushed, and max_push the same specific
amount of flow. The Network object also stores the variables min_index,no_marked and no_alpha. min_index is used in the MFALD algorithm to
store the index of the vertex with the minimum capacity. no_marked andno_alpha are used in the Helgason step length rule algorithm. no_marked
indicates how many arcs that should be used when calculating h(�), andno_alpha stores the number of breakpoints that should be sorted by the
Shellsort algorithm.

Most numerical variables have the long double precision type provided
by the C programming language. Accessor and mutator functions were con-
structed as needed for all the above mentioned objects. The computer code
for each object, along with the exact types of the variables that make up
the objects, can be found under Section "Data structure related code" in
Appendix A.

6.2 Network generation by Ohuchi and Kaji

The system by Ohuchi and Kaji generates complete transportation networks.
In this system, the generated costs of the arcs become strictly convex, and
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has for each arc the following form:�i;j = bi;jvi;j2 + ai;jvi;j; 8(i; j) 2 A
Values for the following parameters must be provided by the user:

* s: number of sources
* t: number of sinks
* seed: seed for the random number generator
* h: average amount of flow of an arc
* a maximum value of linear coefficient
* b maximum value of quadratic coefficient

The lower, lij , and upper, uij, limits of each arc are generated as uniform
random numbers over the interval [0,100], with lij < uij. The coefficientsbi;j and ai;j are generated from four uniform random distributions:

Set 1 = f0 � ai;j � 10; 0 < bi;j � 1g
Set 2 = f0 � ai;j � 5; 0 < bi;j � 2g
Set 3 = f0 � ai;j � 2; 0 < bi;j � 5g
Set 4 = f0 � ai;j � 1; 0 < bi;j � 10g

For the values of each vertex demand and supply, the following formulas
are used:

Supply at vertex i =
Xk li;k +Xk (ui;k � li;k)h; i 2 S

Demand at vertex j =
Xp lp;j +Xp (up;j � lp;j)h; j 2 T;

where S and T denotes the sets of sources and sinks respectively, and h 2[0:1; 0:2; : : : ; 0:9℄ indicates if the average flow on the arcs should be closer to
the arcs’ lower or upper limits. Below the pseudocode for the generation of
transportation networks according to Ohuchi and Kaji is presented.
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OHUCHI&KAJI(soures, sinks, seed, h, b, a)
1. for each source s
2. create arcs (s; t) to each sink t
3. set the lower limit of (s; t) to RAND(0,50)
4. set the upper limit of (s; t) to RAND(0,100), lst < ust
5. set the linear cost of (s; t) to RAND(0,a)
6. set the quadratic cost of (s; t) to RAND(0,b), bst > 0
7. for each source s
8. set the supply of s to

Pk ls;k +Pk(us;k � ls;k) � h
9. for each sink t
10. set demand of t to

Pp lp;t +Pp(up;t � lp;t) � h
11. return the network

RAND denotes a function that when given two arguments, with the first ar-
gument strictly less the second argument, returns a value randomly selected
between the first and second argument.
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7 Results

This section sums up our choices of test problems, and the computational
results performed. We show results for the Lagrangian heuristics Flowroute
(Section5.3), FlowrouteD (Section5.4), FlowrouteBS (Section5.5), Shortest
Path (Section5.6), and Shortest PathL (Section5.7). The Lagrangian heuris-
tics are used in combination with the conjugate gradient method (Section
4.2.2) and an exact line search (Section 4.3.2). All computer programs have
been written in the C programming language (Bilting&Skansholm [21]),
compiled using the GNU C compiler with the gcc -O command, and run
on a Sun Fire 480R under the SunOS 5.9 operating system. The computer
code is found under Section "Algorithmic related code" in Appendix A.
Note that in our implementation, the Lagrangian heuristic FlowrouteBS is
a combination of FlowrouteBS and Flowroute. If the original FlowrouteBS
reroutes all the flow in the residual network, our version of FlowrouteBS
does the same. However, if the original FlowrouteBS fails to reroute all the
flow in the residual network, our version of FlowrouteBS uses Flowroute
to reroute the remaining flow. Note also that Shortest Path and Short-
est PathL have an extra constant, tolerane, added to the cost function of
each arc to avoid computationally generated negative cycles. The generated
networks are described in Section 7.1; the computational results for dense
transportation networks (DTNs) are presented in section 7.2.1; the compu-
tational results for sparse transportation networks (STNs) are presented in
section 7.2.2. The tables in this section have the result of the Lagrangian
heuristic that performed best for a certain network marked bold, and the
Lagrangian heuristic that performed worst for a certian network marked
slanted. The figures presented in this section have been plotted in MAT-
LAB (Pärt–Enander&Sjöberg [8]).

7.1 Transportation problems

The tests for transportation networks were conducted on twelve different
networks generated by the system described in Section 6.2. The selection
of parameters shown in Table 1 creates large scale networks with different
degrees of nonlinearity, and also permits the relationship between capacity
and demand to be tested. Note that the odd numbered networks are have
a more linear cost, and that the even numbered networks have a more non-
linear cost. Note also that Ex: 1–6 have a total capacity far from the total
demand, and that Ex: 7–12 have a total capacity close to the total demand.
All networks were generated with the seed for the random number genera-
tor equal to 13502460 as recommended by Klingman et al. [12].
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Ex s t h a b
1 50 50 0.3 10 1
2 50 50 0.3 1 10
3 100 100 0.3 10 1
4 100 100 0.3 1 10
5 100 200 0.3 10 1
6 100 200 0.3 1 10
7 50 50 0.7 10 1
8 50 50 0.7 1 10
9 100 100 0.7 10 1

10 100 100 0.7 1 10
11 100 200 0.7 10 1
12 100 200 0.7 1 10

Table 1: Selection of parameters for network generation according to
Ohuchi and Kaji.

7.2 Computational results

In the presentation of the computational results, the following abbrevations
for the different Lagrangian heuristics are used:

* F : Flowroute
* FBS: FlowrouteBS
* FD: FlowrouteD
* SP : Shortest Path
* SPL: Shortest PathL

In several of the quantities measured, the optimal value of the primal
problem, �(v �), is used. To obtain a good estimation of �(v �), the conjugate
gradient method has been stopped when the scaled gradient jj5�(�� )jjjjd jj is less
than or equal to 1e�12.

In all the results presented, the Lagrangian heuristics have been run af-
ter stopping the conjugate gradient method at a predetermined percentage
tolerance Æ, which is defined as:Æ = 100 � ((�(v �)� �(�� ))=�(v �): (40)

The quality Q, of a certain Lagrangian heuristic, at a final iteration � for
a given Æ, is defined as the relative error in percent between the projected
primal value given by the current heuristic, and the primal optimal value :Q = 100 � ((�(P (v(�� )))� �(v �)=�(v �): (41)
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Further, the difference in quality of the solution returned by the dual
scheme QD, and the solution given by a certain Lagrangian heuristic Q are
presented. QD, at a final iteration � for a given Æ, is defined as the relative
error between the dual value, and the primal optimal value:QD = (�(v �)� �(�� ))=�(v �) (42)

The running time T , of a certain Lagrangian heuristic, at a final itera-
tion � for a given Æ, is defined as the quotient in percent of the CPU time
for the Lagrangian heuristic, CPULH and the average CPU time for one
dual iteration, CPUD. The time for one dual iteration have exclusively been
measured as the time spent solving the Lagrangian dual subproblem.T = 100 � (CPULH=CPUD) (43)

7.2.1 Dense transportation networks

The DTNs we have tested were complete bipartite networks that had their
parameters set as in the twelve examples in Section 7.1.

Quality When the stopping criterion for the conjugate gradient method
was Æ � 0:1% (� = 5), the performance in quality,Q, for the different heuris-
tics is shown in Table 2.Ex QF QFBS QFD QSP QSPL

1 1.171 0.716* 1.080 0.381 0.380

2 0.869 0.786* 0.896 0.593 0.665
3 0.986 0.523* 1.795 0.374 0.357

4 1.375 0.740* 2.393 0.612 0.601

5 2.050 0.677* 2.370 0.632 0.627

6 0.562 0.394* 0.524 0.327 0.313

7 1.535 0.325* 0.549 0.499 0.497
8 1.776 0.141* 0.641 0.772 0.554
9 0.830 0.106* 0.498 0.338 0.341

10 1.000 0.190* 0.758 0.630 0.403
11 1.465 0.290* 1.291 0.788 0.837
12 1.777 0.426* 1.510 1.049 1.066

Table 2: Quality in solution for DTNs when Æ � 0:1%. In FBS, a * denotes
that Flowroute is used to reroute on average 10% of the initial flow imbal-
ance.
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When the stopping criterion for the conjugate gradient method was set
to Æ � 0:001% (� = 9), the performance in quality, Q, for the different
heuristics is shown in Table 3.Ex QF QFBS QFD QSP QSPL

1 0.0877 0.0650 0.0584 0.0356 0.0393
2 0.1686 0.0824 0.1388 0.0571 0.0573
3 0.0943 0.0742* 0.0763 0.0170 0.0158

4 0.1332 0.0951* 0.1311 0.0294 0.0240

5 0.0906 0.132* 0.0825 0.0425 0.0439
6 0.1262 0.0964 0.1149 0.0748 0.0750
7 0.1597 0.0603* 0.1070 0.0558 0.0598
8 0.1709 0.0780 0.0977 0.0839 0.0632

9 0.0641 0.0271* 0.0345 0.0219 0.0219
10 0.0730 0.0322* 0.0369 0.0389 0.0256

11 0.1085 0.0394* 0.0574 0.0362 0.0372
12 0.1358 0.0526* 0.0671 0.0467 0.0474

Table 3: Quality in solution for DTNs when Æ � 0:001%. In FBS, a * de-
notes that Flowroute is used to reroute on average 3% of the initial flow
imbalance. In problem 5, Æ � 0:0014%.

Running time When the stopping criterion for the conjugate gradient method
was Æ � 0:1% (� = 5), the performance in running time, T , for the different
heuristics is shown in Table 4.
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Ex TF TFBS TFD TSP TSPL
1 94 3259* 62 220,013 290,394
2 129 3681* 65 258,716 345,309
3 168 4897* 104 1,016,327 1,370,664
4 167 4439* 103 1,022,258 1,327,400
5 219 7288* 132 >2,000,000 >2,000,000
6 242 8314* 87 >2,000,000 >2,000,000
7 122 1988* 61 239,751 311,725
8 125 2067* 63 211,790 280,173
9 181 3468* 67 832,260 991,966

10 188 3324* 83 844,525 1,055,102
11 214 5525* 105 >2,000,000 >2,000,000
12 222 5611* 111 >2,000,000 >2,000,000

Table 4: Running time for DTNs when Æ � 0:1%. In FBS, a * denotes that
Flowroute is used to reroute on average 10% of the initial flow imbalance.

When the stopping criterion for the conjugate gradient method was Æ �0:001% (� = 9), the performance in running time, T , for the different heuris-
tics is shown in Table 5.Ex TF TFBS TFD TSP TSPL

1 125 2444 31 213,025 277,923
2 129 2163 65 263,494 345,309
3 169 6888* 65 1,118,209 1,355,418
4 183 6425* 79 1,111,696 1,399,605
5 248 8657* 80 >2,000,000 >2,000,000
6 246 8752 79 >2,000,000 >2,000,000
7 122 2141* 61 211,762 288,355
8 125 2349 94 206,904 253,359
9 181 3422* 68 906,742 1,242,600

10 173 3354* 60 863,514 1,096,975
11 222 5988* 87 >2,000,000 >2,000,000
12 211 6073* 89 >2,000,000 >2,000,000

Table 5: Running time for DTNs when Æ � 0:001%. In FBS, a * denotes that
Flowroute is used to reroute on average 3% of the initial flow imbalance. In
problem 5, Æ � 0:0014%.
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Convergence of Lagrangian heuristics vs. dual scheme When the stopping
criterion for the conjugate gradient method was Æ � 10�7% (� = 20) for the
network in Ex:1, Figure 1 shows the convergence of the primal objective
value given by the different heuristics vs. the dual objective value given by
the dual scheme.
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Figure 1: Convergence towards �� = 1980065 of the primal objective value
given by the different heuristics and the dual objective value given by the
dual scheme (DTNs, Ex:1). Æ � 0:1% shown at � = 5, and Æ � 0:001%
shown at � = 9. FlowrouteBS produced a value below the optimal value at
iteration � = 0.
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Quality in Lagrangian heuristics vs. dual scheme When the stopping cri-
terion for the conjugate gradient method was Æ � 10�7% (� = 20) for the
network in Ex:1, the difference between the solutions given by the different
heuristics, Q=100, vs. the solutions given by the dual sheme, QD, is shown
in Figure 2.
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Figure 2: Each figure shows Q=100 (upper curves) for the different heuristics
vs. QD (lower curve) plotted in logarithmic scale for each iteration � (DTNs,Ex:1). Æ � 0:1% shown at � = 5, and Æ � 0:1% shown at � = 9. FlowrouteBS
(left figure) produced a value below the optimal value at iteration � = 0.
This value was excluded by MATLAB.
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7.2.2 Sparse transportation networks

The STNs we have tested were bipartite networks where 10% of arcs existed
(compared to the number of arcs in the same complete bipartite network).
The parameters for the STNs were set as in the twelve examples in Section
7.1.

Quality When the stopping criterion for the conjugate gradient method
was Æ � 0:1% (� = 19), the performance in quality, Q, for the different
heuristics is shown in Table 6.Ex QF QFS QFD QSP QSPL

1 4.448 0.951 4.836 0.977 0.914

2 3.455 1.040 6.820 0.412 0.391

3 1.559 0.578 3.800 0.431 0.435
4 1.903 0.720 4.287 0.301 0.292

5 1.865 0.698 5.105 0.345 0.381
6 1.867 0.607 8.279 0.356 0.305

7 2.600 0.774 7.549 0.746 0.675

8 3.151 0.578 6.332 0.771 0.690
9 2.149 0.869 6.123 0.816 0.783

10 2.523 1.126 6.511 1.196 1.122

11 1.756 0.672* 5.035 0.613 0.621
12 1.920 0.767* 5.440 0.776 0.662

Table 6: Quality in solution for STNs when Æ � 0:1%. In FBS, a * denotes
that Flowroute is used to reroute on average <1% of the initial flow imbal-
ance.

When the stopping criterion for the conjugate gradient method was set
to Æ � 0:001% (� = 3384), the performance in quality, Q, for the different
heuristics is shown in Table 7.
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Ex QF QBS QFD QSP QSPL
1 0.1397 0.0822 0.2582 0.0656 0.0629

2 0.1639 0.0945 0.3403 0.0585 0.0586
3 0.0810 0.0287 0.3406 0.0208 0.0203

4 0.2081 0.0732 0.5462 0.0548 0.0540

5 0.1284 0.0614* 0.6083 0.0332 0.0355
6 0.1591 0.0508 0.5690 0.0256 0.0241

7 0.0707 0.0232 0.2049 0.0358 0.0346
8 0.1178 0.0370 0.3744 0.0655 0.0619
9 0.1533 0.0614 0.2821 0.0574 0.0637

10 0.1479 0.0529 0.3293 0.0574 0.0490

11 0.1259 0.0561 0.5311 0.0502 0.0535
12 0.1286 0.0611 0.6255 0.0649 0.0594

Table 7: Quality in solution for STNs when Æ � 0:001%. In FBS, a * denotes
that Flowroute is used to reroute <1% of the initial flow imbalance.

Running time When the stopping criterion for the conjugate gradient method
was Æ � 0:1% (� = 19), the performance in running time, T , for the different
heuristics is shown in Table 8.Ex TF TFBS TFD TSP TSPL

1 212 6369 212 185,751 238,610
2 432 5189 432 203,651 265,914
3 355 10,458 295 816,762 1,119,406
4 470 9357 530 815,564 1,031,491
5 645 14,977 430 2,081,528 2,781,786
6 544 14,479 635 2,005,486 2,663,019
7 636 4661 424 159,959 188,985
8 407 4478 204 136,384 187,274
9 493 8105 548 575,164 766,174

10 592 8445 592 623,079 782,560
11 631 13,753* 500 1,518,445 1,965,905
12 928 15,888* 551 1,666,675 1,997,284

Table 8: Running time for STNs when Æ � 0:1%. In FBS, a * denotes that
Flowroute is used to reroute on average <1% of the initial flow imbalance.
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When the stopping criterion for the conjugate gradient method was Æ �0:001% (� = 3384), the performance in running time, T , for the different
heuristics were the following:Ex TF TFBS TFD TSP TSPL

1 424 5307 212 155,182 202,522
2 216 4972 216 124,525 167,331
3 532 9454 414 1,196,515 1,510,150
4 470 10,005 294 895,456 1,139,424
5 645 16,696* 368 2,416,986 2,857,747
6 695 15,023 423 2025,285 2,645,034
7 636 5085 636 146,823 182,417
8 204 4071 407 174,857 215,976
9 493 8488 274 600,848 786,819

10 430 8552 430 568,538 723,555
11 710 12,991 421 1,285,524 1,719,282
12 899 13,917 493 1,620,778 2,070579

Table 9: Running time for STNs when Æ � 0:001%. In FBS, a * denotes that
Flowroute is used to reroute <1% of the initial flow imbalance.
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Convergence of Lagrangian heuristics vs. dual scheme When the stopping
criterion for the conjugate gradient method was Æ � 0:005% (� = 228) for
the network in Ex:1, Figure 7.2.2 shows the convergence of the primal ob-
jective value given by the different heuristics vs. the dual objective value
given by the dual scheme for Ex:1.
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Figure 3: Convergence towards �� = 206737 of the objective primal value
given by the different heuristics and the objective dual value given by the
dual scheme (STNs, Ex:1). Æ � 0:1% shown at � = 19.
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Quality in Lagrangian heuristic vs. dual scheme When the stopping crite-
rion for the conjugate gradient method was Æ � 0:005% (� = 228) for the
network in Ex:1, the difference between the solutions given by the different
heuristics, Q=100, vs. the solutions given by the dual sheme, QD, is shown
in Figure 4.
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8 Discussion

The first aim was to verify the results given in the thesis by Marklund [15]
for the original Flowroute and Shortest Path to obtain a reference for futher
algorithmic development. Therefore, we had to conduct tests on similar
networks. The second aim was to compare the performance in quality and
time of the Lagrangian heuristics FlowrouteBS, FlowrouteD and Shortest
PathL with the performance of the original Flowroute and Shortest Path.

We expected that FlowrouteD would produce results faster than, but of
similar quality as Flowroute. We based these assumptions on the facts pre-
sented in Section 5.4, where we stated that DFS might reach a residual sink
faster than BFS, and in that case we can expect FlowrouteD to terminate
faster than Flowroute.

• The first assumption was confirmed for 100% of the DTNs, with Flow-
routeD producing results 2.5 times faster than Flowroute on average.
The running time was shorter for 70% of the more linear problems.
The second assumption was confirmed in 90% of the DTNs; in 70%
of Ex: 1–6, and in 100% of Ex: 7–12 FlowrouteD produced results of
siginificanly better quality than Flowroute. The quality in the solutions
was better for the more linear problems; in 70% of Ex: 1–6, and in
80% of Ex: 7–12.

• The first assumption was confirmed for 85% of the STDs, with Flow-
routeD producing results 1.5 times faster than Flowroute on average.
The running time was shorter for 80% of the more linear problems.
The second assumption was contradicted for all transportation net-
works, but FlowrouteD faired comparatively better on the more linear
problems; in 70% of Ex: 1–6, and in 80% of Ex: 7–12.

We believe that the reason that FlowrouteD produced results of lower qual-
ity than Flowroute for STNs can be explained by FlowrouteD having prob-
lems to find residual sinks when DFS is truncated prematurely.

We expected that FlowrouteBS would produce results faster than, but
of similar quality as Flowroute. We based these assumptions on the facts
presented in Section 5.5 where we state that the MFALD algorithm reroutes
flow on many paths simultaneously in the residual network. Rerouting flow
along many paths simultaneously might lead to that the residual sources are
emptied faster, and in that case we can expect that FlowrouteBS terminates
faster than Flowroute. However, unforseen difficulties were encountered
when executing the original FlowrouteBS which terminated prematurely for
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many networks. Therefore, we used the modified FlowrouteBS described in
Section 7.

• The first assumption was contradicted in 100% of the DTNs, with
FlowrouteBS producing results 25 times slower than Flowroute on av-
erage. FlowrouteBS faired comparatively better for 55% of the more
linear problems; in 40% of Ex: 1–6, and in 70% of Ex: 7–12. The sec-
ond assumption was contradicted by 100% of the DTNs. FlowrouteBS
produced results of significantly better quality in 100% of the DTNs.
The quality in the solutions was better for the more linear problems;
in 80% of Ex: 1–6 (Ex: 5 excluded), and in 85% of Ex: 7–12. Further,
FlowrouteBS terminated prematurely in 85% of the DTNs.

• The first assumption was contradicted in 100% of the STNs, with Flow-
routeBS producing results 20 times slower than Flowroute on average.
FlowrouteBS faired comparatively better for 70% of the more nonlin-
ear problems; in 85% of Ex: 1–6, and in 50% of Ex: 7–12. The second
assumption was contradicted by 100% of the STNs. FlowrouteBS pro-
duced results of significantly better quality in 100% of the STNs. The
quality in the solutions was better for 70% of the more linear prob-
lems. Further, FlowrouteBS terminated prematurely in 10% of the
STNs.

We suspected that FlowrouteBS would produce results slower than Flow-
route, as the running time of the MFALD algorithm is O(jV j3). However,
we hoped that the experimental results would be different in reality. We
did not forsee that FlowrouteBS would produce results of significanly bet-
ter quality than Flowroute. One hypothesis is that the ALD created in
FlowrouteBS always contain the minimum length paths from the super-
source to the supersink, and that using fewer arcs to reroute flow is favourable
in quality terms. Further, we did not forsee the difficulties with premature
termination of the original FlowrouteBS. We found that the supersink of
the (on average) third to fifth ALD created by the heuristic could not be
reached from the supersource, which is cruical for the MFALD algorithm,
and that this is one reason for the failure of the heuristic. Moreover, the
MFALD algorithm is a modification of the Ford–Fulkerson algorithm that is
known to terminate for integer data only. We use non integer data, and this
could be another explanation for the failure of the original FlowrouteBS.
However, more research must be conducted in order to explain these un-
forseen events.

We expected that Shortest PathL would produce results in similar run-
ning time as, but of similar or better quality than Shortest Path. These as-
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sumptions were based on the facts presented in Section 5.7 where we moti-
vated that using the derivative of the Lagrangian cost function instead of the
linearized cost function of the primal problem in the shortest path search
produces results closer to the optimal solution when the conjugate ascent
method is stopped at a lower accuracy. Further, unforseen difficulties were
experienced using the Bellman–Ford algorithm for the implementation of
Shortest Path and Shortest PathL. Bellman–Ford ran for such a long time
when applied to the larger DTNs, that reliable results of the running time
could not be obtained for Ex: 5,6, 11 and 12.

• The first assumption was contradicted in 100% of the DTNs, with
Shortest PathL producing results 1.3 times slower than Shortest Path
on average. The running time was not affected by the linearity of the
problem on average, but Shortest PathL faired comparatively better
for 75% of the more linear problems in Ex: 1–4, and for 75% of the
more nonlinear problems in Ex: 7–10. The second assumption was
confirmed in 85% of the DTNs, with the results for Æ � 0:1 having bet-
ter quality in 80% of Ex: 1–6, and in 50% of Ex: 7–12; for Æ � 0:001
having better quality in 30% of Ex: 1–6, and in 70% of Ex: 7–12. The
quality in the solutions was better for 90% of the more linear prob-
lems; 80% of Ex: 1–6, and in 100% of Ex: 7–12.

• The first assumption was contradicted in 100% of the STNs, with Short-
est PathL producing results 1.3 times slower than Shortest Path on
average. Shortest PathL faired comparatively better for 70% of the
more nonlinear problems; in 100% of Ex: 1–4, and in 25% of Ex: 7–
10. The second assumption was confirmed in 95% of the STNs, with
the results for Æ � 0:1 beeing better in 85% of Ex: 1–6, and in 100%
of Ex: 7–12; for Æ � 0:001 beeing better in 100% of Ex: 1–6, and in
70% of Ex: 7–12. The quality in the solutions was better for 70% of
the more linear problems; 30% of Ex: 1–6, and in 85% of Ex: 7–12.

We believe that the longer running times in Shortest PathL are explained by
the extra computations needed to calculate the derivative of the Lagrangian
cost function.
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9 Conclusion

This thesis presents results for five Lagrangian heuristics used in combina-
tion with the conjugate gradient method and the Helgason step size rule
[11] applied to the dual of the strictly convex quadratic minimum cost net-
work flow problem. Two new modifications of the Lagrangian heuristic
Flowroute, FlowrouteBS and FlowrouteD, and one new modification of the
Lagrangian heuristic Shortest Path, Shortest PathL have been studied. Tests
on transportation networks with strictly quadratic costs generated accord-
ing to the system by Ohuchi and Kaji [18] have been performed by first
running the conjugate gradient method with an exact line search to obtain
near-optimal dual solutions. Then the Lagrangian heuristics were applied to
the dual solutions to obtain primal feasibility. The quality of the solutions
were then evaluated, i.e. how close the solutions were compared to the op-
timal solution, and how good the quality of the solutions were compared
to the solutions obtained from the dual scheme. The running times for the
different Lagrangian heuristics were also evaluated.

We conclude that FlowrouteD performs better than Flowroute in time,
and produces results of better quality than FLowroute for dense networks.
We also conclude that FlowrouteBS performs worse than Flowroute in time
regardless of the sparsity of the network, and that FlowrouteBS produces
results of significantly better quality than Flowroute regardless of the spar-
sity of the network. The overall performance of FlowrouteD and Flow-
routeBS is better for networks with a more linear cost function, and with a
total capacity close to the total demand.

We conclude that Shortest PathL performs worse than Shortest Path in
time regardless of the sparsity of the network. We also conclude that Short-
est PathL produces results of better quality than Shortest Path when the
conjugate ascent method is stopped at a lower accuracy. The overall per-
formance of Shortest PathL is better for networks with a more linear cost
function, but it is hard to draw any conclusions regarding the influence of
the relationship between capacity and demand.

We conclude that the best results for transportation networks are given
by the Lagrangian heuristic FlowrouteBS when considering the overall per-
formance. The results given by FlowrouteBS have for most problems similar
quality to the Shortest Path heuristics, and are obtained in reasonable time.
However, if the quality of the solution is more important, our results show
that Shortest PathL produces results of best quality. If the running time of
the solution is more important, our results show that FlowrouteD is the best
choice for dense networks, and Flowroute for sparse networks.

The tests in this thesis have been restricted to transportation networks,
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but it would be interesting to compare the performance of the different La-
grangian heuristics on transshipment networks as well. Further, with the
use of the Bellman–Ford algorithm in Shortest PathL, the presented run-
ning times are not at all competative with FlowrouteBS, but it would be in-
teresting to improve the implementation for Shortest PathL, and compare
the running times between FlowrouteBS and Shortest PathL. It would also
be intersting to compare the performance between the fastest Lagrangian
heuristics Flowroute or FlowrouteDS and any of the algorithms commonly
used to solve strictly convex quadratic minimum cost network flow prob-
lems. Further, more research needs to be conducted regarding FlowrouteBS
in order to explain its premature termination, and the reason for the excep-
tional good quality in its solutions.
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A Computer code

A.1 Main program

A.1.1 OK.c#inlude <stdio.h>#inlude <stdlib.h>#inlude "Vertex.h"#inlude "Ar.h"#inlude "Network.h"#inlude "NetworkUtil.h"#inlude "Algorithms.h"#inlude "Mis.h"#inlude "Heuristis.h"#inlude "Constants.h"#inlude "TestGraphs.h"#inlude "Alpha.h"int main(int args, har *argv[℄){Network *n;har graph_type, test_type;int no_sinks, no_soures, a, b, heur_type;unsigned int seed;double h, delta;long double opt_value;double opt_time;Result *proj_value, *dual_opt_value;dual_opt_value = (Result*)allo(1, sizeof(Result));proj_value = (Result*)allo(1, sizeof(Result));// Reading problem data// S for sparse network, D for dense networkssanf(argv[1℄, "%", &graph_type);// Number of souresssanf(argv[2℄,"%d", &no_soures);// Number of sinksssanf(argv[3℄, "%d", &no_sinks);// Average amount of of flow on ars, hssanf(argv[4℄, "%lf", &h);// Upper limit of linear oeffiient, assanf(argv[5℄, "%d", &a);// Upper limit of quadrati oeffiient, bssanf(argv[6℄, "%d", &b);// Seed to random number generatorssanf(argv[7℄, "%u", &seed);// Tolerane when to stop dual solver, deltassanf(argv[8℄, "%lf", &delta);// O for finding the optimal dual value, H for test with heuristissanf(argv[9℄, "%", &test_type);// 0=FLOWROUTE, 1=FLOWROUTEBS, 2=FLOWROUTED, 3=SHORTESTPATH, 4=SHORTESTPATHLssanf(argv[10℄, "%d", &heur_type);// The optimal value for the urrent problemssanf(argv[11℄, "%Lf", &opt_value);// The average CPU time of one dual subsolutionssanf(argv[12℄, "%lf", &opt_time);// Create graph typeprintf("%s\n", "CREATING NETWORK");if(graph_type=='D')n = TestGraphs_GenTestBD(no_soures, no_sinks, h, 13502460, a, b);elsen = TestGraphs_GenTestBS(no_soures, no_sinks, h, 13502460, a, b);// Run desired testprintf("%s\n", "WORKING...");if(test_type=='O'){Algorithms_CG(n, dual_opt_value);printf("Optimal value: %.16f\n",dual_opt_value->value);printf("Average CPU time for one dual iteration: %.16f\n",dual_opt_value->time);}else{Algorithms_ConjugateGradient(n, heur_type, delta, opt_value, proj_value);printf("Projeted value: %.16f\n", proj_value->value);printf("Quality of solution: %.16Lf\n", 100*((proj_value->value - opt_value)/opt_value));
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printf("CPU time for heuristi: %.16f\n", proj_value->time);printf("Time of solution: %.16f\n",100*(proj_value->time/opt_time));}printf("%s\n", "DONE!");Network_Destroy(n);free(proj_value);free(dual_opt_value);return 0;}
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A.2 Algorithmic related code

A.2.1 Algorithms.c#inlude "Algorithms.h"#inlude "NetworkUtil.h"#inlude "Queue.h"#inlude "Stak.h"#inlude "Constants.h"#inlude "Heuristis.h"#inlude <stdio.h>#inlude <assert.h>#inlude <math.h>#inlude <stdlib.h>#inlude <float.h>#inlude <time.h>#inlude <stdio.h>/************************************************************************** PUBLIC FUNCTIONS**************************************************************************/** Uses the Helgason et al. step length rule to determine the optimalstepsize* among a vetor of stepsizes for the dual line searh problem of anetwork.* �parm n network* �param alpha vetor with andidate stepsizes* �param d vetor of diretion* �return alpha_opt**/double Algorithms_Helgason(Network *n, Alpha *alpha, long double*diretion){Vertex *vp;Ar *ar;//l=index_left, r=index_right, m=index_middleint l, r, m, i, j, k;//L=h(alpha_l), R=h(alpha_r), C=h(alpha_m), =sum_i(demand_i*diretion_i)double L, R, C, , alpha_opt, a_ij, b_ij, prie_i, prie_j, diretion_i,diretion_j;QuadFun ost;bool done = false;bool first = true;L = R = C = l = m =  = alpha_opt = 0;r = (Network_NoArs(n)*2 - (NetworkUtil_NoMarked(n)*2));while(!done){if((r-l)==1){break;}else{m = floor(0.5*(l+r));for(i=0; i<Network_NoVerties(n); i++){vp = &Network_Verties(n)[i℄;prie_i = Vertex_Prie(vp);diretion_i = diretion[i℄;// alulate sum_i(demand_i*diretion_i)if(first){ += Vertex_Demand(vp) * diretion_i;}if(Vertex_NoOut(vp) != 0){for(k=0; k<Vertex_NoOut(vp); k++){j = Vertex_Out(vp)[k℄;ar = &(n->ars[i℄[j℄);ost = Ar_Cost(ar);a_ij = QuadFun_a(&ost);b_ij = QuadFun_b(&ost);prie_j = Vertex_Prie(&n->verties[j℄);diretion_j = diretion[j℄;assert(b_ij != 0);// alulate sums at left_index, right_index, middle_indexif(first){L += (diretion_i - diretion_j)*(Algorithms_Mid(Ar_Lower(ar),(-(a_ij + prie_i - prie_j +((diretion_i - diretion_j)*Alpha_Value(&alpha[l℄))) / (2*b_ij)),Ar_Upper(ar)));R += (diretion_i - diretion_j)*(Algorithms_Mid(Ar_Lower(ar),(-(a_ij + prie_i - prie_j +((diretion_i - diretion_j)*Alpha_Value(&alpha[r℄))) / (2*b_ij)),Ar_Upper(ar)));}C += (diretion_i - diretion_j)*(Algorithms_Mid(Ar_Lower(ar),
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(-(a_ij + prie_i - prie_j +((diretion_i - diretion_j)*Alpha_Value(&alpha[m℄))) / (2*b_ij)),Ar_Upper(ar)));}}}if(first){first = false;}}if(C==){alpha_opt = Alpha_Value(&alpha[m℄);done = true;}else if(C>){l = m;L = C;}else{r = m;R = C;}C = 0;}if(!done){alpha_opt = Alpha_Value(&alpha[l℄) + (((Alpha_Value(&alpha[r℄) -Alpha_Value(&alpha[l℄)) * ( - L)) / (R - L));}return(alpha_opt);}/** Solves the dual problem starting from the urrent prie values,* for eah vertex, sets the pries that orresponds to the solution.* Returns the value of the dual funtion at the urrent prie and flowvalues.* �param n network* �param heuristi 0=Flowroute, 1=FlowrouteBS, 2=FlowrouteD,* 3=ShortestPath, 4=ShortestPathL* �param delta tolerane when to stop dual method* �param opt_val optimum value to problem* �return result primal_value and CPU time for hoosen heuristi**/void Algorithms_ConjugateGradient(Network *n, int heuristi, double delta,long double opt_val, Result *result){double alpha, pu_time_used;long double *dual_grad_old, *dual_grad_new, *diretion, dual_grad_norm,dual_grad_square, dual_value, primal_value;Alpha *all_alpha, *all_alpha_new;lok_t start, end;int k = 0;bool done = false;bool first = true;Network *opy;double stop = opt_val*(100-delta)/100;printf("%s %d %s %f\n","CONJUGATE GRADIENT with heuristi ", heuristi, ",delta = ", delta);dual_value = alpha = primal_value = pu_time_used = 0;dual_grad_old = (long double*)allo(Network_NoVerties(n),sizeof(long double));diretion = (long double*)allo(Network_NoVerties(n),sizeof(long double));all_alpha = (Alpha*)allo(((Network_NoArs(n)*2) + 1), sizeof(Alpha));all_alpha_new = (Alpha*)allo(((Network_NoArs(n)*2) + 1), sizeof(Alpha));start = end = lok();while(!done && (k++ < MAX_ITERATIONS)){// alulate the solution to the dual subproblem, w(v)dual_value = NetworkUtil_SolveDualSub(n, NULL, true);dual_grad_new = NetworkUtil_DualGrad(n);dual_grad_square = NetworkUtil_DualGradNormSquare(n);dual_grad_norm = sqrt(dual_grad_square);// termination riteriaif(stop <= dual_value){done = true;// adjust to primal feasiblilityswith(heuristi){ase 0:opy = Network_ResidualCopy(n, false);start = lok();primal_value = Heuristis_Flowroute(opy);end = lok();break;
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ase 1:opy = Network_ResidualCopy(n, true);start = lok();primal_value = Heuristis_FlowrouteBS(opy);end = lok();break;ase 2:opy = Network_ResidualCopy(n, false);start = lok();primal_value = Heuristis_FlowrouteD(opy);end = lok();break;ase 3:opy = Network_ResidualCopy(n, false);start = lok();primal_value = Heuristis_ShortestPath(opy);end = lok();break;ase 4:opy = Network_ResidualCopy(n, false);start = lok();primal_value = Heuristis_ShortestPathL(opy);end = lok();break;default:opy = Network_ResidualCopy(n, false);primal_value = -1;break;}//printf("f(x)=%.16Lf\n", primal_value);result->value = primal_value;Network_Destroy(opy);}else{// asent diretion should be set to gradient every given iterationif((k%RESTART) == 0)diretion = dual_grad_new;elseAlgorithms_FindDiretion(dual_grad_new, dual_grad_old, diretion,dual_grad_square, Network_NoVerties(n));// alulate the stepsize by Helgason et al.alpha = Algorithms_CalHelgasonAlpha(n, all_alpha, all_alpha_new,diretion, first);if(first)first = false;// set the new prie vetor v_new = v + alpha*dNetworkUtil_UpdatePrie(n, alpha, diretion);Algorithms_ArrayCopy(dual_grad_old, dual_grad_new, Network_NoVerties(n));}}printf("w(v)=%.16Lf\n", dual_value);pu_time_used = ((double)(end - start)) / CLOCKS_PER_SEC;result->time = pu_time_used;free(all_alpha_new);free(all_alpha);free(dual_grad_old);free(diretion);}/** Solves the dual problem starting from the urrent prie values,* for eah vertex, sets the pries that orresponds to the solution.* Returns the value of the dual funtion at the urrent prie and flowvalues.* �param n network* �return result dual_value and average time for one dual subsolution**/void Algorithms_CG(Network *n, Result *result){double alpha, pu_time_used;long double *dual_grad_old, *dual_grad_new, *diretion, numerator, denominator,dual_grad_norm, dual_grad_square, dual_value;Alpha *all_alpha, *all_alpha_new;lok_t start, end;int k = 0;bool done = false;bool first = true;numerator = denominator = dual_value = alpha = pu_time_used = 0;dual_grad_old = (long double*)allo(Network_NoVerties(n), sizeof(long double));diretion = (long double*)allo(Network_NoVerties(n), sizeof(long double));all_alpha = (Alpha*)allo(((Network_NoArs(n)*2) + 1), sizeof(Alpha));all_alpha_new = (Alpha*)allo(((Network_NoArs(n)*2) + 1), sizeof(Alpha));while(!done && (k++ < MAX_ITERATIONS)){
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// alulate the solution to the dual subproblem, w(v)start = lok();dual_value = NetworkUtil_SolveDualSub(n, NULL, true);end = lok();dual_grad_new = NetworkUtil_DualGrad(n);dual_grad_square = NetworkUtil_DualGradNormSquare(n);dual_grad_norm = sqrt(NetworkUtil_DualGradNormSquare(n));// termination riterianumerator = dual_grad_norm;denominator = sqrt(NetworkUtil_DemandNormSquare(n));if((numerator/denominator) <= OPT_EPSILON)done = true;else{// asent diretion should be set to gradient every given iterationif((k%RESTART) == 0)diretion = dual_grad_new;elseAlgorithms_FindDiretion(dual_grad_new, dual_grad_old, diretion,dual_grad_square, Network_NoVerties(n));// alulate the stepsize by Helgason et al.alpha = Algorithms_CalHelgasonAlpha(n, all_alpha, all_alpha_new,diretion, first);if(first)first = false;// set the new prie vetor v_new = v + alpha*dNetworkUtil_UpdatePrie(n, alpha, diretion);Algorithms_ArrayCopy(dual_grad_old, dual_grad_new, Network_NoVerties(n));}//printf("grad w(v)/grad b = %.16Lf\n", (numerator/denominator));//printf("w(v)=%.16Lf\n", dual_value);pu_time_used += ((double) (end - start)) / CLOCKS_PER_SEC;}printf("%d %s\n", k, "iterations");printf("grad w(v)/grad b = %.16Lf\n",(numerator/denominator));free(all_alpha_new);free(all_alpha);free(dual_grad_old);free(diretion);result->value = dual_value;result->time = pu_time_used/k;}/** Uses the breadth first searh (BFS) strategy to find paths* in a network from a given soure to any reahable sink.Only ars* that are not saturated are onsidered.* Assumes all the verties are unmarked and have from = -1 initially.* �param n network* �param s soure**/void Algorithms_BFS(Network *n, Vertex *s){Queue *queue;Vertex *verties;int *ip, j, vertex_index, soure_index, no_sinks;no_sinks = 0;queue = Queue_Create(Network_NoVerties(n));verties = Network_Verties(n);soure_index = Vertex_Index(s);Vertex_SetMarked(s, true);Vertex_SetFrom(s, soure_index);Queue_Add(queue, soure_index);while(!Queue_Empty(queue)){vertex_index = Queue_First(queue);if(Vertex_IsSink(&verties[vertex_index℄)){no_sinks++;if(no_sinks == Network_NoSinks(n)){break;}}if(Vertex_NoOut(&verties[vertex_index℄) > 0){ip = Vertex_Out(&verties[vertex_index℄);for(j=0; j<Vertex_NoOut(&verties[vertex_index℄); j++){if(!Vertex_Marked(&verties[*ip℄) &&!Ar_Saturated(&(n->ars[vertex_index℄[*ip℄))){Vertex_SetMarked(&verties[*ip℄, true);Vertex_SetFrom(&verties[*ip℄, vertex_index);Queue_Add(queue, Vertex_Index(&verties[*ip℄));}ip++;}}
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}Queue_Destroy(queue);}/** Uses the multipel breadth first searh (BS) strategy to find paths* in a network from a supersoure to a supersink.Only ars that are not* saturated is onsidered.* Assumes the network has a supersoure, ss and supersink added* at indies no_verties-2, no_verties-1 respetively.* Assumes all the verties are unmarked and have from = level = -1initially.* �param n network**/void Algorithms_BS(Network *n){Queue *queue;Vertex *verties, *ss;int *ip, j, vertex_index, soure_index;queue = Queue_Create(Network_NoVerties(n));verties = Network_Verties(n);ss = &(Network_Verties(n)[Network_NoVerties(n)-2℄);soure_index = Vertex_Index(ss);Vertex_SetMarked(ss, true);Vertex_SetLevel(ss, 0);Queue_Add(queue, soure_index);while(!Queue_Empty(queue)){vertex_index = Queue_First(queue);if(Vertex_NoOut(&verties[vertex_index℄) > 0){ip = Vertex_Out(&verties[vertex_index℄);for(j=0; j<Vertex_NoOut(&verties[vertex_index℄); j++){if(!Vertex_Marked(&verties[*ip℄) &&!Ar_Saturated(&(n->ars[vertex_index℄[*ip℄))){Vertex_SetMarked(&verties[*ip℄, true);Vertex_SetLevel(&verties[*ip℄,(Vertex_Level(&verties[vertex_index℄) + 1));Vertex_SetPre(&verties[*ip℄, vertex_index);Queue_Add(queue, Vertex_Index(&verties[*ip℄));}else{if(Vertex_Level(&verties[*ip℄)==(Vertex_Level(&verties[vertex_index℄) + 1)){if(!Ar_Saturated(&(n->ars[vertex_index℄[*ip℄)))Vertex_SetPre(&verties[*ip℄, vertex_index);}}ip++;}}}Queue_Destroy(queue);}/** Uses the deapth first searh (DFS) strategy to find a path* in a network from a given soure to a reahable sink. Only ars* that are not saturated is onsidered.* Assumes all the verties are unmarked and have from = -1 initially.* �param n network* �param s soure* �return sink_index**/void Algorithms_DFS(Network *n, Vertex *s){Stak *stak;Vertex *verties;int *ip, j, vertex_index, soure_index, no_sinks;no_sinks = 0;stak = Stak_Create(Network_NoVerties(n));verties = Network_Verties(n);vertex_index = soure_index = Vertex_Index(s);Vertex_SetMarked(s, true);Vertex_SetFrom(s, soure_index);Stak_Push(stak, soure_index);while(!Stak_Empty(stak)){vertex_index = Stak_Top(stak);if(Vertex_IsSink(&verties[vertex_index℄))break;if(Vertex_NoOut(&verties[vertex_index℄) > 0){ip = Vertex_Out(&verties[vertex_index℄);for(j=0; j<Vertex_NoOut(&verties[vertex_index℄); j++){if(!Vertex_Marked(&verties[*ip℄) &&!Ar_Saturated(&(n->ars[vertex_index℄[*ip℄))){
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Vertex_SetMarked(&verties[*ip℄, true);Vertex_SetFrom(&verties[*ip℄, vertex_index);Stak_Push(stak, *ip);}ip++;}}}Stak_Destroy(stak);}/** Finds the shortest paths in a network from a soure to all otherverties.* The ost funtions assoiated with the ars may have negative osts.* Only ars that are not saturated are onsidered.* If lagrange=false, use linearized ost funtion of the primal problem,* otherwise use linearized ost of Lagrange funtion.* Returns true if paths an be found, false otherwise..* Assumes that all the verties have from = -1 and ost =DBL_MAX initially.* �param n network* �param s soure vertex from whih the searh origins* �param lagrange false if linearized ost of primal problem should beused* true if linearized ost of Lagrange funtion shouldbe used* �return true if no negative yles are present* false otherwise**/bool Algorithms_BellmanFord(Network *n, Vertex *s, bool lagrange){Vertex *vertex;int i, j, *j_p, iteration;long double ost_j, ost_i2j;Vertex_SetFrom(s, Vertex_Index(s));Vertex_SetCost(s, 0);//iterate over all non saturated ars |V|-1 timesfor(iteration=0; iteration<Network_NoVerties(n)-1; iteration++){for(i=0; i<Network_NoVerties(n); i++){vertex = &Network_Verties(n)[i℄;if(Vertex_NoOut(vertex) != 0){j_p = Vertex_Out(vertex);for(j=0; j<Vertex_NoOut(vertex); j++){if(!Ar_Saturated(&(Network_Ars(n)[i℄[*j_p℄))){if(!lagrange)Algorithms_RelaxAr(n, &(Network_Ars(n)[i℄[*j_p℄), false);elseAlgorithms_RelaxAr(n, &(Network_Ars(n)[i℄[*j_p℄), true);}j_p++;}}}}// hek for negative ylefor(i=0; i<Network_NoVerties(n); i++){vertex = &Network_Verties(n)[i℄;if(Vertex_NoOut(vertex) != 0){j_p = Vertex_Out(vertex);for(j=0; j<Vertex_NoOut(vertex); j++){if(!Ar_Saturated(&(Network_Ars(n)[i℄[*j_p℄))){ost_j = Vertex_Cost(&Network_Verties(n)[*j_p℄);if(!lagrange)ost_i2j = Vertex_Cost(vertex)+Ar_CurrLinearizedCost(&(Network_Ars(n)[i℄[*j_p℄))+TOLERANCE;elseost_i2j = Vertex_Cost(vertex)+Ar_CurrLinearizedLagrangeCost(&(Network_Ars(n)[i℄[*j_p℄),Vertex_Prie(vertex),Vertex_Prie(&(Network_Verties(n)[*j_p℄)))+TOLERANCE;if(ost_j > ost_i2j){fputs("Bellman-Ford deteted negative yles.\n", stderr);exit(99);return(false);}}j_p++;}}}return(true);}
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/** Traes the reversed path from the given sink to the given soure inthe network.* Simultaneously heks how muh flow that an be pushed on the path,and* updates the network with this value,(max_push) and the length of thepath (path_length).* Assumes that a graph searh algorithm has been run.* �param n network* �param sink_index* �param soure_index* �param path_r vertex indiies from sink to soure**/void Algorithms_TraePath(Network *n, int sink_index, int soure_index,int *path_r){int path_length, i, j;long double max_push;path_length = 0;max_push = -(Vertex_Demand(&Network_Verties(n)[sink_index℄));path_r[path_length++℄ = sink_index;j = sink_index;i = Vertex_From(&Network_Verties(n)[j℄);if(Ar_ResidualFlow(&(Network_Ars(n)[i℄[j℄)) < max_push){max_push = Ar_ResidualFlow(&(Network_Ars(n)[i℄[j℄));}j = i;if(j != soure_index){while(j != soure_index){path_r[path_length++℄ = j;i = Vertex_From(&Network_Verties(n)[j℄);if(Ar_ResidualFlow(&(Network_Ars(n)[i℄[j℄)) < max_push){max_push = Ar_ResidualFlow(&(Network_Ars(n)[i℄[j℄));}j = i;}}path_r[path_length++℄ = j;if(Vertex_Demand(&Network_Verties(n)[j℄) < max_push){max_push = Vertex_Demand(&Network_Verties(n)[j℄);}NetworkUtil_SetPathLength(n, path_length);NetworkUtil_SetMaxPush(n, max_push);}/** Updates the flows on the ars on path with max_push value for network.* Also updates the demand for the soure and sink vertex on path.* Assumes that the path is in order sink -> soure, and that there isonly* one soure and one sink on the path.* �param n network* �param path**/void Algorithms_UpdateFlowOnPath(Network *n, int *path){int i, row, ol;Ar *ar_r;row = ol = 0;if(NetworkUtil_MaxPush(n) > 0){for(i=NetworkUtil_PathLength(n)-2; i>=0; i--){ol = path[i℄;row = path[i+1℄;ar_r = &(Network_Ars(n)[row℄[ol℄);Ar_SetFlow(ar_r, (Ar_Flow(ar_r) + (NetworkUtil_MaxPush(n))));}Vertex_ChangeDemand(&(Network_Verties(n)[path[NetworkUtil_PathLength(n)-1℄℄),NetworkUtil_MaxPush(n));Vertex_ChangeDemand(&(Network_Verties(n)[path[0℄℄),NetworkUtil_MaxPush(n));}}/** Uses the polynomial maximum flow algorithm for ALD's by Migdalas* to reroute flow from the supersoure to the supersink in the network.* Simultaneously updates the demands of the supersoure and supersink.* Assumes the supersoure has supply>0 initially.* �param original original network in whih flow also should be rerouted* �param ald network whih holds the ald*/void Algorithms_MFALD(Network *original, Network *ald){
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int min_index;long double min_ap;Vertex *start;Network *ald_opy;bool done = false;Algorithms_SetCapaities(ald);ald_opy = Network_MFALDCopy(ald);min_index = Algorithms_SetCapaities(ald_opy);while(!done){if(min_index < 0){//Network_Print(ald);done = true;break;}start = &Network_Verties(ald_opy)[min_index℄;min_ap = Vertex_Cap(start);Vertex_SetCap(&Network_Verties(ald)[min_index℄, 0);Vertex_SetMarked(&Network_Verties(ald)[min_index℄, false);// push flow to the supersinkAlgorithms_PushNPull(original, ald, ald_opy, start, min_ap, true);// pull flow to the supersoureAlgorithms_PushNPull(original, ald, ald_opy, start, min_ap, false);Network_Destroy(ald_opy);Algorithms_SetCapaities(ald);ald_opy = Network_MFALDCopy(ald);min_index = Algorithms_SetCapaities(ald_opy);//Network_Print(ald_opy);// ontinue or terminate depending on apaity of supersoureif(Vertex_Cap(&Network_Verties(ald_opy)[Network_NoVerties(ald)-2℄)<=0)done = true;}Network_Destroy(ald_opy);}/** Downloaded from http://linux.wku.edu/~lamonml/algor/sort/shell.html* (homepage of Mihael Lamont), modified to take Alpha objets.* Shell sort sorts a given array of numbers in inrementing order.* �param numbers numbers to be sorted (Alpha_Value(&numbers[i℄))* �param array_size size of the array to be sorted**/void Algorithms_ShellSort(Alpha numbers[℄, int array_size){ int i, j, inrement;Alpha *temp;temp = Alpha_Create(0, 0, 0, false);inrement = 3;while (inrement > 0){ for (i=0; i < array_size; i++){ j = i;temp->value = (&numbers[i℄)->value;temp->i = (&numbers[i℄)->i;temp->j = (&numbers[i℄)->j;temp->lower = (&numbers[i℄)->lower;while ((j >= inrement) &&(Alpha_Value(&numbers[j-inrement℄) > Alpha_Value(temp))){ (&numbers[j℄)->value = (&numbers[j - inrement℄)->value;(&numbers[j℄)->i = (&numbers[j - inrement℄)->i;(&numbers[j℄)->j = (&numbers[j - inrement℄)->j;(&numbers[j℄)->lower = (&numbers[j - inrement℄)->lower;j = j - inrement;}(&numbers[j℄)->value = temp->value;(&numbers[j℄)->i = temp->i;(&numbers[j℄)->j = temp->j;(&numbers[j℄)->lower = temp->lower;}if (inrement/2 != 0)inrement = inrement/2;else if (inrement == 1)inrement = 0;elseinrement = 1;}free(temp);}/** Uses the Polak-Ribiere formula to ompute the asent diretion, i.e.
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* d_k+1 = dual_grad_k+1 + beta_k*d_k, where* beta_k = (dual_grad_k+1(dual_grad_k+1-dual_grad_k)) /dual_grad_k^Tdual_grad_k.* �param new_gradient dual_grad_k+1* �param old_gradient dual_grad_k* �param old_diretion d_k* �param old_gradient_square dual_grad_k^Tdual_grad_k.* �param no_verties* �return new_diretion d_k+1**/void Algorithms_FindDiretion(long double *new_gradient, long double*old_gradient, long double *old_diretion,long double old_gradient_square, intno_verties){double beta;assert(old_gradient_square != 0);beta = (Algorithms_SalarProd(new_gradient, new_gradient, old_gradient,no_verties)/old_gradient_square);Algorithms_AddArrays(new_gradient, old_diretion, beta, old_diretion,no_verties);}/** Copies the elements in the the old array to the new array* assumes that the new array an hold at least size # of elements* �param opy the array to hold the opy* �param original the array that holds the elements to be opied* �param size the size of the original array**/void Algorithms_ArrayCopy(long double *opy, long double *original,int size){int i;long double *d_, *d_o;d_ = opy;d_o = original;for(i=0; i<size; i++){*d_++ = *d_o++;}}/* Returns the middle value of three given values* �param v_1* �param v_2* �param v_2* �return the middle value of (v_1, v_2, v_3)*/double Algorithms_Mid(double v_1, double v_2,double v_3){if(v_3<=v_2){if(v_3<=v_1){if(v_1<=v_2){//v_3<v_1<v_2return(v_1);}else{//v_3<v_2<v_1return(v_2);}}else{//v_1<v_3<v_2return(v_3);}}else{if(v_1<=v_3){if(v_1<=v_2){//v_1<v_2<v_3return(v_2);}else{//v_2<v_1<v_3return(v_1);}}else{//v_2<v_3<v_1return(v_3);}}
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}/************************************************************************** PRIVATE FUNCTIONS**************************************************************************/** Sets the apaities for the unmarked verties of the network, and* unmarkes those verties that have a apaity equal to zero;* Returns the array index for the vertex with minimum apaity, apaity> 0.* �param ald network* �return min_index**/int Algorithms_SetCapaities(Network *ald){int i;long double in, out;Vertex *supersoure, *supersink;int min_index = -1;long double min_ap = DBL_MAX;// alulate apaities for all marked verties exept the super-soureand super-sinkfor(i=0; i<Network_NoVerties(ald)-2; i++){if(Vertex_Marked(&Network_Verties(ald)[i℄)){in = NetworkUtil_DeltaFlow(ald, &Network_Verties(ald)[i℄, true);out = NetworkUtil_DeltaFlow(ald, &Network_Verties(ald)[i℄, false);if(in < out)Vertex_SetCap(&Network_Verties(ald)[i℄, in);elseVertex_SetCap(&Network_Verties(ald)[i℄, out);// unmark those verties with a apaity equal to zeroif(Vertex_Cap (&Network_Verties(ald)[i℄) == 0)Vertex_SetMarked(&Network_Verties(ald)[i℄, false);if((Vertex_Marked(&Network_Verties(ald)[i℄)) && (min_ap >Vertex_Cap(&Network_Verties(ald)[i℄))){min_ap = Vertex_Cap(&Network_Verties(ald)[i℄);min_index = i;}}}// alulate apaity for super-souresupersoure = &Network_Verties(ald)[Network_NoVerties(ald)-2℄;Vertex_SetCap(supersoure, NetworkUtil_DeltaFlow(ald, supersoure, false));if((Vertex_Cap(supersoure)>0) && (min_ap > Vertex_Cap(supersoure))){min_ap = Vertex_Cap(supersoure);min_index = Network_NoVerties(ald)-2;}supersink = &Network_Verties(ald)[Network_NoVerties(ald)-1℄;Vertex_SetCap(supersink, NetworkUtil_DeltaFlow(ald, supersink, true));if((Vertex_Cap(supersink)>0) && (min_ap > Vertex_Cap(supersink))){min_ap = Vertex_Cap(supersink);min_index = Network_NoVerties(ald)-1;}return(min_index);}/* Calulates the salar produt between two arrays of same length,* where the produt is taken as a1*(a2-a3).* �param a1 array 1* �param a2 array 2* �param a3 array 3* �param no number of elements in array* �return sum*/double Algorithms_SalarProd(long double *a1, long double *a2,long double *a3, int no){long double sum;int i;sum = 0;for(i=0; i<no; i++){sum += a1[i℄*a2[i℄ - a1[i℄*a3[i℄;}return sum;}/* Adds two arrays elementwise and stores the result in result.* Multiplies array 2 with salar before addition.* Assumes that both arrays are of same length.* �param a1 array 1* �param a2 array 2
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* �param salar* �param result* �param no number of elements in array*/void Algorithms_AddArrays(long double *a1, long double *a2, double salar,long double *result, int no){int i;for(i=0; i<no; i++){result[i℄ = a1[i℄ + (salar*a2[i℄);}}/** Pushes (push=true) or pulls (push=false) flow from a given start vertex* to the sink or soure of an ald produed by a BS or DS searh of anetwork.* Simultaneousely updates the flows in the original network. The demands* of the supersoure of the original network and ald are also updated if* the push or pull proedure was suessful.* A opy of the ald is used to hold the urrent predeessor and outinformation.* �param original original network* �param ald original ald* �param opy opy of ald* �param start vertex* �param flow amount of flow to be pushed or pulled* �param push true or false**/void Algorithms_PushNPull(Network *original, Network *ald, Network*ald_opy, Vertex *start, long double flow, bool push){Queue *queue;Vertex *o_soure, *a_soure, *o_sink, *a_sink;int vertex_index, *neighbours;bool suessful = false;neighbours = NULL;queue = Queue_Create(Network_NoVerties(original)*Network_NoVerties(original));Queue_Add(queue, Vertex_Index(start));o_soure = &Network_Verties(original)[Network_NoVerties(original)-2℄;o_sink = &Network_Verties(original)[Network_NoVerties(original)-1℄;while(!Queue_Empty(queue)){vertex_index = Queue_First(queue);if(vertex_index != Vertex_Index(start)){Vertex_SetCap(&Network_Verties(ald)[vertex_index℄,(Vertex_Cap(&Network_Verties(ald)[vertex_index℄)-flow));if(Vertex_Cap(&Network_Verties(ald)[vertex_index℄) == 0)Vertex_SetMarked(&Network_Verties(ald)[vertex_index℄, false);}// pull flow towards the soureif(push==false){if(Vertex_NoPre(&Network_Verties(ald_opy)[vertex_index℄) > 0){suessful = true;neighbours = Vertex_Predeessors(&Network_Verties(ald_opy)[vertex_index℄);Algorithms_AddFlowOnAdjaent(original, ald, flow, neighbours,Vertex_NoPre(&Network_Verties(ald_opy)[vertex_index℄), vertex_index, queue, false);}}// push flow towards the sinkelse{if(Vertex_NoOut(&Network_Verties(ald_opy)[vertex_index℄) > 0){suessful = true;neighbours = Vertex_Out(&Network_Verties(ald_opy)[vertex_index℄);Algorithms_AddFlowOnAdjaent(original, ald, flow, neighbours,Vertex_NoPre(&Network_Verties(ald_opy)[vertex_index℄),vertex_index, queue , true);}}}// adjust the demands of the supersoure of the original network, and aldif(push==false && suessful){Vertex_SetDemand(o_soure, (Vertex_Demand(o_soure)-flow));a_soure = &Network_Verties(ald)[Network_NoVerties(ald)-2℄;Vertex_SetDemand(a_soure, (Vertex_Demand(a_soure)-flow));}if(push==true && suessful){Vertex_SetDemand(o_sink, (Vertex_Demand(o_sink)+flow));a_sink = &Network_Verties(ald)[Network_NoVerties(ald)-1℄;
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Vertex_SetDemand(a_sink, (Vertex_Demand(a_sink)+flow));}Queue_Destroy(queue);}/** Adds amount flow to the ars defined by an index and its neighboursin an ald.* If push is true, the neighbours are taken from the urrent vertexoutgoing ars,* if false from the vertex predeessors.* Assumes that the ars has enough apaity to add amount flow betweenthem.* �param original original network* �param ald* �param flow amount of flow that should be added* �param neighbours array that holds the indies of the vertiesadjaent to index* �param index index of the urrent vertex* �param queue holds indiies of those verties with involved ars* �param push true or false**/void Algorithms_AddFlowOnAdjaent(Network *original, Network *ald,long double flow, int *neighbours,int no_neighbours, int index,Queue *queue , bool push){Ar *ar_a,*ar_o;// ar_a=ald ar, ar_o=original arlong double urr_flow = flow;int iterator = 0;while(urr_flow>0 && iterator<no_neighbours){// use predeessor arsif(!push){ar_a = &Network_Ars(ald)[*neighbours℄[index℄;ar_o = &Network_Ars(original)[*neighbours℄[index℄;}// use outgoing arselse{ar_a = &Network_Ars(ald)[index℄[*neighbours℄;ar_o = &Network_Ars(original)[index℄[*neighbours℄;}// Ar_Print(ar_o);Ar_Print(ar_a);if(Ar_ResidualFlow(ar_a) >= urr_flow){Ar_ChangeFlow(ar_a, urr_flow);Ar_ChangeFlow(ar_o, urr_flow);urr_flow = 0;}else{urr_flow -= Ar_ResidualFlow(ar_a);Ar_SetFlow(ar_a, Ar_Upper(ar_a));Ar_SetFlow(ar_o, Ar_Upper(ar_o));}Queue_Add(queue, *neighbours++);iterator++;}}/** Redues the ost to an vertex j in a shortest path searh if* the urrent ost of the vertex is higher than the sum of a* urrent neighbour vertex i and the ar (i,j) between them.* To avoid negative yles by omputer arithmeti, a small tolerane is* added to the flow of eah ar.* �param n network that holds the array of verties in the network* �param ar ar (i,j)* �param lagrange false if linearized ost of primal problem should beused* true if linearized ost of Lagrange funtion should beused**/void Algorithms_RelaxAr(Network *n, Ar *ar, bool lagrange){int i = Ar_From(ar);int j = Ar_To(ar);long double tmp_ost = DBL_MAX;if(!lagrange)tmp_ost = Vertex_Cost(&Network_Verties(n)[i℄) +Ar_CurrLinearizedCost(ar) + TOLERANCE;elsetmp_ost = Vertex_Cost(&Network_Verties(n)[i℄) +Ar_CurrLinearizedLagrangeCost(ar,Vertex_Prie(&Network_Verties(n)[i℄),Vertex_Prie(&Network_Verties(n)[j℄)) + TOLERANCE;
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if(Vertex_Cost(&Network_Verties(n)[j℄) > tmp_ost){Vertex_SetCost(&Network_Verties(n)[j℄, tmp_ost);Vertex_SetFrom(&Network_Verties(n)[j℄, i);}}/** Calulates the step size aording to Helgason et al.* If first=true, the andidate stepsizes are set in all_alpha,* otherwise all_alpha from previous iteration is sorted, now traversesorted all_alpha* and replae urrent values with the new values that for eah alpha isfound* in the orresponding ar, store the new alphas in all_alpha_new withelements* equal to -1 in all_alpha removed.**/double Algorithms_CalHelgasonAlpha(Network *n, Alpha *all_alpha,Alpha *all_alpha_new, long double*diretion, bool first){double alpha;int old_alpha_length;// set the andidate alphas in all_alphaif(first){NetworkUtil_CalAlphas(n, all_alpha, diretion, true);Algorithms_ShellSort(all_alpha, ((Network_NoArs(n)*2) + 1 -(NetworkUtil_NoMarked(n)*2)));alpha = Algorithms_Helgason(n, all_alpha, diretion);}// traverse sorted all_alpha and replae values,// sort all_alpha_new, and apply Helgasonelse{old_alpha_length = NetworkUtil_NoAlpha(n);NetworkUtil_CalAlphas(n, all_alpha, diretion, false);Algorithms_ReplaeAlphas(n, all_alpha, all_alpha_new, old_alpha_length);Algorithms_ShellSort(all_alpha_new, NetworkUtil_NoAlpha(n));alpha = Algorithms_Helgason(n, all_alpha_new, diretion);}if(!first)Algorithms_AlphaArrayCopy(all_alpha, all_alpha_new,NetworkUtil_NoAlpha(n));return(alpha);}/** Takes an array of sorted alpha values with length number of elements,and* replaes eah value with the orresponding value of the ar in thenetwork.* Then removes all elements from the array that have a value equal to -1.* �param n network* �param alpha_old array of sorted alpha values from previous iteration* �param alpha_new array of to hold (un)sorted alpha values fromurrent iteration* �param length number of sorted elements in alpha_old**/void Algorithms_ReplaeAlphas(Network *n, Alpha *alpha_old,Alpha *alpha_new, int length){int i, from, to, j;Ar *ar;j=0;for(i=0; i<length; i++){from = Alpha_From(&alpha_old[i℄);to = Alpha_To(&alpha_old[i℄);ar = &Network_Ars(n)[from℄[to℄;if(Alpha_Lower(&alpha_old[i℄))Alpha_SetValue(&alpha_old[i℄, Ar_AlphaL(ar));elseAlpha_SetValue(&alpha_old[i℄, Ar_AlphaU(ar));}for(i=0; i<Network_NoArs(n)*2 + 1; i++){if(Alpha_Value(&alpha_old[i℄)!=-1)alpha_new[j++℄ = alpha_old[i℄;}}/** Copies the elements in the the old array to the new array* assumes that the new array an hold at least size # of elements* �param opy the array to hold the opy* �param original the array that holds the elements to be opied
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* �param size the size of the original array**/void Algorithms_AlphaArrayCopy(Alpha *opy, Alpha *original, int size){int i;Alpha *a_, *a_o;a_ = opy;a_o = original;for(i=0; i<size; i++){*a_++ = *a_o++;}}
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A.2.2 Alpha.c#inlude <assert.h>#inlude <stdlib.h>#inlude "Alpha.h"/*typedef strut{double value; // the urrent value of alphaint i; // index of vertex at ars tail whih alpha is assoiated withint j; // index of vertex at ars head whih alpha is assoiated withbool lower; // true if alpha is evaluated at the lower limit of ar (i,j),false otherwise}Alpha;*//************************************************************************** PUBLIC FUNCTIONS**************************************************************************/** Alloates memory for an alpha.* �param value value of alpha* �param i index of vertex at ars tail whih alpha is assoiated with* �param j index of vertex at ars head whih alpha is assoiated with* �param lower true if alpha evaluated at lower limit, false otherwise* �return alpha**/Alpha* Alpha_Create(double value, int from, int to, bool lower){Alpha *alpha = (Alpha *)allo(1, sizeof(Alpha));alpha->value = value;alpha->i = from;alpha->j = to;alpha->lower = lower;return(alpha);}/** Returns memory for an alpha.* �param aalpha**/void Alpha_Destroy(Alpha *alpha){assert(alpha!=NULL);free(alpha);}/** Gets the value for alpha.* �param alpha* �return value**/double Alpha_Value(Alpha *alpha){assert(alpha!=NULL);return(alpha->value);}/** Sets the value for alpha.* �param alpha* �param value**/void Alpha_SetValue(Alpha *alpha, double value){assert(alpha!=NULL);alpha->value = value;}/** Gets the value for index at ars tail to whih alpha is assoiated.* �param alpha* �return i**/int Alpha_From(Alpha *alpha){assert(alpha!=NULL);return(alpha->i);}/** Sets the value for index at ars tail to whih alpha is assoiated.* �param alpha* �param i**/void Alpha_SetFrom(Alpha *alpha, int i){assert(alpha!=NULL);alpha->i = i;}
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/** Gets the value for index at ars head to whih alpha is assoiated.* �param alpha* �return j**/int Alpha_To(Alpha *alpha){assert(alpha!=NULL);return(alpha->j);}/** Sets the value for index at ars head to whih alpha is assoiated.* �param alpha* �param j**/void Alpha_SetTo(Alpha *alpha, int j){assert(alpha!=NULL);alpha->j = j;}/* Gets the value for lower. True if alpha evaluated at lower limit,false otherwise.* �param alpha* �return true or false*/bool Alpha_Lower(Alpha *alpha){assert(alpha!=NULL);return(alpha->lower);}/* Sets the value for lower of alpha.* �param alpha* �param lower true if alpha evaluated at lower limit, false otherwise*/void Alpha_SetLower(Alpha *alpha, bool lower){assert(alpha!=NULL);alpha->lower = lower;}

72



A.2.3 Constants.h#ifndef _Constants_h#define _Constants_h#inlude <stdlib.h>#define CORR_EPSILON 0.0000000000000001 //-16#define OPT_EPSILON 0.000000000001 //-12#define EPSILON 0.00000001 //-8#define TOLERANCE MIN 1000#define MAX_ITERATIONS 200000#define RESTART 100typedef strut{double value; // value returned by proessdouble time; // CPU time for proess}Result;#endif
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A.2.4 Heuristics.c#inlude "Heuristis.h"#inlude "Algorithms.h"#inlude "NetworkUtil.h"#inlude "Queue.h"#inlude "Constants.h"#inlude <stdio.h>#inlude <assert.h>#inlude <math.h>#inlude <stdlib.h>#inlude <float.h>/***************************************************************************** PUBLIC FUNCTIONS*****************************************************************************/** Uses the Flowroute method with the BFS searh strategy to adjust the* urrent flows of the network to primal feasibility.* Returns the primal objetive value after adjustment.* Assumes there is a feasible solution.* �param n network* �return value sum f_ij(x_ij)**/long double Heuristis_Flowroute(Network *n){int i, j, *path;Vertex *soure, *sink;path = (int*)allo(Network_NoVerties(n), sizeof(int));for(i=0; i<Network_NoSoures(n); i++){soure = &(Network_Verties(n)[Network_Soures(n)[i℄℄);Algorithms_BFS(n, soure);for(j=0; j<Network_NoSinks(n); j++){sink = &(Network_Verties(n)[Network_Sinks(n)[j℄℄);if(Vertex_Marked(sink)){Algorithms_TraePath(n, Vertex_Index(sink), Vertex_Index(soure), path);Algorithms_UpdateFlowOnPath(n, path);}}NetworkUtil_UnMark(n);}free(path);return(NetworkUtil_PrimalValue(n));}/** Uses the Flowroute method with the DFS searh strategy to adjust the* urrent flows of the network to primal feasibility.* Returns the primal objetive value after adjustment.* Assumes there is a feasible solution.* �param n network* �return value sum f_ij(x_ij)**/long double Heuristis_FlowrouteD(Network *n){int i, j, *path;Vertex *soure, *sink;bool done = false;path = (int*)allo(Network_NoVerties(n), sizeof(int));for(i=0; i<Network_NoSoures(n); i++){soure = &(Network_Verties(n)[Network_Soures(n)[i℄℄);while(!done){Algorithms_DFS(n, soure);for(j=0; j<Network_NoSinks(n); j++){sink = &(Network_Verties(n)[Network_Sinks(n)[j℄℄);if(Vertex_Marked(sink)){Algorithms_TraePath(n, Vertex_Index(sink), Vertex_Index(soure),path); Algorithms_UpdateFlowOnPath(n, path);if(Vertex_Demand(soure) < OPT_EPSILON){done = true;break;}}}NetworkUtil_UnMark(n);}done = false;}free(path);return(NetworkUtil_PrimalValue(n));}
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/** Uses the Flowroute method with the BS searh strategy, and the* MFALD method to adjust the urrent flows of the network to primalfeasibility.* If the super-soure has supply left after FlowrouteBS has been run,* Flowroute empties the remaining supply.* Returns the primal objetive value after adjustment.* Assumes that network has a supersoure and a supersink, and that* there is a feasible solution.* �param opy network* �return value sum f_ij(x_ij)**/long double Heuristis_FlowrouteBS(Network *opy){Network *ald;int i, soure_index, sink_index;Ar ar;bool residual = false;while(Vertex_Demand(&Network_Verties(opy)[Network_NoVerties(opy)-2℄) >OPT_EPSILON){Algorithms_BS(opy);if(!Vertex_Marked(&Network_Verties(opy)[Network_NoVerties(opy)-1℄)){residual = true;break;}ald = Network_ALDCopy(opy);Algorithms_MFALD(opy, ald);Network_Destroy(ald);NetworkUtil_UnMark(opy);}if(residual){opy->no_soures -= 1;opy->no_sinks -= 1;for(i=0; i<Network_NoSoures(opy)-1; i++){soure_index = Network_Soures(opy)[i℄;ar = Network_Ars(opy)[Network_NoVerties(opy)-2℄[soure_index℄;Vertex_SetDemand(&Network_Verties(opy)[soure_index℄,(Vertex_Demand(&Network_Verties(opy)[soure_index℄)-Ar_Flow(&ar)));}for(i=0; i<Network_NoSinks(opy)-1; i++){sink_index = Network_Sinks(opy)[i℄;ar = Network_Ars(opy)[sink_index℄[Network_NoVerties(opy)-1℄;Vertex_SetDemand(&Network_Verties(opy)[sink_index℄,(Vertex_Demand(&Network_Verties(opy)[sink_index℄)+Ar_Flow(&ar)));}return(Heuristis_Flowroute(opy));}elsereturn(NetworkUtil_PrimalValue(opy));}/** Uses the Shortest Path method to adjust the urrent flows of the network* to primal feasibility.* Assumes there is a feasible solution, and that all reahable sinks are* unmarked initially.* �param n network* �return value sum f_ij(x_ij)**/long double Heuristis_ShortestPath(Network *n){int i, j, *path, min_index;Vertex *soure, *sink;bool ok = false;path = (int*)allo(Network_NoVerties(n), sizeof(int));for(i=0; i<Network_NoSoures(n); i++){soure = &(Network_Verties(n)[Network_Soures(n)[i℄℄);if((ok = Algorithms_BellmanFord(n, soure, false))){for(j=0; j<Network_NoSinks(n); j++){min_index = Heuristis_FindMinSink(Network_Verties(n),Network_Sinks(n), Network_NoSinks(n));sink = &Network_Verties(n)[min_index℄;Vertex_SetMarked(sink, true);Algorithms_TraePath(n, Vertex_Index(sink), Vertex_Index(soure),path);Algorithms_UpdateFlowOnPath(n, path);}NetworkUtil_UnMark(n);}elsebreak;}free(path);
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if(ok)return(NetworkUtil_PrimalValue(n));elsereturn(-1);}/** Uses the Shortest Path method used for the linearized Lagrange funtion wrt x* to adjust the urrent flows of the network to primal feasibility.* Assumes there is a feasible solution.* �param n network* �return value sum f_ij(x_ij)**/long double Heuristis_ShortestPathL(Network *n){int i, j, *path, min_index;Vertex *soure, *sink;bool ok = false;path = (int*)allo(Network_NoVerties(n), sizeof(int));for(i=0; i<Network_NoSoures(n); i++){soure = &(Network_Verties(n)[Network_Soures(n)[i℄℄);if((ok = Algorithms_BellmanFord(n, soure, true))){for(j=0; j<Network_NoSinks(n); j++){min_index = Heuristis_FindMinSink(Network_Verties(n),Network_Sinks(n), Network_NoSinks(n));sink = &Network_Verties(n)[min_index℄;Vertex_SetMarked(sink, true);Algorithms_TraePath(n, Vertex_Index(sink), Vertex_Index(soure),path);Algorithms_UpdateFlowOnPath(n, path);}NetworkUtil_UnMark(n);}elsebreak;}free(path);if(ok)return(NetworkUtil_PrimalValue(n));elsereturn(-1);}/***************************************************************************** PRIVATE FUNCTIONS*****************************************************************************/** Finds the sink with the minimum ost among the set of reahable sinks* that are unmarked from a soure, and returns that sinks index.* �param verties* �param sinks* �param no_sinks size of the array holding sinks* �return min_index**/int Heuristis_FindMinSink(Vertex *verties, int *sinks, int no_sinks){int i, min_index;long double min_ost;Vertex *sink;min_ost = DBL_MAX;min_index = -1;for(i=0; i<no_sinks; i++){sink = &verties[sinks[i℄℄;if((Vertex_Cost(sink) != DBL_MAX) && (!Vertex_Marked(sink))){if(min_ost > Vertex_Cost(sink)){min_ost = Vertex_Cost(sink);min_index = Vertex_Index(sink);}}}return(min_index);}
76



A.3 Data structure related code

A.3.1 Arc.c#inlude "Ar.h"#inlude <stdlib.h>#inlude <stdio.h>#inlude <assert.h>#inlude "Constants.h"/*typedef strut{int from; // index of vertex at ars tailint to; // index of vertex at ars headdouble lower; // lower limit for flow on ar, i.e. l_ijdouble upper; // upper limit for flow on ar, i.e. u_ijQuadFun ost; // f_ij(x_ij) = _ij + a_ij*x_ij + b_ij*x_ij^2long double flow; // flow on ar, i.e. x_ijbool residual; // false if ar original, true if ar residualbool marked; // true if ar removed from Helgason, false otherwisedouble alpha_l; // the value for alpha evaluated at the lower limitof ardouble alpha_u; // the value for alpha evaluated at the upper limitof ar}Ar; *//************************************************************************* PUBLIC FUNCTIONS*************************************************************************/** Alloates memory for an ar.* �param from vertex index for the tail of the ar* �param to vertex index for the head of the ar* �param lower the lower flow-limit of the ar* �param upper the upper flow-limit of the ar* �return ar**/Ar *Ar_Create(int from, int to, double lower, double upper, QuadFun *ost){Ar *ar;ar = (Ar *)allo(1, sizeof(Ar));ar->from = from;ar->to = to;ar->lower = lower;ar->upper = upper;(&ar->ost)->a = QuadFun_a(ost);(&ar->ost)->b = QuadFun_b(ost);(&ar->ost)-> = QuadFun_(ost);ar->flow = 0; // 1 for testing purposes, otherwise 0 initiallyar->residual = ar->marked = false;ar->alpha_l = ar->alpha_u = -1;QuadFun_Destroy(ost);return ar;}/** Returns memory for an ar.* �param ar**/void Ar_Destroy(Ar *ar){free(ar);}/* Sets the lower limit of an ar.* �param ar* �param lower*/void Ar_SetLower(Ar *ar, double lower){assert(ar != NULL);ar->lower = lower;}/** Gets the lower limit of an ar.* �param ar* �return lower**/double Ar_Lower(Ar *ar){assert(ar != NULL);return ar->lower;}
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/* Sets the upper limit of an ar.* �param ar* �param upper*/void Ar_SetUpper(Ar *ar, double upper){assert(ar != NULL);ar->upper = upper;}/** Gets the upper limit of an ar.* �param ar* �return upper**/double Ar_Upper(Ar *ar){assert(ar != NULL);return ar->upper;}/** Gets the ost funtion to traverse an ar.* �param ar* �return ost**/QuadFun Ar_Cost(Ar *ar){assert(ar != NULL);//Ar_Print(ar);return ar->ost;}/** Gets the flow for an ar.* �param ar* �return flow**/long double Ar_Flow(Ar *ar){assert(ar != NULL);return ar->flow;}/** Sets the flow on ar to new_flow.* �param ar* �param new_flow**/void Ar_SetFlow(Ar *ar, long double new_flow){assert(ar != NULL);ar->flow = new_flow;}/** Returns true if the ar has flow (i.e. x_ij != 0),* otherwise false.* �param ar* �return true or false**/bool Ar_HasFlow(Ar *ar){assert(ar != NULL);return(!(Ar_Flow(ar) == 0));}/** Changes the flow for an ar by given amount if the hange is within limits,* otherwise nothing happens.* �param ar* �param amount**/void Ar_ChangeFlow(Ar *ar, long double amount){long double new;assert(ar != NULL);new = (ar->flow) + amount;if(Ar_ValidChange(new, ar->upper, ar->lower)){ar->flow = new;}}/** Returns the value of how muh flow an be added to the ar based on* the urrent flow and the upper limit of the ar.* �param ar* �return value**/
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long double Ar_ResidualFlow(Ar *ar){assert(ar != NULL);return(ar->upper - ar->flow);}/** Returns true if the ar is saturated, false otherwise.* �param ar* �return true or false**/bool Ar_Saturated(Ar *ar){assert(ar != NULL);return((ar->upper - ar->flow) == 0);//< OPT_EPSILON);}/** Gets the value for residual on ar.* Returns true if ar is an residual ar, otherwise false.* �param ar* �return true or false**/bool Ar_Residual(Ar *ar){assert(ar != NULL);return(ar->residual);}/** Sets the value for residual on ar to residual.* �param ar* �param remove**/void Ar_SetResidual(Ar *ar, bool residual){assert(ar != NULL);ar->residual = residual;}/** The ost in opy is set to minus the ost in original.* �param opy* �param original**/void Ar_SetResidualCost(Ar *opy, Ar *original){QuadFun original_ost ;assert(opy != NULL);assert(original != NULL);original_ost = Ar_Cost(original);(&opy->ost)->a = -(QuadFun_a(&original_ost));(&opy->ost)->b = -(QuadFun_b(&original_ost));(&opy->ost)-> = -(QuadFun_(&original_ost));}/** Gets the value for marked on ar.* Returns true if ar has d_i-d_j=0, otherwise false.* �param ar* �return true or false**/bool Ar_Marked(Ar *ar){assert(ar != NULL);return(ar->marked);}/** Sets the value for marked on ar to marked.* �param ar* �param mark**/void Ar_SetMarked(Ar *ar, bool mark){assert(ar != NULL);ar->marked = mark;}/** Calulates the ost for the urrent flow.* �param ar* �return sum**/long double Ar_CurrCost (Ar *ar){QuadFun f;assert(ar != NULL);
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f = Ar_Cost(ar);return (QuadFun_Value(&f, Ar_Flow(ar)));}/** Calulates the ost for the urrent linearized flow.* �param ar* �return sum**/long double Ar_CurrLinearizedCost (Ar *ar){QuadFun ost;assert(ar != NULL);ost = Ar_Cost(ar);return ((2*QuadFun_b(&ost)*Ar_Flow(ar)) + QuadFun_a(&ost));}/** Calulates the ost for the urrent linearized Lagrange funtion* evaluated for the urrent flow.* �param ar* �param prie_i dual variable assoiated with vertex at ars tail* �param prie_j dual variable assoiated with vertex at ars head* �return sum**/long double Ar_CurrLinearizedLagrangeCost (Ar *ar, long double prie_i,long double prie_j){QuadFun ost;assert(ar != NULL);ost = Ar_Cost(ar);return ((2*QuadFun_b(&ost)*Ar_Flow(ar)) + QuadFun_a(&ost) +prie_i - prie_j);}/** Sets the index of the vertex at the tail of the ar.* �param ar* �param from**/void Ar_SetFrom(Ar *ar, int from){assert(ar != NULL);ar->from = from;}/** Returns the index of the vertex at the tail of the ar.* �param ar* �return from**/int Ar_From(Ar *ar){assert(ar != NULL);return ar->from;}/** Sets the index of the vertex at the head of the ar.* �param ar* �param to**/void Ar_SetTo(Ar *ar, int to){assert(ar != NULL);ar->to = to;}/** Returns the index of the vertex at the head of the ar.* �param ar* �return head**/int Ar_To(Ar *ar){assert(ar != NULL);return ar->to;}/* Sets the value for alpha_l of the ar.* �param ar* �param alpha_l*/void Ar_SetAlphaL(Ar *ar, double alpha_l){assert(ar != NULL);ar->alpha_l = alpha_l;
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}/* Returns the value for alpha_l of the ar.* �param ar* �return alpha_l*/double Ar_AlphaL(Ar *ar){assert(ar != NULL);return(ar->alpha_l);}/* Sets the value for alpha_u of the ar.* �param ar* �param alpha_u*/void Ar_SetAlphaU(Ar *ar, double alpha_u){assert(ar != NULL);ar->alpha_u = alpha_u;}/* Returns the value for alpha_u of the ar.* �param ar* �return alpha_u*/double Ar_AlphaU(Ar *ar){assert(ar != NULL);return(ar->alpha_u);}/** Returns true if ar holds the "empty" ar,* otherwise false.* �param ar* �return true or false**/bool Ar_Empty(Ar *ar){assert(ar != NULL);return ((ar->from==0) && (ar->to==0) && (ar->upper==0));}/** Sets all the values of ar to zero* �param ar**/void Ar_MkEmpty(Ar *ar){ar->from = ar->to = 0;ar->lower = ar->upper = ar->flow = 0;(&ar->ost)->a = (&ar->ost)->b = (&ar->ost)-> = 0;}/** String representation of an ar.* �param ar**/void Ar_Print(Ar *ar){assert(ar != NULL);printf("Ar from vertex %d to vertex %d has:\n", ar->from, ar->to);printf("urrent flow = %Lf\n", ar->flow);printf("ost = %Lf\n", (QuadFun_Value(&(ar->ost), ar->flow)));printf("lower limits = %f\n", ar->lower);printf("upper limits = %.16f\n", ar->upper);printf("residual = %d\n", ar->residual);printf("marked = %d\n", ar->marked);printf("%s", "ost = ");QuadFun_Print(&ar->ost);}/************************************************************************* PRIVATE FUNCTIONS*************************************************************************/** Returns true if the parameter new is within limits lower to upper,* otherwise false.* �param new the parameter to hek if within limits* �param upper upper limit* �param lower lower limit* �return true or false**/bool Ar_ValidChange(long double new, double upper, double lower){
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if(new<=upper && new>=lower)return true;elsereturn false;}
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A.3.2 Network.c#inlude "Network.h"#inlude <stdlib.h>#inlude <stdio.h>#inlude <assert.h>#inlude <math.h>#inlude <float.h>#inlude "Ar.h"#inlude "Mis.h"#inlude "Constants.h"/*typedef strut{int *soures; // array with indies of the soure-verties in networkint *sinks; // array with indies of the sink-verties in networkVertex *verties; // array with the verties of networkAr **ars; // matrix with the ars of networkint max_soures; // maximum size of *souresint max_sinks; // maximum size of *sinksint max_verties; // maximum size of *vertiesint no_ars; // urrent size of **arsint no_soures; // urrent size of *souresint no_sinks; // urrent size of *sinksint no_verties; // urrent size of *vertieslong double *prie; // array with the dual variables ofthe verties in network, i.e. vlong double *dual_grad; // the dual gradient of network,i.e. grad w(v) = Ax-blong double *balane; // the urrent balane of eah vertex,i.e. Axlong double dual_grad_norm_square; // the norm of the dual gradient ofnetwork, i.e. ||grad w(v)||long double demand_norm_square; // the norm of the demand of theverties in network, i.e. ||b||int path_length; // pathlength of urrent path fromsoure to sink in residaul networklong double max_push; // maximum amount of flow that an bepushed on urrent pathint min_index; // index of vertex with minimumapaityint no_marked; // number of marked ars in networkint no_alpha; // no_ars*2 + 1 - no_marked*2}Network;*//************************************************************************* PUBLIC FUNCTIONS*************************************************************************/** Alloates memory for a network.* �param max_verties the maximum number of verties in the network* �return network**/Network *Network_Create(int max_verties){Network *n;int i;n = (Network *)allo(1, sizeof(Network));n->max_verties = max_verties;n->verties = (Vertex *)allo(max_verties, (sizeof(Vertex)));n->ars = (Ar **)allo(max_verties, (sizeof(Ar*)));for(i=0; i<max_verties; i++){n->ars[i℄ = (Ar *)allo(max_verties, (sizeof(Ar)));}n->prie = (long double *)allo(max_verties, (sizeof(long double)));n->dual_grad = (long double *)allo(max_verties, (sizeof(long double)));n->balane = (long double *)allo(max_verties, (sizeof(long double)));n->soures = n->sinks = NULL;return n;}/** Alloates memory for a bipartite graph.* �param max_soures the number of soures of the bipartite graph* �param max_sinks the number of sinks of the bipartite graph* �return graph**/Network *Network_CreateB(int max_soures, int max_sinks){Network *b;int max_verties;max_verties = max_soures+max_sinks;
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b = Network_Create(max_verties);b->max_soures = max_soures;b->max_sinks = max_sinks;b->soures = (int *)allo(max_soures, (sizeof(int)));b->sinks = (int *)allo(max_sinks, (sizeof(int)));return b;}/** Returns memory for a network (or a bipartite graph).* �param network**/void Network_Destroy(Network *network){int i;for(i=0; i<network->max_verties; i++){if((&network->verties[i℄)->in != NULL)free((&network->verties[i℄)->in);if((&network->verties[i℄)->out != NULL)free((&network->verties[i℄)->out);if((&network->verties[i℄)->predeessors != NULL)free((&network->verties[i℄)->predeessors);}free(network->verties);if(network->soures != NULL){free(network->soures);}if(network->sinks != NULL){free(network->sinks);}free(network->prie);free(network->dual_grad);free(network->balane);for(i=0; i<network->max_verties; i++){free(network->ars[i℄);}free(network->ars);free(network);}/** Adds a vertex to a network.* Assumes there is enough spae in *verties.* �param vertex* �param network**/void Network_AddVertex(Network *network, Vertex *vertex){Vertex *v;assert(network != NULL);assert(network->no_verties < network->max_verties);v = &network->verties[network->no_verties++℄;v->index = Vertex_Index(vertex);v->max_in = Vertex_NoIn(vertex);v->max_out = Vertex_NoOut(vertex);v->marked = false;v->from = v->level = -1;v->ost = DBL_MAX;Vertex_Destroy(vertex);}/** Sets one index in the array of soure indies.* If the array is too small, it gets extended to twie its urrent size.* �param network* �param soure_index**/void Network_SetSoure(Network *network, int soure_index){assert(network != NULL);if(network->soures != NULL){if(network->no_soures >= network->max_soures){network->soures = (int*)reallo(network->soures,((network->max_soures*2)*sizeof(int)));network->max_soures *= 2;}}else{network->soures = (int*)allo(1, sizeof(int));network->max_soures = 1;}network->soures[network->no_soures++℄ = soure_index;}
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/** Sets one index in the array of sink indies.* If the array is too small, it gets extended to twie its urrent size.* �param network* �param sink_index**/void Network_SetSink(Network *network, int sink_index){assert(network != NULL);if(network->sinks != NULL){if(network->no_sinks >= network->max_sinks){network->sinks = (int*)reallo(network->sinks, ((network->max_sinks*2)*sizeof(int)));network->max_sinks *= 2;}}else{network->sinks = (int*)allo(1, sizeof(int));network->max_sinks = 1;}network->sinks[network->no_sinks++℄ = sink_index;}/** Adds an ar to a network, if there is another ar present at the* oordinates where this ar is to be added, the old ar remains.* Sets the inoming and outgoing indexes for the involved verties.* Returns true if addition suessful, otherwise false.* �param ar* �param network* �return true or false**/bool Network_AddAr(Network *network, Ar *ar){int from, to;Ar *a;QuadFun ost;assert(network != NULL);from = Ar_From(ar);to = Ar_To(ar);a = &network->ars[from℄[to℄;ost = Ar_Cost(ar);if(Ar_Empty(a)){a->from = from;a->to = to;a->lower = Ar_Lower(ar);a->upper = Ar_Upper(ar);a->flow = Ar_Flow(ar);(&a->ost)->a = QuadFun_a(&ost);(&a->ost)->b = QuadFun_b(&ost);(&a->ost)-> = QuadFun_(&ost);a->residual = Ar_Residual(ar);network->no_ars++;Vertex_SetOut(&network->verties[from℄, to);Vertex_SetIn(&network->verties[to℄, from);Ar_Destroy(ar);return true;}else{Ar_Destroy(ar);return false;}}/** Gets the number of soures in the network.* �param network**/int Network_NoSoures(Network *network){assert (network != NULL);return network->no_soures;}/** Gets the array with soures of the network.* �param network* �return soures**/int* Network_Soures(Network *network){assert (network != NULL);return network->soures;}/** Gets the number of sinks in the network.
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* �param network**/int Network_NoSinks(Network *network){assert (network != NULL);return network->no_sinks;}/** Gets the array with sinks of the network.* �param network* �return sinks**/int* Network_Sinks(Network *network){assert (network != NULL);return network->sinks;}/** Gets the number of verties in the network.* �param network**/int Network_NoVerties(Network *network){assert (network != NULL);return network->no_verties;}/** Gets the array with verties of the network.* �param network* �return veties**/Vertex* Network_Verties(Network *network){assert (network != NULL);return network->verties;}/** Gets the number of ars of the network.* �param network* �return no_ars**/int Network_NoArs(Network *network){assert (network != NULL);return network->no_ars;}/** Gets the matrix with ars of the network.* �param network* �return ars**/Ar** Network_Ars(Network *network){assert (network != NULL);return network->ars;}/** Returns true if an ar is present in the network at given oordinates,* otherwise false.* �param network* �param row* �param ol* �retrun true or false**/bool Network_ArPresentAt(Network *network, int row, int ol){return(!(Ar_Empty(&network->ars[row℄[ol℄)));}/** Construts a opy of a network, resembeling the residual graph.* If the total inoming flows of a vertex is more than the totaloutgoing flows,* the vertex is onsidered a residual soure. If opposite a residual sink.* If super=true, a supersoure and a supersink are added to the opy atposition* [max_verties-2℄, [max_verties-1℄ in verties.* Assumes that NU_SolveDualSub has been run for the setting of eahvertex balane.* �param network* �param super* �return opy**/Network *Network_ResidualCopy(Network *network, bool super){
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int i, super_soure_index, super_sink_index;long double urr_demand, total_soure_demand, total_sink_demand,differene;Network *opy;assert(network != NULL);super_soure_index = super_sink_index = 0;total_soure_demand = total_sink_demand = 0;if(!super){if((network->max_soures + network->max_sinks) ==network->max_verties){opy = Network_CreateB(network->max_soures, network->max_sinks);}else{opy = Network_Create(network->max_verties);}}else{opy = Network_Create(network->max_verties+2);}Network_ArsVertiesCopy(opy, network);for(i=0; i<network->no_verties; i++){urr_demand = network->balane[Vertex_Index(&network->verties[i℄)℄;if(urr_demand != Vertex_Demand(&network->verties[i℄)){Vertex_SetDemand(&opy->verties[i℄,(Vertex_Demand(&network->verties[i℄) -urr_demand));if(Vertex_IsSoure(&opy->verties[i℄)){Network_SetSoure(opy, Vertex_Index(&opy->verties[i℄));total_soure_demand += Vertex_Demand(&opy->verties[i℄);}if(Vertex_IsSink(&opy->verties[i℄)){Network_SetSink(opy, Vertex_Index(&opy->verties[i℄));total_sink_demand += Vertex_Demand(&opy->verties[i℄);}}}if(super){//reate a supersoure and a supersinksuper_soure_index = network->max_verties;super_sink_index = network->max_verties+1;Network_AddVertex(opy, Vertex_Create(super_soure_index,0, network->max_verties));Network_SetSoure(opy, super_soure_index);Network_AddVertex(opy, Vertex_Create(super_sink_index,network->max_verties, 0));Network_SetSink(opy, super_sink_index);// reate an ar between the supersoure and eah sourefor(i=0; i<opy->no_soures-1; i++){Network_AddAr(opy, Ar_Create(super_soure_index,Vertex_Index(&opy->verties[opy->soures[i℄℄),0, Vertex_Demand(&opy->verties[opy->soures[i℄℄),(QuadFun_Create(0, 0))));Vertex_SetDemand(&opy->verties[super_soure_index℄,(Vertex_Demand(&opy->verties[super_soure_index℄) +Vertex_Demand(&opy->verties[opy->soures[i℄℄)));}// reate an ar between eah sink and the supersinkfor(i=0; i<opy->no_sinks-1; i++){Network_AddAr(opy, Ar_Create(Vertex_Index(&opy->verties[opy->sinks[i℄℄),super_sink_index, 0, -Vertex_Demand(&opy->verties[opy->sinks[i℄℄),(QuadFun_Create(0, 0)) ));Vertex_SetDemand(&opy->verties[super_sink_index℄,(Vertex_Demand(&opy->verties[super_sink_index℄) +Vertex_Demand(&opy->verties[opy->sinks[i℄℄)));}}// balane network if total_soure_demand != total_sink_demand anddifferene not too small//printf("st %.16Lf,ss %.16Lf\n ",Vertex_Demand(&opy->verties[super_sink_index℄),Vertex_Demand(&opy->verties[super_soure_index℄) );if(total_soure_demand < (-total_sink_demand)){differene = (-total_sink_demand)-total_soure_demand;if(differene > CORR_EPSILON)Vertex_SetDemand(&opy->verties[super_sink_index℄,(Vertex_Demand(&opy->verties[super_sink_index℄)+differene));}else if (total_soure_demand > (-total_sink_demand)){differene = total_soure_demand+total_sink_demand;
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if(differene > CORR_EPSILON)Vertex_SetDemand(&opy->verties[super_soure_index℄,(Vertex_Demand(&opy->verties[super_soure_index℄)-differene));}return opy;}/** Construts an ald of a network based on the information in eahvertex's* predeessor vetor. The ald ontains neessary vertex and arinformation need* in the A_MFALD algorithm only.* No arrays ontaining soures or sinks, nor any other speifisonneted* to the network are opied.* Assumes that either A_BS or A_DS has been run.* �param network network ontaining information to reate an ald* �return ald network holding the resulting ald**/Network *Network_ALDCopy(Network *network){int i, j, *pre_p;Vertex *old, *new, *soure, *sink;Network *ald;ald = Network_Create(network->max_verties);ald->no_verties = network->no_verties;// opy the information of the verties that are markedfor(i=0; i<network->no_verties; i++){if(Vertex_Marked(&network->verties[i℄)){(&ald->verties[i℄)->index = Vertex_Index(&network->verties[i℄);(&ald->verties[i℄)->marked = true;(&ald->verties[i℄)->level = Vertex_Level(&network->verties[i℄);(&ald->verties[i℄)->apaity = Vertex_Cap(&network->verties[i℄);}}// opy ars that are inluded in the predeessor array of a vertex if// the urrent ar onnets to a marked vertex and the ar is notsaturated,// adjust in and out for the involved vertiesfor(i=0; i<network->no_verties; i++){if(Vertex_Marked(&network->verties[i℄)){new = &ald->verties[i℄;old = &network->verties[i℄;if(Vertex_NoPre(old) > 0){pre_p = Vertex_Predeessors(old);for(j=0; j<Vertex_NoPre(old); j++){if(Vertex_Marked(&network->verties[*pre_p℄) &&(!Ar_Saturated(&network->ars[*pre_p℄[i℄))){Vertex_SetPre(new, *pre_p);// the ar from Vertex *pre_p to new should be opiedald->ars[*pre_p℄[i℄ = network->ars[*pre_p℄[i℄;Vertex_SetIn(new, *pre_p);Vertex_SetOut(&ald->verties[*pre_p℄,i);}pre_p++;}}}}soure = &ald->verties[ald->no_verties-2℄;soure->demand = (&network->verties[network->no_verties-2℄)->demand;soure->no_pre = soure->no_in = 0;sink = &ald->verties[ald->no_verties-1℄;sink->demand = (&network->verties[network->no_verties-1℄)->demand;sink->no_out = 0;return(ald);}/** Construts a opy of a network, resembeling the residual graph usedin the* polynomial maxflow algorithm by Migdalas.* If the apaity of a vertex is zero, the vertex is removed along with* its inoming and outgoing ars.* If an ar has a flow equal to its upper apaity, the ar is removed.* Assumes that the verties with nonzero apaity are marked.* �param network* �return opy**/Network *Network_MFALDCopy(Network *network){int i, j, *out_p, *pre_p;Network *opy;
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Vertex *old, *new;//Ar *ar;opy = Network_Create(network->max_verties);opy->no_verties = network->no_verties;// opy the verties with a apaity > OPT_EPSILONfor(i=0; i<network->no_verties; i++){if(Vertex_Marked(&network->verties[i℄)){(&opy->verties[i℄)->index = Vertex_Index(&network->verties[i℄);(&opy->verties[i℄)->marked = true;(&opy->verties[i℄)->level = Vertex_Level(&network->verties[i℄);(&opy->verties[i℄)->apaity = Vertex_Cap(&network->verties[i℄);}}(&opy->verties[opy->no_verties-2℄)->demand =(&network->verties[network->no_verties-2℄)->demand;(&opy->verties[opy->no_verties-1℄)->demand =(&network->verties[network->no_verties-1℄)->demand;// 1) opy the ars that has flow < upper apaity of the urrent ar,// if the ar does not lead to an umarked vertex// adjust in and out for the involved verties// 2) update the predeessor array of eah vertexfor(i=0; i<opy->no_verties; i++){if(Vertex_Marked(&network->verties[i℄)){new = &opy->verties[i℄;old = &network->verties[i℄;if(Vertex_NoPre(old) != 0){pre_p = Vertex_Predeessors(old);for(j=0; j<Vertex_NoPre(old); j++){if((Vertex_Marked(&network->verties[*pre_p℄)== true) &&(!Ar_Saturated(&network->ars[*pre_p℄[i℄)))Vertex_SetPre(new, *pre_p);pre_p++;}}if(Vertex_NoOut(old) > 0){out_p = Vertex_Out(old);for(j=0; j<Vertex_NoOut(old); j++){if((Vertex_Marked(&network->verties[*out_p℄)==true) &&(!Ar_Saturated(&network->ars[i℄[*out_p℄))){opy->ars[i℄[*out_p℄ = network->ars[i℄[*out_p℄;Vertex_SetOut(new, *out_p);Vertex_SetIn(&opy->verties[*out_p℄, i);}out_p++;}}}}return(opy);}/** String representation of a network.* �param network**/void Network_Print(Network *network){int i, j, k, noOut, *ip;Vertex *vp;assert(network != NULL);vp = network->verties;for(i=0; i<network->no_verties; i++){Vertex_Print(vp);printf("%s\n", "-------------------------------");noOut = Vertex_NoOut(vp);if(noOut != 0){ip = Vertex_Out(vp);for(k=0; k<noOut; k++){j = *ip++;Ar_Print(&(network->ars[Vertex_Index(vp)℄[j℄));printf("%s", "\n");}}printf("%s\n", "-------------------------------");vp++;}}/************************************************************************* PRIVATE FUNCTIONS*************************************************************************
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/** Copies the ars and the verties in the original network to the opynetwork.* If ar (ij) in original has flow, it is opied as is to ar (ij)* and to ar (ji) with flow 0 and upper(ji)=flow(ij) in opy.* Otherwise, ar (ij) in original is opied as is to ar (ij) in opy.* �param opy the network to hold the opy* �param original the matrix that holds the elements to be opied**/void Network_ArsVertiesCopy(Network *opy, Network *original){int i, j, k;Vertex *, *o;for(i=0; i<Network_NoVerties(original); i++){ = &Network_Verties(opy)[i℄;o = &Network_Verties(original)[i℄;->index = o->index;->prie = o->prie;->from = o->from;->marked = o->marked;->ost = o->ost;opy->no_verties++;}for(i=0; i<Network_NoVerties(original); i++){if(Vertex_NoOut(&Network_Verties(original)[i℄) != 0){for(k=0; k<Vertex_NoOut(&Network_Verties(original)[i℄); k++){j = Vertex_Out(&Network_Verties(original)[i℄)[k℄;if(Ar_HasFlow(&Network_Ars(original)[i℄[j℄)){Network_Ars(opy)[i℄[j℄ = Network_Ars(original)[i℄[j℄;Network_SetResidualAr(opy->ars, original->ars,&opy->verties[j℄, &opy->verties[i℄,j, i);}else{Network_Ars(opy)[i℄[j℄ = Network_Ars(original)[i℄[j℄;}Vertex_SetOut(&Network_Verties(opy)[i℄,j);Vertex_SetIn(&Network_Verties(opy)[j℄,i);}}}}/** Sets an opy of the ar at position (j, i) at position (i, j)* in a opy of the networks matrix of ars. Updates the involvedverties.* �param opy the opy to hold the ars of the opied network* �param original the matrix of ars in the original network* �param v_i the vertex at position i in opy of network* �param v_j the vertex at position j in opy of network* �param i* �param j**/void Network_SetResidualAr(Ar **opy, Ar **original, Vertex *v_i,Vertex *v_j, int i, int j){opy[i℄[j℄ = original[j℄[i℄;Ar_SetFrom(&opy[i℄[j℄, i);Ar_SetTo(&opy[i℄[j℄, j);Ar_SetResidualCost(&opy[i℄[j℄, &original[j℄[i℄);Vertex_SetIn(v_j, i);Vertex_SetOut(v_i, j);Ar_SetFlow(&opy[i℄[j℄, 0);Ar_SetLower (&opy[i℄[j℄, 0);Ar_SetUpper(&opy[i℄[j℄, Ar_Flow(&original[j℄[i℄));Ar_SetResidual(&opy[i℄[j℄, true);Ar_SetMarked(&opy[i℄[j℄, true);}
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A.3.3 NetworkUtil.c#inlude "NetworkUtil.h"#inlude <stdlib.h>#inlude <stdio.h>#inlude <assert.h>#inlude <math.h>#inlude <float.h>#inlude "Vertex.h"#inlude "Ar.h"#inlude "Mis.h"#inlude "QuadFun.h"#inlude "Algorithms.h"/************************************************************************* PUBLIC FUNCTIONS*************************************************************************/** Returns the norm of the squared demand of the verties in the network,i.e. ||b||.* Assumes Network_SolveDualSub has been run.* �param network* �return demand_norm**/long double NetworkUtil_DemandNormSquare(Network *network){assert(network != NULL);return network->demand_norm_square;}/** Returns an array with the pries of the networks verties.* Assumes Network_SolveDualSub has been run.* �param network* �return prie**/long double* NetworkUtil_Prie(Network *network){assert(network!=NULL);return network->prie;}/** Sets the pries of the networks verties to the values in new_prie.* Assumes that prie holds same # elements as there are verties innetwork,* and that Network_SolveDualSub has been run.* �param network* �param new_prie**/void NetworkUtil_SetPrie(Network *network, long double *new_prie){int i, no_verties;Vertex *vp;long double *fp;assert(network!=NULL);no_verties = network->no_verties;vp = network->verties;fp = new_prie;for(i=0; i<no_verties; i++){Vertex_SetPrie(vp++, *fp);network->prie[i℄ = *fp++;}}/** Adds salar*vetor to the urrent pries of the networks verties.* Assumes that vetor holds same # elements as there are verties innetwork,* and that Network_SolveDualSub has been run.* �param network* �param salar* �param vetor**/void NetworkUtil_UpdatePrie(Network *network, double salar, long double *vetor){int i, no_verties;Vertex *vp;long double new_prie;assert(network!=NULL);no_verties = network->no_verties;vp = network->verties;for(i=0; i<no_verties; i++){new_prie = Vertex_Prie(vp)+(salar*vetor[i℄);Vertex_SetPrie(vp++, new_prie);
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network->prie[i℄ = new_prie;}}/** Returns an array with the dual gradient of the network.* Assumes Network_SolveDualSub has been run.* �param network* �return gradient**/long double* NetworkUtil_DualGrad(Network *network){assert(network!=NULL);return network->dual_grad;}/** Returns an array with the balane of the network.* Assumes Network_SolveDualSub has been run.* �param network* �return balane**/long double* NetworkUtil_Balane(Network *network){assert(network!=NULL);return network->balane;}/** Returns the value of the squared norm of the dual gradient of thenetwork.* Assumes Network_SolveDualSub has been run.* �param network* �return dual_grad_norm**/long double NetworkUtil_DualGradNormSquare(Network *network){assert(network!=NULL);return network->dual_grad_norm_square;}/** Sets the pathlength of urrent path from soure to sink in residualnetwork* �param network* �param path_length**/void NetworkUtil_SetPathLength(Network *network, int path_length){assert(network != NULL);network->path_length = path_length;}/** Gets the pathlength of urrent path from soure to sink in residual network* �param network* �return path_length**/int NetworkUtil_PathLength(Network *network){assert(network != NULL);return(network->path_length);}/** Sets the max_push of urrent path from soure to sink in residualnetwork* �param network* �param max_push**/void NetworkUtil_SetMaxPush(Network *network, long double max_push){assert(network != NULL);network->max_push = max_push;}/** Gets the value for max_push of urrent path from soure to sink inresidual network* �param network* �return max_push**/long double NetworkUtil_MaxPush(Network *network){assert(network != NULL);return(network->max_push);}/** Sets the index of the vertex with minimum apaity in verties* �param network
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* �param min_index**/void NetworkUtil_SetMinIndex(Network *network, int min_index){assert(network != NULL);network->min_index = min_index;}/** Gets the index of the vertex with minimum apaity in verties* �param network* �return min_index**/int NetworkUtil_MinIndex(Network *network){assert(network != NULL);return(network->min_index);}/** Gets the number of marked ars in ars.* �param network* �return no_marked**/int NetworkUtil_NoMarked(Network *network){assert(network != NULL);return(network->no_marked);}/** Gets the urrent length of the alpha array* �param network* �return no_alpha**/int NetworkUtil_NoAlpha(Network *network){assert(network != NULL);return(network->no_alpha);}/** Unmarkes all the verties in the network.* Sets all from values to -1, and all ost values to DBL_MAX.* �param network**/void NetworkUtil_UnMark(Network *network){int i, no_verties;assert(network!=NULL);no_verties = network->no_verties;for(i=0; i<no_verties; i++){Vertex_SetMarked(&network->verties[i℄, false);Vertex_SetFrom(&network->verties[i℄, -1);Vertex_SetCost(&network->verties[i℄, DBL_MAX);Vertex_SetLevel(&network->verties[i℄, -1);(&network->verties[i℄)->predeessors = NULL;(&network->verties[i℄)->no_pre = 0;}}/** Returns the primal objetive funtion value evaluated at the urrent* flow values, i.e. sum f_ij(x_ij)* �param network* �return value**/long double NetworkUtil_PrimalValue(Network *network){long double sum;int i, j;Vertex *vertex;Ar *ar;assert(network != NULL);sum = 0;for(i=0; i<Network_NoVerties(network); i++){vertex = &Network_Verties(network)[i℄;if(Vertex_NoOut(vertex) != 0){for(j=0; j<Vertex_NoOut(vertex); j++){ar = &(Network_Ars(network)[i℄[Vertex_Out(vertex)[j℄℄);sum += Ar_CurrCost(ar);}}}return sum;}/** Returns delta_flow for an vertex.* delta_flow is alulated as sum (u_ij-flow_ij) for all inoming ars* if in=true.
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* If if=false, delta_flow is alulated for all outgoing ars.* �param network* �param vertex* �param in* �return delta_flow*/long double NetworkUtil_DeltaFlow(Network *network, Vertex *vertex,bool in){int i;Ar *ar;long double sum = 0;if(!in){if(Vertex_NoOut(vertex) > 0){for(i=0; i<Vertex_NoOut(vertex); i++){ar = &(Network_Ars(network)[Vertex_Index(vertex)℄[Vertex_Out(vertex)[i℄℄);if(Vertex_Marked(&Network_Verties(network)[Vertex_Out(vertex)[i℄℄)&& !Ar_Saturated(ar))sum += Ar_Upper(ar) - Ar_Flow(ar);}}}else{if(Vertex_NoIn(vertex) > 0){for(i=0; i<Vertex_NoIn(vertex); i++){ar = &(Network_Ars(network)[Vertex_In(vertex)[i℄℄[Vertex_Index(vertex)℄);if(Vertex_Marked(&Network_Verties(network)[Vertex_In(vertex)[i℄℄)&& !Ar_Saturated(ar))sum += Ar_Upper(ar) - Ar_Flow(ar);}}}return(sum);}/** Solves the dual subproblem, and returns the value of the dual funtion.* If urrent=true, uses the urrent prie values of the verties* otherwise uses the pries provided in new_prie.* Sets the flows that orresponds to the solution for eah ar,* the gradient of the dual funtion, the norm of the demand,* and the norm of the dual gradient.* Assumes new_prie holds same # elements as there are verties innetwork.* �param network* �param new_prie* �param urrent* �return dual_value**/long double NetworkUtil_SolveDualSub(Network *network, long double*new_prie, bool urrent){int i, j, k;Vertex *vp;Ar *ar;QuadFun ost;long double urr_flow, dual_value, sumout, sumin, imbalane,demand_norm_square, dual_grad_norm_square;assert(network!=NULL);urr_flow = dual_value = sumout = sumin = imbalane =demand_norm_square = dual_grad_norm_square = 0;for(i=0; i<network->no_verties; i++){vp = &network->verties[i℄;// sets or gets flows for outgoing ars of vertex iif(Vertex_NoOut(vp) != 0){for(k=0; k<Vertex_NoOut(vp); k++){j = Vertex_Out(vp)[k℄;ar = &(network->ars[i℄[j℄);ost = Ar_Cost(ar);if(j>=i){if(urrent){if(!Ar_Marked(ar))urr_flow = NetworkUtil_CalFlow(ar, Vertex_Prie(vp),Vertex_Prie(&network->verties[j℄));else{urr_flow = Algorithms_Mid(Ar_Lower(ar),( -(QuadFun_a(&ost)+ Vertex_Prie(vp),Vertex_Prie(&network->verties[j℄)) /(2*QuadFun_b(&ost)) ), Ar_Upper(ar));Ar_SetMarked(ar, false);}
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}elseurr_flow = NetworkUtil_CalFlow(ar,new_prie[Vertex_Index(vp)℄,new_prie[Vertex_Index(&network->verties[j℄)℄);Ar_SetFlow(ar, urr_flow);}elseurr_flow = Ar_Flow(ar);if(urrent){dual_value += QuadFun_DualValue(&ost, urr_flow,Vertex_Prie(vp),Vertex_Prie(&network->verties[j℄));}else{dual_value += QuadFun_DualValue(&ost, urr_flow,new_prie[Vertex_Index(vp)℄,new_prie[Vertex_Index(&network->verties[j℄)℄);}sumout += urr_flow;}}// set flows for inoming ars of vertex iif(Vertex_NoIn(vp) != 0){for(k=0; k<Vertex_NoIn(vp); k++){j = Vertex_In(vp)[k℄;ar = &(network->ars[j℄[i℄);if(j>i){if(urrent){urr_flow = NetworkUtil_CalFlow(ar,Vertex_Prie(&network->verties[j℄),Vertex_Prie(vp));}else{urr_flow = NetworkUtil_CalFlow(ar,new_prie[Vertex_Index(&network->verties[j℄)℄,new_prie[Vertex_Index(vp)℄);}Ar_SetFlow(ar, urr_flow);}else{urr_flow = Ar_Flow(ar);}sumin += urr_flow;}}if(urrent){dual_value -= Vertex_Prie(vp)*Vertex_Demand(vp);}else{dual_value -= new_prie[Vertex_Index(vp)℄*Vertex_Demand(vp);}imbalane = sumout - sumin - Vertex_Demand(vp);network->dual_grad[Vertex_Index(vp)℄ = imbalane;network->balane[Vertex_Index(vp)℄ = sumout - sumin;dual_grad_norm_square += imbalane*imbalane;sumout = sumin = 0;demand_norm_square += Vertex_Demand(vp)*Vertex_Demand(vp);}network->dual_grad_norm_square = dual_grad_norm_square;network->demand_norm_square = demand_norm_square;return dual_value;}/** Calulates all stepsizes alpha aording to the solution of KKT* for the dual line searh problem (max w(v + alpha*d)) of the network.* Assumes Network_SolveDualSub has been run, and that all ars areunmarked.* �param network* �param alpha array to hold the stepsizes* �param d array of diretions d* �param first true if the alphas should be set in array,false if in ar**/void NetworkUtil_CalAlphas(Network *network, Alpha *alpha, long double*d, bool first){Vertex *vp;Ar *ar;int i, j, k, m;double a_ij, b_ij, v_i, v_j, d_i, d_j, value_u, value_l;QuadFun ost;
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m = 0;(&alpha[m++℄)->value = 0;network->no_marked = 0;for(i=0; i<network->no_verties; i++){vp = &network->verties[i℄;v_i = Vertex_Prie(vp);d_i = d[i℄;if(Vertex_NoOut(vp) != 0){for(k=0; k<Vertex_NoOut(vp); k++){j = Vertex_Out(vp)[k℄;ar = &(network->ars[i℄[j℄);ost = Ar_Cost(ar);a_ij = QuadFun_a(&ost);b_ij = QuadFun_b(&ost);v_j = Vertex_Prie(&network->verties[j℄);d_j = d[j℄;if((d_i - d_j) == 0){Ar_SetMarked(ar, true);Ar_SetAlphaU(ar, -1);Ar_SetAlphaL(ar, -1);network->no_marked++;}else{value_u = ((-(a_ij + v_i - v_j + (2 * b_ij * Ar_Upper(ar)))) /(d_i - d_j));value_l = ((-(a_ij + v_i - v_j + (2 * b_ij * Ar_Lower(ar)))) /(d_i - d_j));// the values should be set to alpha diretlyif(first){(&alpha[m℄)->value = value_u;(&alpha[m℄)->i = i;(&alpha[m℄)->j = j;(&alpha[m++℄)->lower = false;(&alpha[m℄)->value = value_l;(&alpha[m℄)->i = i;(&alpha[m℄)->j = j;(&alpha[m++℄)->lower = true;}// if the urrent ar had alpha_l==alpha_u==-1, in previousiteration,// i.e. d_i-d_j==0, value_l and value-u should be inluded inalpha// at position no_alpha_old+1, no_alpha_old+2else{if(Ar_AlphaU(ar) == -1){(&alpha[network->no_alpha℄)->value = value_u;(&alpha[network->no_alpha℄)->i = i;(&alpha[network->no_alpha℄)->j = j;(&alpha[network->no_alpha++℄)->lower = false;(&alpha[network->no_alpha℄)->value = value_l;(&alpha[network->no_alpha℄)->i = i;(&alpha[network->no_alpha℄)->j = j;(&alpha[network->no_alpha++℄)->lower = true;}}// the values should be set to the involved ar diretlyAr_SetAlphaU(ar, value_u);Ar_SetAlphaL(ar, value_l);}}}}network->no_alpha = (network->no_verties*2) + 1 - (network->no_marked*2);}/************************************************************************** PRIVATE FUNCTIONS**************************************************************************/** Returns a flow value for ar.* If dual_diff for ar evaluated at lower > 0, returns lower.* If dual_diff for ar evaluated at upper < 0, returns upper.* Otherwise returns the value found when dual_diff = 0.* �param ar the ar under onsideration* �param v_i the prie for the ars tail* �param v_j the prie for the ars head* �return flow value**/long double NetworkUtil_CalFlow(Ar *ar, long double v_i, long double v_j){QuadFun *dual_diff, ost;long double value;
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assert(ar != NULL);ost = Ar_Cost(ar);dual_diff = QuadFun_Create (0,0);QuadFun_DualDiff(&ost, dual_diff, v_i, v_j);// dual_diff > 0?if(NetworkUtil_ChekLimits(dual_diff, Ar_Lower(ar), true))value = Ar_Lower(ar);// dual_diff < 0?else if(NetworkUtil_ChekLimits(dual_diff, Ar_Upper(ar), false))value = Ar_Upper(ar);// dual_diff = 0elsevalue = -(QuadFun_a(&ost) + v_i - v_j) / (2*QuadFun_b(&ost));QuadFun_Destroy(dual_diff);return(value);}/** A hek for an ars dual funtions differential value at its limits.* If lower=true, the differential at the lower limit is heked, and* true is returned if the differential > 0.* If lower=false, the differential at the upper limit is heked, and* true is returned if the differential < 0.* �param dual_diff* �param x lower/upper value of flow* �return true or false**/bool NetworkUtil_ChekLimits(QuadFun *dual_diff, long double x, bool lower){bool ok = false;if(lower){if(QuadFun_Value(dual_diff, x)>0)ok = true;}else{if(QuadFun_Value(dual_diff, x)<0)ok = true;}return ok;}
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A.3.4 QuadFun.c#inlude "QuadFun.h"#inlude <stdlib.h>#inlude <stdio.h>#inlude <assert.h>/*typedef strut{double ; // onstant oeffiientdouble a; // linear oeffiientdouble b; // quadrati oeffiient}QuadFun;*//************************************************************************* PUBLIC FUNCTIONS*************************************************************************/* Alloates memory for a QuadFun.* �param a linear oeffiient* �param b quadrati oeffiient* �return quadfun*/QuadFun* QuadFun_Create(double a, double b){QuadFun *fun;fun = (QuadFun *)allo(1, sizeof(QuadFun));fun->a = a;fun->b = b;fun-> = 0;return fun;}/* Returns memory for a QuadFun.* �param fun*/void QuadFun_Destroy(QuadFun *fun){free(fun);}/* Returns the onstant oeffiient.* �param fun* �return */double QuadFun_(QuadFun *fun){assert(fun != NULL);return fun->;}/* Returns the linear oeffiient.* �param fun* �return a*/double QuadFun_a(QuadFun *fun){assert(fun != NULL);return fun->a;}/* Returns the quadrati oeffiient.* �param fun* �return b*/double QuadFun_b(QuadFun *fun){assert(fun != NULL);return fun->b;}/* Returns the differential of the quadrati funtion,* i.e. f'_ij(x-ij) = a_ij + 2*b_ij*x_ij.* �param fun* �param dfun*/void QuadFun_Diff(QuadFun *fun, QuadFun *dfun){dfun->a = 2*QuadFun_b(fun);dfun-> = fun->a;}/* Returns the value of the quadrati funtion evaluated at x_ij, i.e.f_ij(x_ij).
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* �param fun* �param x_ij* �return value*/long double QuadFun_Value(QuadFun*fun, long double x_ij){assert(fun != NULL);return ((fun->)+((fun->a)*x_ij)+((fun->b)*x_ij*x_ij));}/* Returns the value for the of x_ij depending part of the dual funtionevaluated at x_ij,* i.e. f_ij(x_ij)+(v_i-v_j)*x_ij.* �param fun* �param x_ij* �param v_i prie of vertex at ars tail* �param v_j prie of vertex at ars head* �return value*/long double QuadFun_DualValue(QuadFun*fun, long double x_ij, long doublev_i, long double v_j){assert(fun != NULL);return (QuadFun_Value(fun, x_ij)+((v_i-v_j)*x_ij));}/* Sets the differential in x_ij of the dual funtion,* i.e. 2*b_ij*x_ij + (a_ij + v_i - v_j).* �param fun original funtion* �param dual_diff differential of fun in x_ij* �param v_i prie of vertex at ars tail* �param v_j prie of vertex at ars head*/void QuadFun_DualDiff(QuadFun *fun, QuadFun *dual_diff, long double v_i,long double v_j){assert(fun != NULL);assert(dual_diff != NULL);dual_diff->a = 2 * (QuadFun_b(fun));dual_diff->b = 0;dual_diff-> = QuadFun_a(fun) + v_i - v_j;}/* Returns true if the quadfun holds the "empty funtion"* otherwise false.* �param fun* �return true or false*/bool QuadFun_Empty(QuadFun*fun){assert(fun != NULL);return ((fun->a==0) && (fun->b==0));}/* String representation of a quadfun.* �param fun*/void QuadFun_Print(QuadFun *fun){assert(fun != NULL);printf(" = %f a = %f b = %f\n", fun->, fun->a, fun->b);}
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A.3.5 Vertex.c/* Body for Vertex */#inlude "Vertex.h"#inlude "Mis.h"#inlude <stdlib.h>#inlude <stdio.h>#inlude <assert.h>#inlude <float.h>/*typedef strut{int index; // index of vertexlong double demand; // demand for vertex, i.e. b_i// demand>0 => soure,// demand<0 => sink,// demand=0 => transportsint *in; // array with indies of those verties onnetedto vertex by inoming arsint max_in; // maximum size of *inint no_in; // urrent size of *inint *out; // array with indies of those verties onnetedto vertex by outgoing arsint max_out; // maximum size of *outint no_out; // urrent size of *outlong double prie; // dual variable for vertex, i.e. v_i// for graph searhing reasons...int from; // index of vertex preeding this in a path searhbool marked; // true if reahed in a path searh, false other-wise// true if inluded in MFALDCopy, false otherwiselong double ost; // urrent ost to reah this vertex in a shortestpath searhint level; // number of level at whih this vertex an befound in a BS searhint *predeessors; // indiies of vertiies preeding this in a BSsearhint max_pre; // maximum size of *predeessorsint no_pre; // urrent size of *predeessorslong double apaity; // apaity for vertex used in the MaxFlowALDalgorithm}Vertex; *//************************************************************************* PUBLIC FUNCTIONS*************************************************************************/** Alloates memory for a vertex.* �param index the index of the vertex* �param demand the demand of the vertex* �return vertex**/Vertex *Vertex_Create(int index, int max_in, int max_out){Vertex *v;v = (Vertex *)allo(1, sizeof(Vertex));v->index = index;v->max_in = max_in;if(max_in > 0)v->in = (int *)allo(max_in, (sizeof(int)));elsev->in = NULL;v->max_out = max_out;if(max_out > 0)v->out = (int *)allo(max_out, (sizeof(int)));elsev->out = NULL;v->from = v->level = -1;v->predeessors = NULL;v->marked = false;v->ost = DBL_MAX; // 0 for testing purposes, DBL_MAX otherwisereturn v;}/** Returns memory for a vertex.* �param vertex**/void Vertex_Destroy(Vertex *vertex){if(vertex->in != NULL)free(vertex->in);if(vertex->out != NULL)free(vertex->out);
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if(vertex->predeessors != NULL)free(vertex->predeessors);free(vertex);}/** Gets the index for a vertex.* �param vertex* �return index**/int Vertex_Index(Vertex *vertex){assert(vertex != NULL);return vertex->index;}/** Sets the demand for a vertex.* �param vertex* �param demand**/void Vertex_SetDemand(Vertex *vertex, long double demand){assert(vertex != NULL);vertex->demand = demand;}/** Gets the demand for a vertex.* �param vertex* �return demand**/long double Vertex_Demand(Vertex *vertex){assert(vertex != NULL);return vertex->demand;}/** Changes the demand for a vertex by a given amount.* Assumes that the amount is is within limits, i.e.* if the vertex is a soure, demand stays >=0.* if the vertex is a sink, demand stays <=0.* �param vertex* �param amount**/void Vertex_ChangeDemand(Vertex *vertex, long double amount){assert(vertex != NULL);if((vertex->demand) != 0){vertex->demand = Vertex_ValidChange((vertex->demand), amount);}}/** Returns true if the vertex is a soure,* otherwise false.* �param vertex* �return true or false**/bool Vertex_IsSoure(Vertex *vertex){assert(vertex != NULL);return(Vertex_Demand(vertex)>0);}/** Returns true if the vertex is a sink,* otherwise false.* �param vertex* �return true or false**/bool Vertex_IsSink(Vertex *vertex){assert(vertex != NULL);return(Vertex_Demand(vertex)<0);}/** Sets one index, assumes index not already present, in the array with* indies of those verties onneted to a vertex by inoming ars.* If the array is too small, it gets extended to twie its urrent size.* �param in**/void Vertex_SetIn(Vertex *vertex, int in){assert(vertex != NULL);if(vertex->in != NULL){if(vertex->no_in >= vertex->max_in){vertex->in = (int*)reallo(vertex->in, ((vertex->max_in*2)*sizeof(int)));
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vertex->max_in *= 2;}}else{vertex->in = (int*)allo(1, sizeof(int));vertex->max_in = 1;}vertex->in[(vertex->no_in)++℄ = in;}/** Gets the array with indies of those verties onneted to a vertex* by inoming ars.* �param vertex* �return in**/int* Vertex_In(Vertex *vertex){assert(vertex != NULL);return vertex->in;}/** Gets the number of inoming ars.* �param vertex* �return max_in**/int Vertex_NoIn(Vertex *vertex){assert(vertex != NULL);return(vertex->no_in);}/** Sets one index, assumes index not already present, in the array with* indies of those verties onneted to a vertex by outgoing ars.* If the array is too small, it gets extended to twie its urrent size.* �param out**/void Vertex_SetOut(Vertex *vertex, int out){assert(vertex != NULL);if(vertex->out != NULL){if(vertex->no_out >= vertex->max_out){vertex->out = (int*)reallo(vertex->out, ((vertex->max_out*2)*sizeof(int)));vertex->max_out *= 2;}}else{vertex->out = (int*)allo(1, sizeof(int));vertex->max_out = 1;}vertex->out[vertex->no_out++℄ = out;}/** Gets the array with indies of those verties onneted to a vertex* by outgoing ars.* �param vertex* �return out**/int* Vertex_Out(Vertex *vertex){assert(vertex != NULL);return vertex->out;}/** Gets the number of outgoing ars.* �param vertex* �return no_out**/int Vertex_NoOut(Vertex *vertex){assert(vertex != NULL);return(vertex->no_out);}/** Sets the value for prie.* �param vertex* �param prie**/void Vertex_SetPrie(Vertex *vertex, long double prie){assert(vertex != NULL);vertex->prie = prie;}
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/** Gets the value for prie.* �param vertex* �return prie**/long double Vertex_Prie(Vertex *vertex){assert(vertex != NULL);return(vertex->prie);}/** Sets the value for marked.* �param vertex* �param marked**/void Vertex_SetMarked(Vertex *vertex, bool marked){assert(vertex != NULL);vertex->marked = marked;}/** Gets the value for marked.* �param vertex* �return marked**/bool Vertex_Marked(Vertex *vertex){assert(vertex != NULL);return(vertex->marked);}/** Sets the value for from.* �param vertex* �param from**/void Vertex_SetFrom(Vertex *vertex, int from){assert(vertex != NULL);vertex->from = from;}/** Gets the value for from.* �param vertex* �return from**/int Vertex_From(Vertex *vertex){assert(vertex != NULL);return(vertex->from);}/** Sets one index, assumes index not already present, in the array with* indies of those verties visited before this vertex in a BS searh.* If the array is too small, it gets extended to twie its urrent size.* �param in**/void Vertex_SetPre(Vertex *vertex, int in){assert(vertex != NULL);if(vertex->predeessors != NULL){if(vertex->no_pre >= vertex->max_pre){vertex->predeessors = (int*)reallo(vertex->predeessors,((vertex->max_pre*2)* sizeof(int)));vertex->max_pre *= 2;}}else{vertex->predeessors = (int*)allo(1, sizeof(int));vertex->max_pre = 1;}vertex->predeessors[(vertex->no_pre)++℄ = in;}/** Gets the array with indies of those verties visited before this* vertex in a BS searh.* �param vertex* �return predeessors**/int* Vertex_Predeessors(Vertex *vertex){assert(vertex != NULL);return(vertex->predeessors);}
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/** Gets the number of predeessors.* �param vertex* �return no_pre**/int Vertex_NoPre(Vertex *vertex){assert(vertex != NULL);return(vertex->no_pre);}/** Sets the value for level.* �param vertex* �param level**/void Vertex_SetLevel(Vertex *vertex, int level){assert(vertex != NULL);vertex->level = level;}/** Gets the value for level.* �param vertex* �return level**/int Vertex_Level(Vertex *vertex){assert(vertex != NULL);return(vertex->level);}/** Sets the value for ost* �param vertex* �param ost**/void Vertex_SetCost(Vertex *vertex, long double ost){assert(vertex != NULL);vertex->ost = ost;}/** Gets the value for ost.* �param vertex* �return ost**/long double Vertex_Cost(Vertex *vertex){assert(vertex != NULL);return(vertex->ost);}/** Sets the value for apaity* �param vertex* �param ap**/void Vertex_SetCap(Vertex *vertex, long double ap){assert(vertex != NULL);//if(Vertex_Index(vertex) == 100)// printf("old ap %Lf, new ap%Lf\n",vertex->apaity, ap );vertex->apaity = ap;}/** Gets the value for apaity.* �param vertex* �return apaity**/long double Vertex_Cap(Vertex *vertex){assert(vertex != NULL);return(vertex->apaity);}/** Changes the value for apaity with amount* �param vertex* �param amount**/void Vertex_ChangeCap(Vertex *vertex, long double amount){assert(vertex != NULL);Vertex_Print(vertex);assert(amount <= vertex->apaity);vertex->apaity -= amount;
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}/** Returns true if two verties have the same index* �param v1 vertex 1* �param v2 vertex 2* �return true or false**/bool Vertex_IsEqual(Vertex *v1, Vertex *v2){assert(v1 != NULL);assert(v2 != NULL);return(Vertex_Index(v1) == Vertex_Index(v2));}/** String representation of a vertex* �param vertex**/void Vertex_Print(Vertex *vertex){int i;assert(vertex != NULL);printf("Vertex %d has demand: %Lf\n", vertex->index, vertex->demand);printf("prie : %Lf\n", vertex->prie);printf("marked : %d\n", vertex->marked);printf("from : %d\n", vertex->from);printf("ost : %Lf\n", vertex->ost);printf("level : %d\n", vertex->level);printf("apaity : %.16Lf\n", vertex->apaity);if (vertex->no_in>0){printf("is head of ar from vertex: ");for (i=0; i<vertex->no_in; i++){printf("%d ", vertex->in[i℄);}printf("%s", "\n");}if (vertex->no_out>0){printf("is tail of ar to vertex : ");for (i=0; i<vertex->no_out; i++){printf("%d ", vertex->out[i℄);}printf("%s", "\n");}if (vertex->no_pre>0){printf("has predeessors : ");for (i=0; i<vertex->no_pre; i++){printf("%d ", vertex->predeessors[i℄);}printf("%s", "\n");}}/************************************************************************* PRIVATE FUNCTIONS*************************************************************************/** Returns old - amount if old > 0,* otherwise old + amount.* �param old* �param hange* �return value**/long double Vertex_ValidChange(long double old, long double amount){if(old>0){ // this is a sourereturn old - amount;}else{ // old<0, this is a sinkreturn old + amount;}}
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A.4 Miscellaneous code

A.4.1 Stack.c#inlude <stdio.h>#inlude <stdlib.h>#inlude <stdbool.h>#inlude <assert.h>#inlude "Stak.h"/*typedef strut{int *indies; // the elements in the stakint no; // maxsize of the stakint top; // urrent array-index of staks front}Stak;*//***************************************************************************** PUBLIC FUNCTIONS*****************************************************************************/** Alloates memory for a stak.* �param no number of elements in the stak* �return stak**/Stak *Stak_Create(int no){Stak *stak;stak = (Stak *)allo(1, sizeof(Stak));stak->indies = (int *)allo(no, sizeof(int));stak->no = no;stak->top = -1;return stak;}/** Returns memory for a stak.* �param stak**/void Stak_Destroy(Stak *s){free(s->indies);free(s);}/** Pushes an index on top of the stak, if index not already present.* �param v index* �param s stak**/void Stak_PushOnto(Stak *s, int v){assert (s != NULL);assert(s->top < s->no);if(!Stak_Empty(s)){if(!Stak_Contain(s, v)){s->indies[++s->top℄ = v;}}else{s->indies[++s->top℄ = v;}}/** Pushes an index on top of the stak.* Assumes index not present.* �param v index* �param s stak**/void Stak_Push(Stak *s, int v){assert (s != NULL);assert(s->top < s->no);s->indies[++s->top℄ = v;}/** Returns the first element of the stak.* �param s stak**/int Stak_Top(Stak *s){assert (s != NULL);assert(s->top >= 0);return(s->indies[s->top--℄);
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}/** Returns true if the stak is empty.* �param s stak**/bool Stak_Empty(Stak *s){assert (s != NULL);return(s->top < 0);}/** Returns true if the stak is full.* �param s stak**/bool Stak_Full(Stak *s){assert (s != NULL);return(s->top == s->no-1);}/** Prints a string representation* in order bottom to top of the stak.* �param s stak**/void Stak_Print(Stak *s){int i;assert (s != NULL);printf("%s", "[");for(i=0; i<=s->top; i++){printf("%d ",s->indies[i℄);}printf("%s", "℄");}/** Returns true if the stak ontains index, false otherwise.* Assumes that the stak is nonempty.* �param s stak* �param v index* �return true or false**/bool Stak_Contain(Stak *s, int v){int i;for(i=0; i<=s->top; i++){if((s->indies[i℄) == v){return true;}}return false;}
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A.4.2 Queue.c#inlude <stdio.h>#inlude <stdlib.h>#inlude <stdbool.h>#inlude <assert.h>#inlude "Queue.h"/*typedef strut{int *indies; // the elements in the queueint no; // maxsize of the queueint front; // urrent array-index of queues frontint bak; // urrent array-index of queues bakint in_queue; // urrent number of elements in the queue}Queue;*//***************************************************************************** PUBLIC FUNCTIONS****************************************************************************** �param no number of elements in the queue* �return queue*/Queue* Queue_Create(int no){Queue *queue;queue = (Queue *)mallo(sizeof(Queue));queue->indies = (int *)mallo(no*sizeof(int));queue->no = no;queue->front = queue->bak = queue->in_queue = 0;return queue;}/* Returns memory for a queue.* �param queue*/void Queue_Destroy(Queue *q){free(q->indies);free(q);}/* Adds an index last in the queue, if index not already present.* �param v index* �param q queue*/void Queue_AddLast(Queue *q, int v){assert (q != NULL);assert(q->bak <= q->no);if(!(Queue_Contain(q, v))){q->indies[q->bak++℄ = v;q->in_queue++;}}/* Adds an index last in the queue.* Assumes index not present.* �param v index* �param q queue*/void Queue_Add(Queue *q, int v){assert (q != NULL);assert(q->bak <= q->no);q->indies[q->bak++℄ = v;q->in_queue++;}/* Returns the first index in the queue.* �param q queue*/int Queue_First(Queue *q){assert (q != NULL);assert(q->in_queue > 0);q->in_queue--;return(q->indies[q->front++℄);}/* Returns true if the queue is empty.* �param q queue*/bool Queue_Empty(Queue *q){return(q->in_queue == 0);}/* Returns true if the queue is full.* �param q queue
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*/bool Queue_Full(Queue *q){return((q->bak-1) == q->no);}/* Prints a string representation of the queue.* �param q queue*/void Queue_Print(Queue *q){int i;printf("%s", "[");for(i=q->front; i<q->bak; i++){printf("%d ",q->indies[i℄);}printf("%s", "℄");}/* Returns true if the queue ontains index, false otherwise.* �param q queue* �param v index* �return true or false*/bool Queue_Contain(Queue *q, int v){int i;if(!(Queue_Empty(q))){for(i=q->front; i<q->bak; i++){if((q->indies[i℄) == v){return true;}}return false;}else{return false;}}
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A.5 Test problem generator

A.5.1 TestGraphs.c#inlude <stdio.h>#inlude <stdlib.h>#inlude <math.h>#inlude "TestGraphs.h"/***************************************************************************** PRIVATE FUNCTIONS*****************************************************************************/** By random, reates a dense bipartite graph with type 1 or type 2* ar osts(Ohuhi&Kaji)* �param noSoures number of soures in the network* �param noSinks number of sinks in the network* �param h fator for avarage flow on ars in network* �param seed seed for the random values* �param max_a eiling for the linear oeffiient in the ost funtion* �param max_b eiling for the quadrati oeffiient in the ostfuntion* �return network**/Network* TestGraphs_GenTestBD(int no_soures, int no_sinks, double h,unsigned int seed, int max_a, int max_b){int i, j, no_verties;double demand;Vertex *vertex;Ar *ar;Network *g;no_verties = no_soures+no_sinks;g = Network_CreateB(no_soures, no_sinks);srand(seed);// reate soures and sinks and add them to networkfor(i=0; i<(no_verties); i++){if(i<no_soures){// reate soures an set them in souresvertex= Vertex_Create(i, 0, no_sinks);Network_SetSoure(g, i);}else{// reate sinks and set them in sinksvertex= Vertex_Create(i, no_soures, 0);Network_SetSink(g, i);}Network_AddVertex(g, vertex);}// reate ars, randomize ar limits and osts, add ars to networkfor(i=0; i<no_soures; i++){for(j=0; j<no_sinks; j++){ar = TestGraphs_CreateAr(i, (j+no_soures), max_a, max_b);Network_AddAr(g, ar);}}// set supply for soures, set demand for sinksfor(i=0; i<no_verties; i++){vertex = &Network_Verties(g)[i℄;if(i<no_soures){demand = TestGraphs_CalDemand(vertex, g, h, true);Vertex_SetDemand(vertex, demand);}else{demand = TestGraphs_CalDemand(vertex, g, h, false);Vertex_SetDemand(vertex, -demand);}}return g;}/** By random, reates a sparse bipartite graph with type 1 or type 2* ar osts(Ohuhi&Kaji), a 10% of the ars exist.* �param noSoures the number of soures in the network* �param noSinks the number of sinks in the network* �param h fator for avarage flow on ars in network* �param seed the seed for the random values* �param max_a the eiling for the linear oeffiient in the ostfuntion* �param max_b the eiling for the quadrati oeffiient in the ostfuntion
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* �return network**/Network* TestGraphs_GenTestBS(int no_soures, int no_sinks, double h,unsigned int seed, int max_a, int max_b){int i, j, no_verties, density, no_ars;double demand;bool mkConnetion;Vertex *vertex;Ar *ar;Network *g;bool done = false;no_verties = no_soures+no_sinks;density = (int)floor(0.1*no_sinks);no_ars = 0;g = Network_CreateB(no_soures, no_sinks);srand(seed);// reate soures and sinks and add them to networkfor(i=0; i<no_verties; i++){if(i<no_soures){// reate souresvertex = Vertex_Create(i, 0, no_sinks);Network_SetSoure(g, i);}else{// reate sinksvertex = Vertex_Create(i, no_soures, 0);Network_SetSink(g, i);}Network_AddVertex(g, vertex);}// for eah soure reate ars to 10% of the sinks by random,// randomize ar limits and osts, add ars to networkfor(i=0; i<no_soures; i++){while(!done){for(j=0; j<no_sinks; j++){mkConnetion = false;mkConnetion = TestGraphs_MkConnetion(rand());if(mkConnetion){ar = TestGraphs_CreateAr(i, (j+no_soures), max_a, max_b);if(Network_AddAr(g, ar)){no_ars++;if(no_ars>=density){no_ars = 0;done = true;break;}}}}}done = false;}// set supply for soures, set demand for sinksfor(i=0; i<(no_verties); i++){vertex = &Network_Verties(g)[i℄;if(i<no_soures){demand = TestGraphs_CalDemand(vertex, g, h, true);Vertex_SetDemand(vertex, demand);}else{demand = TestGraphs_CalDemand(vertex, g, h, false);Vertex_SetDemand(vertex, -demand);}}return g;}/***************************************************************************** PRIVATE FUNCTIONS*****************************************************************************/** Returns an ar with randomized ar limits and osts* �param i index for the tail of the ar* �param j index for the head of the ar* �param max_a eiling for the linear oeffiient of the ost funtion* �param max_b eiling for the quadrati oeffiient of the ost funtion* �return ar*/Ar* TestGraphs_CreateAr(int i, int j, int max_a, int max_b){double lower, upper;
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QuadFun *ost;ost = QuadFun_Create(0,0);lower = TestGraphs_LowerLimit(rand());upper = TestGraphs_UpperLimit(((int)lower), rand());TestGraphs_Cost(max_a, rand(), max_b, rand(), ost);return(Ar_Create(i, j, lower, upper, ost));}/** Returns the demand for vertex (sum(ar->lower) +sum(ar->upper - ar->lower)*h).* If out=true, the demand is set for a soure and equals total value ofoutgoing ars.* If out=false, the demand is set for a sink and equals total value ofinoming ars.* �param vertex* �param n network that the vertex belongs to* �param h fator for avarage flow on ars in network* � return demand*/double TestGraphs_CalDemand(Vertex *vertex, Network *n, double h, bool out){Ar *ar;double sum = 0;int i;// demand for souresif(out){for(i=0; i<Vertex_NoOut(vertex); i++){ar = &Network_Ars(n)[Vertex_Index(vertex)℄[Vertex_Out(vertex)[i℄℄;sum += Ar_Lower(ar) + ((Ar_Upper(ar)-Ar_Lower(ar))*h);}}// demand for sinkselse{for(i=0; i<Vertex_NoIn(vertex); i++){ar = &Network_Ars(n)[Vertex_In(vertex)[i℄℄[Vertex_Index(vertex)℄;sum += (Ar_Lower(ar) + ((Ar_Upper(ar)-Ar_Lower(ar))*h));}}return(sum);}/** Sets the linear (a0 and quadrati (b) oeffiient of ost.* �param max1 maximum value for the linear oeffiient* �param rand1 int to deide the value of the linear oeffiient,* in the range [0<=a<=max1℄* �param max2 maximum value for the quadrati oeffiient* �param rand2 int to deide the value of the quadrati oeffiient* in the range [0<b<=max2℄* �param ost QuadFun to hold the oeffiients a and b*/void TestGraphs_Cost(int max1, int rand1, int max2, int rand2, QuadFun *ost){double a, b;double fator = 3.05185; // orretion to obtain upper limit asRAND_MAX=32767if(max1==10 && max2==1){a = (((double)rand1)/10000)*fator;b = (((double)rand2)/100000)*fator;}else{a = (((double)rand1)/100000)*fator;b = (((double)rand2)/10000)*fator;}ost->a = a;ost->b = b;}/* Based on the rand value, returns true if an ar should be reated between* two verties.* Returns true if rand <= max (= 0.1*RAND_MAX), false otherwise.* �param rand* �return true or false*/bool TestGraphs_MkConnetion(int rand){double max = RAND_MAX*0.1;return (rand <= max);}
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