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Abstract. Lagrangean dualization and subgradient optimization techniques are frequently used within the
field of computational optimization for finding approximate solutions to large, structured optimization prob-
lems. The dual subgradient scheme does not automatically produce primal feasible solutions; there is an
abundance of techniques for computing such solutions (via penalty functions, tangential approximation
schemes, or the solution of auxiliary primal programs), all of which require a fair amount of computational
effort.

We consider a subgradient optimization scheme applied to a Lagrangean dual formulation of a convex
program, and construct, at minor cost, an ergodic sequence of subproblem solutions which converges to the
primal solution set. Numerical experiments performed on a traffic equilibrium assignment problem under
road pricing show that the computation of the ergodic sequence results in a considerable improvement in the
quality of the primal solutions obtained, compared to those generated in the basic subgradient scheme.

Key words. convex programming – Lagrangean duality – Lagrangean relaxation – subgradient optimization
– ergodic convergence – primal convergence – traffic equilibrium assignment – road pricing

1. Introduction

When solving large, structured optimization problems through the utilization of La-
grangean dual formulations, subgradient optimization methods are popular since they
remarkably often are able to quickly identify near-optimal dual solutions. However,
the subgradient schemes do not directly provide solutions to the primal problem. We
present a simple means to construct such a solution by forming an ergodic sequence of
Lagrangean subproblem solutions; our analysis generalizes those forlinear programs
by Shor [60] and Larsson and Liu [39] to the case of generalconvexprograms.

Associated with a convex minimization program is a Lagrangean dual program. The
corresponding Lagrange function is convex (concave) with respect to its primal (dual)
variables, and the solutions to this primal–dual pair of programs are the saddle points to
the Lagrange function. In a Lagrangean dual approach for solving a convex program, the
Lagrange function is maximized with respect to its dual variables, and the corresponding
primal solutions are derived from subproblems, which are usually considerably more
easily solved than the original program. For some early and important developments
of Lagrangean duality theory in nonlinear programming, see Uzawa [63], Everett [20],
and Falk [21].
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Over the last few decades, Lagrangean dualization techniques (e.g., Geoffrion [25])
have become widely used within the field of computational optimization. Some examples
are given in the following. An early application of Lagrangean dual techniques was the
Dantzig–Wolfe decomposition method[13] for linear programming problems (although
it was not described in these terms), which employs an inner approximation of the convex
set defined by their constraints; this approximation can be interpreted as the dual of
a tangential approximation of the objective function of the Lagrange dual with respect to
these constraints (e.g., Lasdon [46, Section 8.6]). TheLagrangean relaxationtechnique
has proven to be a powerful tool for designing efficient heuristic solution methods for
many classes of structured large scale optimization problems, in particular within the
field of discrete optimization (e.g., Geoffrion [26], Fisher [23], and Beasley [4]). In
augmented Lagrangean methods(e.g., Rockafellar [56], and Bertsekas [7]) a quadratic
penalty term is added to the objective function before the program is dualized; this
type of combination of Lagrangean relaxation and penalty methods has been successful
in many applications (e.g., Ruszczyński [58]). The application of Lagrangean dual
techniques to network flow problems with (strictly) convex and separable cost functions
some times gives rise to highly parallelizable algorithms (see Bertsekas and Tsitsiklis [8,
Chapter 5]).

We next review a number of applications that demonstrate the strength of dual so-
lution approaches to large scale structured optimization problems. In an algorithm for
optimum structural design, Svanberg [62] solves an approximate design problem —
with strictly convex objective and linear inequality constraints — using Lagrangean
duality; the dual objective is smooth and it is maximized by steepest ascent (slightly
modified to take care of the nonnegativity restrictions). Lamond and Stewart [38] show
that many balancing methods used in transportation planning and in other fields are
special cases of a method developed by Bregman [9] applied to a Lagrange dual of
a gravity model. The minimization of a strictly convex, separable function subject to
convexity constraints can be efficiently made by utilizing Lagrangean duality (e.g., Cot-
tle et al. [11]); special cases of this program (e.g., the Euclidean projection of a point
onto a simplex) arise as subproblems in many iterative schemes for structured large
scale programming. Balakrishnan et al. [2] develop a dual ascent procedure to solve
large scale uncapacitated network design problems; they report successful results from
applications to models arising in freight transportation. Fisher [24] solves vehicle rout-
ing problems to optimality by a branch–and–bound algorithm, where lower bounds
are generated using Lagrangean relaxation, the resulting subproblem solutions essen-
tially being k-trees; the algorithm has produced proven optimal solutions for several
difficult problems.

In the last few years, Lagrangean dual approaches have received a renewed interest
for the solution of large scalelinear programs. Goffin et al. [27,28] propose a new
treatment of the master program in the Dantzig–Wolfe method; the resulting method
performs well in applications to large scale structured linear programs. Hauer and
Hoganson [29] solve large linear programs arising in forest management scheduling,
using Lagrangean relaxation and subgradient optimization; here the Lagrangean dual
approach is especially appropriate since the constraints aresoft, that is, they need not
be fulfilled exactly. Jones et al. [34] apply the Dantzig–Wolfe decomposition principle
to different formulations of linear multicommodity network flow problems.



Ergodic, primal convergence in dual subgradient schemes for convex programming 285

1.1. Primal convergence in Lagrangean dual schemes

What then are the main advantages of Lagrangean dual approaches? Many computa-
tionally demanding optimization problems can be interpreted as fairly easily solvable
problems which are complicated by side constraints. An example of a problem which
can be characterized as such is the travelling salesman polytope, which can be expressed
by spanning tree constraints and node degree (side) constraints. In a Lagrangean relax-
ation formulation of a program, these side constraints are moved to the objective, where
they are included, weighted by multipliers. The relaxed problem that is thereby created
takes the side constraints into account implicitly (and the new program is more easily
solved than the original one). The solution to the relaxed problem will, in general, not
satisfy the relaxed constraints, but the violation can, in a certain sense, be minimized
through the solution of a Lagrangean dual program, which is always convex. Moreover,
the feasible solutions to the dual program yield bounds on the optimal objective value
of the original program.

However, the Lagrangean duality concept has a few drawbacks, some of which we
aim to remedy through this work. If the original program is nonconvex — if it is, for
example, a discrete optimization problem — then there is usually a gap between the
optimal primal and dual objective values; this property makes it difficult to construct
proper termination criteria for algorithms based on Lagrangean relaxation formulations.
Moreover, not even in the (unlikely) case that an exact dual solution is at hand is
a primal optimal solution easily available. One reason for this inconvenience is that the
Lagrangean function may not have a saddle point in the nonconvex case. Another reason
is that the dual objective function (also in the convex case) is typically nonsmooth, espe-
cially at an optimal dual solution; then an optimal primal solution is (usually) a nontrivial
convex combination of the extreme subproblem solutions. Within linear programming
this property has been referred to as thenoncoordinabilityphenomenon [16]. In the case
that the original objective function is strictly convex, the Lagrangean dual objective
function is differentiable, whence this phenomenon does not appear. A lot of effort has
been put into inducing primal convergence in Lagrangean relaxation schemes for convex
programming. We go on to an overview of the main types of approaches used for this
purpose.

Approach 1 (Removing the nonsmoothness).In the methods of Jennergren [32] and
Mangasarian [48] linear price functions and a quadratic perturbation of the linear object-
ive, respectively, are employed. Closely related to these approaches are the augmented
Lagrangean dual solution methods for convex programming (e.g., Rockafellar [56]
and Bertsekas [7]); these methods can be interpreted as combinations of Lagrangean
dualization and penalty approaches, where the nonlinear penalty term induces coor-
dinability. Dem’yanov and Malozemov [14, p. 230] solve convex–concave saddle point
problems; in order to receivestrict convexity–concavity they add (subtract) a strictly
convex quadratic term to (from) the convex (concave) component of the function. Fein-
berg [22] introduces coordinability in a Dantzig–Wolfe type scheme, by using strictly
convex price functions.

In these methods, exact primal feasibility and complementarity are typically reached
in the limit only. Although their memory requirements are fairly low, each of their
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subproblems is computationally more demanding than that of the ordinary Lagrangean
dual approach.

ut
Approach 2 (Using ascent methods).For large block-angular linear programs, Ruszcz-
yński [58] proposes an augmented Lagrangean method in which the multiplier steps form
an ascent procedure with respect to the ordinary Lagrange dual problem; its convergence
is finite. Ben-Tal and Bendsøe [5] reformulate a problem of truss topology design to an
unconstrained minimization problem with a convex and piecewise quadratic objective
function; it is solved by anε-steepest descent algorithm. In a proximal bundle method
applied to a Lagrange dual of a convex program, aggregated subproblem solutions
asymptotically solve the primal program (Kiwiel [35]); the aggregation weights are
computed through the solution of a quadratic program.

In these methods, feasibility and complementarity are typically reached in the limit
only (for linear programs, sometimes finitely, however). For large scale problems, these
quadratic programs are normally very large.

ut
Approach 3 (Solving a master problem).In the Dantzig–Wolfe decomposition prin-
ciple [13] a linear coordinating master program combines extreme Lagrangean sub-
problem solutions into an approximate solution to the original program (see also [46,
Section 8.6]). In the stochastic decomposition method for two-stage linear programs
by Higle and Sen [30], the objective function of the master program is a piece-wise
linear approximation of the original (implicitly defined) objective function. For convex
programs, Bazaraa et al. [3, p. 230] acquire feasibility and finiteε-optimality through
the minimization of an inner approximation of the objective function over the convex
hull of the subproblem solutions.

In these methods, feasibility is maintained through the iterative process, while com-
plementarity is typically reached in the limit only. The master program is usually a large
linear (or, convex) program.

ut
Approach 4 (Utilizing ergodic sequences).The construction of sequences of (weight-
ed) averages (that is, ergodic sequences) of solutions is a widely used technique for
inducing convergence properties that an original sequence lacks. Examples of this are
the method of successive averages by Powell and Sheffi [53], and the mean value cross
decomposition method by Holmberg [31]. In the stochastic decomposition method by
Higle and Sen [30], averages of approximate supporting hyperplanes are used to obtain
statistically valid lower bounds, and Petersson and Patriksson [50] employ averaging
techniques to solve saddle point problems arising from applications in the topology
optimization of mechanical structures. Shor [60, pp. 116–118] uses ergodic sequences
of Lagrangean subproblem solutions to generate optimal primal solutions in linear
programming; his ideas are further investigated and developed, and computationally
tested by Larsson et al. [40] for the traffic equilibrium assignment problem, and by
Larsson and Liu [39] for structured linear programs. Sherali and Choi [59] extend the
results of Shor and of Larsson and Liu to allow for more general choices of convexity
weights and step lengths in the subgradient scheme.
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In these methods, feasibility and complementarity are reached in the limit only. In
some cases the convergence is slow, but no additional optimization problem has to be
solved and the memory requirements are low.

ut

1.2. Motivation and outline

In this work, we continue and further develop the ideas of Shor and of Larsson and
Liu, as described in Approach 4. Their results are generalized to convex programs
with possibly nonsmooth objective and/or constraint functions.

While in the methods of Approaches 1–3 above, the sub- or master problems
are computationally demanding, in our ergodic approach no auxiliary optimization
problem needs to be solved to induce primal convergence. Further, our method re-
quires a relatively small amount of additional memory, which is in contrast to the
methods of Approaches 2 and 3. In the methods of Approach 3, primal feasibility
is maintained throughout the iterative procedure. Our method, however, guarantees
neither primal feasibility nor complementarity in finite time when applied to gen-
eral convex programs. Therefore we also propose the use of heuristic projections of
averaged solutions onto the primal feasible set. (In the application to traffic equi-
librium assignment under road pricing, which is reported in Section 4, the special
problem structure enables us, however, to obtain primal feasibility throughout the
iterative procedure.) Our method is also motivated by applications withsoft con-
straints, such as the large forest management scheduling problem solved by Hauer
and Hoganson [29], and applications involving capacity expansion decisions, such as
production and work force planning problems (e.g., Johnson and Montgomery [33,
Example 4-14]). We believe that our analysis fills a gap between the analyses of
linear programs and of strictly convex programs; in the latter case it is well known
that primal convergence holds without the generation of ergodic sequences.

In Section 2 we briefly review Lagrangean duality theory for convex program-
ming, together with a convergence result for conditional subgradient optimization
applied to the dual program, under a general step length rule that extends the diver-
gent series rule. The main contribution of this paper is contained in Section 3, where
we present two schemes for generating ergodic sequences of subproblem solutions
which induce convergence to the solution set of the primal program. We then show
that a sequence of heuristic projections of the averaged solutions onto the original
feasible set finitely reachesε-optimality. In Section 4 we present results from an
application to traffic equilibrium assignment under road pricing, and in Section 5
we draw conclusions and discuss briefly some opportunities for further research.

2. Preliminaries

Let the functionsf : <n 7→ < andhi : <n 7→ <, i ∈ I = {1, . . . ,m}, be convex and
(possibly) nonsmooth, the setX ⊂ <n be convex and compact, and consider the convex
program
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f ∗ = min f(x), (1a)

s.t.hi (x) ≤ 0, i ∈ I, (1b)

x ∈ X, (1c)

with solution setX∗. We assume that the setX is simple and that the feasible set
{ x ∈ X | hi (x) ≤ 0, i ∈ I } is nonempty.

The following definition is to be used in the sequel. LettingSbe a nonempty, closed,
and convex set, we denote by

proj (x, S) = arg min
y∈S
‖y− x‖2 and dist (x, S) = min

y∈S
‖y− x‖2 (2)

the Euclidean projection of the vectorx onto the setS, and the Euclidean distance
from the pointx to proj (x, S), respectively. The functiondist (·, S) is convex and
continuous.

We first give a summary of the relevant Lagrangean duality theory for convex
programs. Although this is a classical subject, with contributions dating back several
decades (see, e.g., Kuhn and Tucker [37] for an early work), to assist the reader we have
chosen the textbook by Bazaraa et al. [3] as our basic reference.

2.1. Lagrangean duality

The Lagrange functionL : <n × <m 7→ < with respect to the relaxation of the
constraints (1b) isL(x,u) = f(x) + uTh(x) for all (x,u) ∈ <n × <m, whereh(x) =
[hi (x)]i∈I for all x ∈ <n andu = [ui ]i∈I . For anyu ∈ <m+, L(·,u) is convex on<n.
The dual objective functionθ : <m 7→ < is concave and continuous and is defined by
the dual subproblem

θ(u) = min
x∈X

f(x)+ uTh(x), u ∈ <m. (3)

The nonempty, convex and compact solution set to this subproblem atu ∈ <m is

X(u) =
{

x ∈ X
∣∣∣ f(x)+ uTh(x) ≤ θ(u)

}
. (4)

The Lagrange dual to the program (1) then is

θ∗ = supθ(u),
s.t. u ≥ 0,

(5)

with the convex solution setU∗. This dual program consists of maximizing a concave
function over a convex set; it is thus a convex programming problem. Further, byweak
duality for the primal-dual pair (1), (5), the inequalityθ(u) ≤ f(x) holds whenever
u ≥ 0, x ∈ X, andh(x) ≤ 0 (Bazaraa et al. [3, Theorem 6.2.1]).

The two following results are crucial in the development of our continued analysis.
We utilize the following notion of aclosed map: A point–to–set mapX : <m 7→ 2<n

is
closed if{ut} ⊂ <m, {ut} → u, xt ∈ X(ut) for all t, and{xt} → x imply thatx ∈ X(u).
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Lemma 1 (X(·) is a closed map).Let the sequence{ut} ⊂ <m, the mapX(·) : <m 7→
2X be given by the definition (4), and the sequence{xt} by the inclusionxt ∈ X(ut). If
{ut} → u, then{dist (xt, X(u))} → 0. If, in addition,X(u) = {x}, then{xt} → x.

Proof. Since the functionsf andh are continuous, the mapX(·) is closed. Since the
setX is compact, any sequence{xt} ⊆ X is bounded, whence{dist (xt, X(u))} → 0
follows. The second result is immediate.

ut
For eachu ∈ <m, we define the setI(u) of indices corresponding to strictly positive

multipliers,ui , as
I(u) = {i ∈ I | ui > 0}. (6)

Lemma 2 (The Lagrange function is affine on the subproblem solution set).The
functionsf andhi , i ∈ I(u), are affine onX(u) for everyu ≥ 0. Further, if the function
f (the functionhi , i ∈ I(u)) is differentiable, then∇ f (∇hi , i ∈ I(u)) is constant on
X(u).

Proof. For anyu ≥ 0, let x, y ∈ X(u) be arbitrary andλ ∈ [0,1]. By the convexity of
the functionsf andhi , i ∈ I(u), and the definitions (3) and (4),

θ(u) ≤ f(λx+ (1− λ)y)+
∑

i∈I(u)
ui hi (λx+ (1− λ)y)

≤ λ
 f(x)+

∑
i∈I(u)

ui hi (x)

+ (1− λ)
 f(y)+

∑
i∈I(u)

ui hi (y)


= λθ(u)+ (1− λ) θ(u).

Hence, the above inequalities must hold with equality. Especially, then,λx+ (1−λ)y ∈
X(u). Sincex andy are arbitrary inX(u), this implies the first statement. The second
statement is then immediate.

ut
A consequence of Lemma 2 is that, for allu ≥ 0 and everyi ∈ I(u), ∂hi is

constant onrint X(u); hence, for example, for everyx ∈ rint X(u), each subgradient
ξ i ∈ ∂hi (x) defines a hyperplane that supports the functionhi at everyx ∈ X(u).

The subdifferentialof the concave functionθ at u ∈ <m is (Bazaraa et al. [3,
Definition 3.2.3])

∂θ(u) =
{
γ ∈ <m

∣∣∣ θ(v) ≤ θ(u)+ γ T(v− u), v ∈ <m
}
,

the elements of which are calledsubgradients. The next proposition follows from [3,
Theorem 6.3.7], the convexity of the setX, and Theorem 11 in [45].

Proposition 1 (Subdifferential to the dual objective function). For eachu ∈ <m,
∂θ(u) = {h(x) | x ∈ X(u)}. Further, θ is differentiable atu if and only if eachhi is
constant onX(u), in which case∇θ(u) = h(x) for anyx ∈ X(u).

ut
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This result implies that the functionθ is differentiable atu ∈ <m if the set X(u) is
a singleton (Bazaraa et al. [3, Theorem 6.3.3]).

Thenormal coneto the set<m+ at u ∈ <m+ is

N<m+(u) =
{
ν ∈ <m− | νi ui = 0, i ∈ I } .

The optimality conditions for the dual program (5) are given by the following (e.g., [3,
Theorem 3.4.3]).

Proposition 2 (Optimality conditions for the dual problem). The pointu ∈ U∗ if
and only if there exists aγ ∈ ∂θ(u) such thatγ ≤ 0 and uTγ = 0, or, equivalently,
∂θ(u) ∩ N<m+ (u) 6= ∅ holds, that is,−∂θ(u)+ N<m+ (u) 3 0.

ut
To obtain primal–dual optimality relations, the primal feasible set must fulfil aconstraint
qualification.

Assumption 1 (Slater constraint qualification).The set{x ∈ X | h(x) < 0} is non-
empty.

ut
Under Assumption 1, the convex setU∗ is nonempty and compact, and, bystrong
duality, θ(u) = f(x) holds for some pair(x,u) such that the relationsu ≥ 0, x ∈ X,
andh(x) ≤ 0 hold ([3, Theorem 6.2.4]). The next proposition states conditions under
which a pointx is optimal in (1), for the (unlikely) case that an optimal dual solution is
at hand; it follows from [3, Theorem 6.2.5].

Proposition 3 (Primal–dual optimality conditions). Let Assumption 1 hold and let
u ∈ U∗. Then,x ∈ X∗ if and only ifx ∈ X(u), h(x) ≤ 0, anduTh(x) = 0.

ut

The composite mapping(∂θ) ∩ (N<m+ ) is constant on the solution setU∗ (e.g., Lars-
son et al. [44, Proposition 2.1] and Burke and Ferris [10, Lemma 2]). Hence, under
Assumption 1, the solution set to the primal program (1) may be expressed as

X∗ =
{

x ∈ X(u)
∣∣∣ h(x) ≤ 0, uTh(x) = 0

}
, (7)

irrespective of the choice ofu ∈ U∗, and the primal–dual optimality conditions may be
expressed as

(x,u) ∈ X∗ ×U∗ ⇐⇒ h(x) ∈ ∂θ(u) ∩ N<m+ (u). (8)

At a dual solutionu ∈ U∗, the subproblem solution setX(u) is typicallynota singleton;
as a consequence, the dual objective function is nonsmooth onU∗, and a subgradient
that can be used to verify the optimality of such a solution, according to Proposition 2,
is not directly available.
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2.2. Convergence of dual subgradient optimization

We consider solving the Lagrangean dual program (5) by theconditional subgradient
optimizationmethod [42], which is given by the following. Choose a starting solution
u0 ≥ 0 and compute iteratesut according to the formula

ut+ 1
2 = ut + αt

(
h(xt)− νt) , ut+1 =

[
ut+ 1

2

]
+ , t = 0,1, . . . , (9)

wherext ∈ X(ut) solves the dual subproblem (4) atut , so thath(xt) ∈ ∂θ(ut) is
a subgradient toθ at ut , νt ∈ N<m+ (u

t) is an element of the normal cone to<m+ at
ut ∈ <m+, αt is the step length chosen at iterationt, and[·]+ denotes the Euclidean
projection onto the nonnegative orthant<m+.

If {νt} = {0}, then the method (9) reduces to the traditional subgradient optimization
method (e.g., Shor [60, Section 2]). Choosingνt = proj (h(xt), N<m+ (u

t)) results in

hi (xt)− νt
i =

{
0, if ut

i = 0 andhi (xt) < 0,
hi (xt), otherwise,

i = 1, . . . ,m, (10)

(see Larsson et al. [42, Lemma 3.2]), defining the special case of the method (9) that is
called thesubgradient projection method. (Note that this name is sometimes used for
traditional subgradient optimization although it there refers to the projection ofut+ 1

2

onto<m+.) The directionh(xt)− νt from ut ∈ <m+, as defined in (10), is feasible in the
program (5).

The convergence of the method (9) is established in [42] for two different step
length rules. For the case when{νt} = {0}, Polyak [51,52] and Ermol’ev [19], among
others, establish convergence using several different step length rules (see also Shor [60,
Chapter 2]). In this work we utilize special cases of thedivergent seriesstep length
rule [19].

The next convergence result specializes that established by Larsson et al. [42, Theo-
rem 2.7] to the Lagrangean dual problem (5); note that the boundedness condition on
the sequence{νt} can always be fulfilled by construction.

Proposition 4. Suppose that Assumption 1 holds, and let the method(9) be applied to
the program(5), with the step lengthsαt fulfilling the conditions

αt > 0, ∀t, lim
t→∞αt = 0, lim

t→∞

t−1∑
s=0

αs = ∞, and lim
t→∞

t−1∑
s=0

α2
s <∞. (11)

If the sequence{νt} is bounded, then{ut} → u∞ ∈ U∗ and{θ(ut)} → θ∗.
ut

To induce convergence of the method (9) foradaptivestep length selection rules,
based on line searches or formulas involving estimates of the optimal value, thealmost
complete relaxationstrategy of Dem’yanov and Vasil’ev [15, Section 3.4] can be used
([42, Corollary 2.8]). It works as follows. Define the sequences{αt}and{αt}withαt ≤ αt
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for all t, and both satisfying the conditions (11).1 Suppose that at some iterationt, an
adaptive rule has generated a (tentative) step lengthα̃t . The step lengthαt used is defined
as the projection of̃αt onto the interval[αt, αt]. The sequence{αt}, resulting from this
safeguarding strategy, satisfies the conditions (11).

From Propositions 2 and 4 it follows that the set∂θ(u∞) ∩ N<m+ (u
∞) is nonempty.

The next proposition, which is a special case of Theorem 3.9 in [44], establishes that the
sequence{h(xt)} of subgradients to the dual objective function converges in an ergodic
sense to an element that verifies optimality in terms of Proposition 2. We define the
sequence{At} of cumulative step lengths by

At =
t−1∑
s=0

αs, t = 1,2, . . . . (12)

Proposition 5. Let Assumption 1 hold and the method(9)–(11) be applied to the pro-
gram(5). Further, let the sequences{At} and{gt} be defined by(12) and

gt = A−1
t

t−1∑
s=0

αsh(xs), t = 1,2, . . . ,

respectively, wherexs ∈ X(us) for all s. If the sequence{νt} is bounded, then{
dist

(
gt, ∂θ(u∞) ∩ N<m+ (u

∞)
)}
→ 0.

ut
In the next section we establish that the sequence{xt} of subproblem solutions

converges in an ergodic sense to the solution setX∗ as expressed in (7).

3. Ergodic primal convergence

The application of the method (9)–(11) to the program (5) produces a sequence{xt}
of solutions to the subproblem (3). We propose two schemes for generating an ergodic
sequence of subproblem solutions; each of these sequences is shown to converge to the
solution set,X∗. Their generation is computationally cheap, and their storage requires
a relatively small amount of memory. In the first scheme, the sequence is defined by
(convexity) weights that are proportional to the step lengths,αt . The second scheme
presumes the use of step lengths that generalize a modified harmonic series to allow for
the utilization of the almost complete relaxation strategy (and which also satisfies the
conditions (11)); in this case, the ergodic sequence is defined by equal weights. We also
present a heuristic projection procedure for the finite attainment of primalε-optimality.

Henceforth, we make repeated use of the following lemma; it is a special case
of a result of Silverman and Toeplitz, and a proof can be found in, e.g., Knopp [36,
Theorem 2, p. 35].

1 It may, for example, be appropriate to let the sequences be given byαt = µ/(b+ t) andαt = M/(b+ t),
t = 0,1, . . . , whereµ > 0 (M > 0) is a very small (very large) constant andb> 0.
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Lemma 3. Assume that the sequence{βts} ⊂ < fulfils the conditions

βts ≥ 0, s= 0, . . . , t − 1,
t−1∑
s=0

βts = 1, t = 1,2, . . . ,

and limt→∞ βts = 0, s= 0,1, . . . .

If the sequence{bs} ⊂ <r is such thatlims→∞ bs = b, thenlimt→∞
(∑t−1

s=0βtsbs
)
= b.

ut

3.1. Divergent series step lengths and proportional weights

The ergodic sequence{xt} of subproblem solutions that is computed within the method
(9)–(11) applied to the program (5), is defined as the weighted averages

xt = A−1
t

t−1∑
s=0

αsxs, t = 1,2, . . . , (13)

where the sequence{At} is defined in (12). Hence, each vectorxt is a convex combination
of the subproblem solutions found up to iterationt, and thusxt ∈ X holds for allt.

The convergence of the sequence{xt} to the setX∗ is established in terms of the
fulfilment of the optimality conditions of Proposition 3.

Theorem 1 ({xt} converges to the solution set).Suppose that Assumption 1 holds, let
the method(9)–(11)be applied to the program(5), the setX∗ and the sequence{xt} be
given by the definition(7) and(13), respectively, and suppose that the sequence{νt} is
bounded. Then, {

dist
(
xt , X∗

)}→ 0.

Proof. Letting u∞ be the limit of the sequence{ut}, as given in Proposition 4, we first
show that the sequence{xt} converges to the set of subproblem solutions atu∞, then
that it is feasible in the limit, and, finally, that it is complementary tou∞ in the limit.

By the convexity and nonnegativity of the functiondist (·, S), and the definition
(12), the inequalities

0≤ dist
(
xt , X(u∞)

) ≤ A−1
t

t−1∑
s=0

αsdist
(
xs, X(u∞)

)
hold for all t. By Lemma 1 and Proposition 4,{

dist
(
xs, X(u∞)

)}→ 0 as s→∞. (14)

Utilizing Lemma 3, withβts = A−1
t αs, bs = dist {xs, X(u∞)} and b = 0, it then

follows that {
dist

(
xt, X(u∞)

)}→ 0 as t →∞. (15)
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By the convexity of the functionshi , i ∈ I, h(xt) ≤ A−1
t
∑t−1

s=0αsh(xs) for all t, and
from the iteration formula (9) it follows thath(xs) ≤ (us+1 − us)/αs for all s. Hence,
h(xt) ≤ A−1

t (ut − u0) for all t. Proposition 4 implies that the sequence{ut − u0} is
bounded and, therefore,

lim sup
t→∞

hi (xt) ≤ 0, ∀i ∈ I. (16)

Now, consider ani ∈ I(u∞). From Proposition 4 it follows that, for some fixedτ
that is large enough,ut

i > 0 for all t ≥ τ, and, by the iteration formula (9),νt
i u

t
i = 0

holds for allt. Therefore, by (9),

hi (xt) = ut+1
i − ut

i

αt
, ∀t ≥ τ. (17)

Choosingx ∈ rint X(u∞) andξ i ∈ ∂hi (x), Lemma 2 yields that

hi (x) = hi (x)+ ξT
i (x− x) , ∀x ∈ X(u∞).

Then, by the continuity of the functionhi , for everyδ > 0 there exists anε > 0 such
that

hi (x) ≤ hi (x)+ ξT
i (x− x)+ δ

3
, ∀x : dist

(
x, X(u∞)

) ≤ ε.
From (14) follows thatdist (xs, X(u∞)) ≤ ε for all s≥ κ, for some fixedκ > τ. The
relation (17) then yields

hi (x)+ ξT
i

(
xs− x

) ≥ us+1
i − us

i

αs
− δ

3
, ∀s≥ κ. (18)

Using the definition (13), we have for allt > κ,

hi (xt) ≥ hi (x)+ ξT
i

(
xt − x

)
≥ A−1

t

κ−1∑
s=0

αs

(
hi (x)+ ξT

i

(
xs− x

))+ A−1
t

t−1∑
s=κ

(
us+1

i − us
i −

αsδ

3

)

= Aκ
At

(
hi (x)+ ξT

i

(
xκ − x

))+ ut
i − uκi

At
−
(

1− Aκ
At

)
δ

3
,

where the first inequality follows from the definition ofξi and the second is implied by the
inequality (18). Since{At} → ∞ and{ut

i } → u∞i , thenA−1
t Aκ(hi (x)+ ξT

i (x
κ − x)) ≥

−δ/3 and A−1
t (ut

i − uκi ) ≥ −δ/3 for all t > κ that are large enough. It follows that
hi (xt) ≥ −δ for all t > κ, that are large enough. Therefore, lim inft→∞ hi (xt) ≥ 0, and
the inequalities (16) then yield that limt→∞ hi (xt) = 0. Since this result holds for all
i ∈ I(u∞), and, by the definition (6),u∞i = 0 for all i ∈ I \ I(u∞), it follows that{

(u∞)Th(xt)
}
→ 0 as t →∞. (19)

The theorem follows from the relations (15), (16) and (19), and Proposition 3.
ut
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For the case when the functionsf andhi , i ∈ I, are affine and the setX is a polytope
(that is, when (1) is a linear program), and{νt} = {0} in the method (9)–(11) applied to
the program (5), Theorem 1 reduces to a result of Shor [60, pp. 116–118].

The next result follows from Proposition 4, Theorem 1, and the relation (8).

Corollary 1 (xt verifies optimality in the limit). Under the assumptions of Theorem 1,{
dist

(
h(xt), ∂θ(u∞) ∩ N<m+ (u

∞)
)}
→ 0.

ut

3.2. Generalization of modified harmonic series step lengths, and equal weights

Now, let the step lengths used in the conditional subgradient optimization method (9)
be minorized and majorized, respectively, by the elements of two modified harmonic
series, that is

αt ∈
[
µ

b+ t
,

M

b+ t

]
, b> 0, 0< µ ≤ M <∞, t = 0,1, . . . , (20)

and let the sequence{̂xt} of averaged subproblem solutions be defined by equal weights,
as

x̂t = 1

t

t−1∑
s=0

xs, t = 1,2, . . . . (21)

Analogously to the previous subsection, we will here derive the convergence of the
sequence{̂xt} to the solution setX∗, as expressed in the definition (7).

Theorem 2 ({̂xt} converges to the solution set).Suppose that Assumption 1 holds, let
the method(9), (20)be applied to the program(5), the setX∗ and the sequence{̂xt} be
given by the definitions(7) and(21), respectively, and suppose that the sequence{ν t} is
bounded. Then, {

dist
(̂
xt, X∗

)}→ 0.

Proof. Using arguments analogous to those used in the derivation of the result (15), we
have that {

dist
(̂
xt, X(u∞)

)}→ 0 as t →∞. (22)

By the iteration formula (9) and the definition (20),h(xs) ≤ α−1
s (us+1 − us) ≤

µ−1(b+ s)(us+1− us), for all s. Hence, for allt ≥ 1,

1

t

t−1∑
s=0

h(xs) ≤ b

µt

t−1∑
s=0

(
us+1− us

)
+ 1

µt

t−1∑
s=0

s
(

us+1− us
)

= b− 1

µt

(
ut − u0

)
+ 1

µ

(
ut − 1

t

t−1∑
s=0

us

)
. (23)
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Since{ut} → u∞, limt→∞(µt)−1(b − 1)(ut − u0) = 0. Applying Lemma 3, with
βts = t−1, bs = us, andb = u∞, yields that{t−1∑t−1

s=0 us} → u∞. It follows that
the right-hand side of (23) tends to the origin ast → ∞. By the convexity of the
functionshi , hi (̂xt) ≤ t−1∑t−1

s=0 hi (xs) holds for alli ∈ I, and therefore

lim sup
t→∞

hi (̂xt) ≤ 0, ∀i ∈ I. (24)

Now, consider ani ∈ I(u∞), and choose anx ∈ rint X(u∞) andξ i ∈ ∂hi (x).
Similarly to the derivation of the inequalities (18), utilizing the definition (20), we have
that, for everyδ > 0 there exists aκ > 0 such that

hi (x)+ ξT
i

(
xs− x

) ≥ b+ s

M

(
us+1

i − us
i

)
− δ

4
, ∀s≥ κ. (25)

Using the definition (21) we have, for allt > κ,

hi (̂xt) ≥ hi (x)+ ξT
i

(̂
xt − x

)
≥ 1

t

κ−1∑
s=0

(
hi (x)+ ξT

i

(
xs− x

))+ b

Mt

t−1∑
s=κ

(
us+1

i − us
i

)

+ 1

Mt

t−1∑
s=κ

s
(
us+1

i − us
i

)
− t − κ

t
· δ

4

= κ

t

(
hi (x)+ ξT

i

(̂
xκ − x

))+ b− 1+ κ
Mt

(
ut

i − uκi
)

+ 1

M

(
ut

i −
(

1− κ
t

) 1

t − κ
t−1∑
s=κ

us
i

)
−
(

1− κ
t

) δ
4
,

where the first inequality follows from the definition ofξ i and the second from the
inequality (25). Since{ut

i } → u∞i , for all t > κ that are large enough, it follows
that t−1κ(hi (x) + ξT

i (̂x
κ − x)) ≥ −δ/4, (Mt)−1(b− 1+ κ)(ut

i − uκi ) ≥ −δ/4, and,

utilizing Lemma 3, thatM−1(ut
i − (1− t−1κ)(t − κ)−1∑t−1

s=κ us
i ) ≥ −δ/4. It follows

thathi (̂xt) ≥ −δ for all t > κ that are large enough. Analogous to the result (19), then{(
u∞
)T h(̂xt)

}
→ 0 as t →∞. (26)

The theorem follows from the relations (22), (24) and (26), and Proposition 3.
ut

For the case when (1) is a linear program, and{νt} = {0} in the method (9), (20) applied
to the program (5), our Theorem 2 reduces to Theorem 3 of Larsson and Liu [39].

The next result is a consequence of Proposition 4, Theorem 2, and the relation (8).

Corollary 2 ( x̂t verifies optimality in the limit). Under the assumptions of Theorem 2,{
dist

(
h(̂xt), ∂θ(u∞) ∩ N<m+ (u

∞)
)}
→ 0.

ut
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3.3. Finite primal feasibility andε-optimality

The following discussion concerns the method of Section 3.1, but is applicable to that
of Section 3.2 as well.

Theorem 1 establishes optimality in the limit for the sequence{xt} of primal so-
lutions. While dual feasibility is maintained throughout the iterative procedure (9),
neither primal feasibility nor complementarity will, in general, be finitely satisfied by
the elements of the sequence{xt}. However, eventuallyxt will be both near-feasible
and near-complementary. For applications with soft constraints, such as the forest man-
agement scheduling problem presented by Hauer and Hoganson [29], for which primal
feasibility is not crucial, the elementsxt will thus eventually be sufficiently close to
a feasible (and optimal) solution. Nevertheless, whenever primal feasibility is required
finitely, it might be necessary to apply a procedure that converts any finitely generated
primal solutionxt into a feasible solution to the original convex program. One procedure
for enforcing feasibility is the solution of the Euclidean projection problem

proj
(
xt ,Y

) = arg min
x∈Y

∥∥x− xt
∥∥

2 , where Y = { x ∈ X | h(x) ≤ 0} . (27)

Solving this program regularly may, however, be computationally too expensive. It is
probably better to develop a heuristic procedure, which exploits the structure of the setY
when searching for a feasible and near-optimal solution to the projection problem (27).

We letproj H(x,Y) denote a heuristic projection of a pointx ∈ <n onto the feasible
set of the program (1) which enjoys the following property.

Assumption 2 (Property of heuristic projection). 2 Let x ∈ X and the setY be de-
fined by (27). There exists a functionδ : <+ 7→ <+ such thatδ(ε) > 0 for all ε > 0,
limε→0+ δ(ε) = 0, and

‖proj H(x,Y)− proj (x,Y)‖2 ≤ δ(ε) whenever dist (x,Y) ≤ ε.
ut

Theorem 3 (Convergence by heuristic projection).Let the setYbe defined by(27)and
suppose that Assumption 1 holds. Let the method(9)–(11)be applied to the program(5),
the sequence{xt} be given by the definition(13), and suppose that the sequence{ν t} is
bounded. Then, under Assumption 2,{

dist
(
proj H

(
xt ,Y

)
, X∗

)}→ 0.

Proof. By the definition (2) and the triangle inequality,

dist
(
proj H

(
xt,Y

)
, X∗

) ≤ ∥∥proj H
(
xt ,Y

)− proj
(
xt,Y

)∥∥
2

+dist
(
xt ,Y

)+ dist
(
xt, X∗

)
.

(28)

2 This assumption expresses a continuity property on the difference between the heuristic projection and
the exact Euclidean projection.
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Since X∗ ⊆ Y, it follows from Theorem 1 that for anyε > 0 there is aτ > 0
such thatdist

(
xt ,Y

) ≤ dist
(
xt , X∗

) ≤ ε for all t ≥ τ. Then, by Assumption 2,
‖proj H(x

t,Y) − proj (xt ,Y)‖2 ≤ δ(ε) for all t ≥ τ. From the inequality (28) it then
follows thatdist (proj H(x

t,Y), X∗) ≤ δ(ε)+ 2ε for all t ≥ τ. The result follows by
lettingε→ 0+.

ut
We can now construct an algorithm that employs heuristic projections and yields

convergence to the optimal value in the primal as well as in the dual procedure.

Corollary 3 (Finite termination at ε-optimality). Let the assumptions of Theorem 3
hold. For everyε > 0 there is aτ > 0 such thatf(proj H(x

t ,Y))− θ(ut) ≤ ε holds for
all t ≥ τ.

Proof. Choose anε > 0. From Theorem 3 and the continuity of the functionf , it
follows that there is aκ > 0 such thatf(proj H(x

t,Y)) ≤ f ∗ + ε/2 for all t ≥ κ.
By Proposition 4, there is aτ ≥ κ such thatθ(ut) ≥ θ∗ − ε/2 holds for allt ≥ τ. By
Proposition 3,f ∗ = θ∗, and therefore,f(proj H(x

t ,Y))− θ(ut) ≤ ε for all t ≥ τ.
ut

Since exact Euclidean projection is a special case of heuristic projection, the finite
attainment ofε-optimality also occurs when an exact Euclidean projection is employed.

Remark 1 (Delayed start of averaging).When developing the results of this section
we utilize the propertiesin the limit of the sequence{xt}. Since the information from
the initial iterations of a subgradient optimization scheme is usually of low quality,
it is preferable to delay the initialization of the sequence{xt} until the iterates,ut , are
near-optimal, in the sense that they are located on optimal segments of the dual objective
function (implying thath(xt) ∈ ∂θ(u∞) if θ is polyhedral, and an indication of which
is that certain vectors occur repeatedly as subproblem solutions), and thatut

i > 0 holds

for all i such thatu∞i > 0 (implying thatνt + α−1
t (ut+ 1

2 − ut+1) ∈ N<m+ (u
∞)). This

behaviour is also apparent from the numerical experiments performed in the following
section. In our theoretical analysis, we initialize the ergodic sequences at the first
iteration. Since subgradient methods are memoryless, all of the results can, however, be
modified to the initialization of these sequences at any iterationt0 ≥ 1, with the obvious
modification of the convex combination formula (13).

ut

4. Application to traffic equilibrium assignment under road pricing

Traffic assignment deals with the estimation of route flows in each of the origin–
destination relations of a road network, and the travel times resulting from this allocation.
We consider the traffic equilibrium assignment model, which is based on the assumption
that all road users have complete information about the current traffic conditions, and
that they choose among the shortest routes available. An equilibrium state therefore has
the property that the travel times on routes that are used are equal, that is, they are all
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shortest with respect to the current traffic flow (Wardrop [64]). Since travellers use the
shortest routes, they do not generally fulfil society’s goal of efficient road usage (which
may, for example, be a minimal total travel time). In order to fulfil this goal, during the
last several yearsroad pricingsystems have been paid much attention (e.g., Small [61]
and The Economist[18]). In such systems, each vehicle pays a prespecified toll for
traversing certain arcs, possibly relative to the current traffic flow on these arcs.

4.1. Statement of the model

Consider a connected transportation networkG = (N ,A), with node setN and a set
A of directed arcs. LetC ⊂ N ×N be a set of origin–destination pairs. For each pair,
k ∈ C, there is a fixed positive demanddk of flow, associated with a specific commodity.
We denote the nonempty set of simple routes from the origin to the destination of the
k:th pair byRk and the flow on router ∈ Rk by hkr . Feasibility with respect to demands
requires the route flows[hkr ]r∈Rk,k∈C to satisfy the conditions∑

r∈Rk

hkr = dk, k ∈ C, (29a)

hkr ≥ 0, r ∈ Rk, k ∈ C. (29b)

Letting [δkra]r∈Rk,k∈C,a∈A be an arc-route incidence matrix forG, with

δkra =
{

1, if route r ∈ Rk contains arca ∈ A,
0, otherwise,

the arc flows,fa, are defined by the route flows,hkr , through

fa =
∑
k∈C

∑
r∈Rk

δkrahkr , a ∈ A. (29c)

With each arca ∈ A is associated the travel timeca( fa) for traversing it at arc flow
fa ≥ 0. We presume that the free-flow travel time,ca(0), is positive, and that the
functionsca : <+ 7→ <+ are continuous, strictly increasing, and weakly coercive, that
is, they tend to infinity with the flow (these assumptions are quite natural because of the
congestion effects).

The Wardrop equilibrium conditions for the model (29a)–(29c) with cost functions
ca, a ∈ A, are equivalent to the first-order optimality conditions (e.g., Patriksson [49,
Theorem 2.1]) for the program

min
∑
a∈A

∫ fa

0
ca(s)ds,

s.t. (29a)–(29c),

(30)

which has a convex and differentiable objective function and linear constraints.
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For each arca ∈ A, let τa ≥ 0 be the toll (measured in time equivalents) charged
each vehicle traversing the arc when the arc flow is greater thanϕa ≥ 0. The toll mapping
πa : <+ 7→ 2<+ is defined by3

πa( fa) =


{0}, 0 ≤ fa < ϕa,

[0, τa] , fa = ϕa,

{τa} , fa > ϕa,

a ∈ A. (31)

The mappingπa is nonnegative, convex-valued,4 and closed (see Section 2.1) on<+
for all a ∈ A. Figure 1 illustrates three different types of toll mappings.

N

πa( fa)

Ifa

τa

ϕa
a)

N

πa( fa)

Ifa

τa

b)

N

πa( fa)

Ifa

c)

Fig. 1.The toll mappingπa for arca ∈ A with respect to the arc flowfa ≥ 0. a) ϕa > 0,πa > 0. b) ϕa = 0,
πa > 0. c) πa = 0, i.e., an untolled arc

Lettingµk denote the travel cost (time plus toll) at flowfa, a ∈ A, on the shortest
route from the origin to the destination of thek:th pair, the Wardrop user equilibrium
conditions for the model (29) with cost mappingsca + πa may be stated as

hkr > 0 H⇒
∑
a∈A

δkra (ca( fa)+ pa( fa)) = µk, r ∈ Rk, (32a)

hkr = 0 H⇒
∑
a∈A

δkra (ca( fa)+ pa( fa)) ≥ µk, r ∈ Rk, (32b)

where

pa( fa) ∈ πa( fa), a ∈ A, (32c)

is the toll charged for traversing arca at flow fa. According to (31), ifτa > 0 and
fa = ϕa, then the toll levelpa( fa) has a certain degree of freedom; by allowing
this degree of freedom, we can show that an equilibrium can be found by solving
a (nonsmooth) convex optimization problem. Asmuth [1] shows that a user equilibrium
always exists when the network is strongly connected and the cost mappings are positive,

3 All the results to be derived may be generalized to several toll levels for each arca ∈ A. For simplicity
of notation, however, we consider only one level (which may also be zero) for each arc.

4 A point–to–set mapπ : <+ 7→ 2<+ is convex-valued if the setπ( f) is convex for all f ∈ <+.
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upper semicontinuous,5 and convex-valued. Bernstein and Smith [6] consider single-
valued, lower semicontinuous6cost functions; they show that under fairly mild regularity
conditions a user equilibrium always exists. The theory of road pricing has also been
discussed by Dafermos and Sparrow [12], among others. However, none of these papers
describe equivalent optimization models.

Similarly to the formulation (30) it can be shown (see the proof of Proposition 6)
that the conditions (29) and (32) are the first-order optimality conditions for the program

z∗ = min
∑
a∈A

∫ fa

0
(ca(s)+ πa(s)) ds, (33a)

s.t.
∑

r∈Rk

hkr = dk, k ∈ C, (33b)

hkr ≥ 0, r ∈ Rk, k ∈ C, (33c)∑
k∈C

∑
r∈Rk

δkrahkr = fa, a ∈ A, (33d)

fa ≥ 0, a ∈ A. (33e)

(The constraints (33e) are implied by (33c)–(33d); they have been added to strengthen
the Lagrangean dual formulation to be presented.) As a result of the assumptions made
above, this program is a highly structured, convex optimization problem with a nonlinear
and possibly nonsmooth objective function. A real world instance of this model may
have several thousand nodes, arcs, and origin–destination pairs.

From the properties of the functionsca and point–to–set mappingsπa, it follows
that the objective function (33a) is strictly convex with respect to arc flows. Hence, the
optimal arc flow,f ∗a , a ∈ A, is unique. However, if the arc flow variables are eliminated
from the problem, then the objective of the resulting equivalent problem in route flow
variables is, in general, non-strictly convex, since an arc flow pattern may correspond
to several route flow patterns. Hence, the sets of optimal route flows,H∗k , k ∈ C, are in
generalnot singleton sets, but polytopes.

4.2. A Lagrangean dual formulation

For the untolled program (30) Larsson et al. [40] propose a Lagrangean dual approach in
which the arc flow defining constraints (29c) are relaxed. The resulting solution method
essentially consists of the repeated solution of shortest path problems; it is very simple,
both from a conceptual and implementational point of view. Its merits are that, despite its
dual character, it produces a feasible flow in each iteration, and that this is done without
the solution of any additional optimization problem. In this paper, we generalize this
method to the model (33).

5 A point–to–set mapπ : <+ 7→ 2<+ is upper semicontinuous iffi ∈ <+ for all i , { fi } → f and
ti ∈ π( fi ), for all i , imply that{ti }i∈I → t ∈ π( f) for some subsequenceI.

6 A single-valued functionc : < 7→ < is lower semicontinuous if lim inff→ f c( f) ≥ c( f ) for all f ∈ <.
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Lettingu = [ua]a∈A be multipliers associated with the constraints (33d), we define
the Lagrangean dual objective function (cf., Definition 3) by

θ(u) =
∑
k∈C

θk(u)+
∑
a∈A

θa(ua).

For eachk ∈ C and allu ∈ <m, θk(u) is the optimal value of the shortest simple
route subproblem, with arc costsua, a ∈ A, given by

θk(u) = min
∑

r∈Rk

(∑
a∈A

uaδkra

)
hkr ,

s.t.
∑

r∈Rk

hkr = dk,

hkr ≥ 0, r ∈ Rk.

(34)

The solution setHk(u) to this program is a bounded polyhedron; it is not necessarily
a singleton set (especially not at an optimal point,u∗). We let [hkr (u)]r∈Rk ∈ Hk(u),
k ∈ C, denote an arbitrary set of solutions to the subproblems (34) atu. Note that, by
a result of Robinson [54, Lemma 3.5],Hk(u) ⊆ Hk(u∗) holds for anyu in a suffi-
ciently small neighbourhood ofu∗; this result has a bearing to the algorithm devised in
Section 4.3.

For eacha ∈ A and all ua ∈ <, θa(ua) is the optimal value of the single–arc
subproblem

θa(ua) = min
fa≥0

∫ fa

0
(ca(s)+ πa(s)− ua) ds, (35)

which has a strictly convex and nonsmooth objective function. Since each mapping
ca + πa is strictly increasing and weakly coercive, the program (35) is uniquely solved
by

fa(ua) =



0, ua ≤ ca(0),

c−1
a (ua), ca(0) ≤ ua ≤ ca(ϕa),

ϕa, ca(ϕa) ≤ ua ≤ ca(ϕa)+ τa,
c−1

a (ua − τa), ua ≥ ca(ϕa)+ τa,

a ∈ A, (36)

wherec−1
a is the continuous inverse mapping (e.g., Rudin [57, Theorem 4.17]) of the

continuous one–to–one mappingca, a ∈ A. One may note thatc−1
a is explicit for most

travel time functions used and thatca need not be differentiable. Figure 2 illustrates the
functionua 7→ fa(ua) for arca= (16,18) in the Sioux Falls network (see Section 4.4),
with ca( fa) = 0.03+ 0.00000003· f 4

a .
The functionθ : <|A| 7→ < is the sum of the|C| concave and piecewise linear

functionsθk, k ∈ C, and the|A| concave and differentiable functionsθa, a ∈ A. It
is thus finite, continuous, concave, and subdifferentiable on<|A|; its subdifferential
mapping atu ∈ <|A| is the bounded polyhedron (cf., Proposition 1)

∂θ(u) =

∑

k∈C

∑
r∈Rk

δkrahkr − fa(ua)


a∈A

∣∣∣∣∣∣ [hkr ]r∈Rk ∈ Hk(u), k ∈ C
 . (37)
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Fig. 2. The solution fa to the single arc flow subproblem as a function ofua

By weak duality,θ(u) ≤ z∗ holds for allu ∈ R|A|. To formulate the Lagrangean dual
program (cf., the program (5)) we consider an arbitrary pointu ∈ <|A|, and define

ũa = max{ua; ca(0)} , a ∈ A.
Then, fa(̃ua) = fa(ua), so thatθa(̃ua) = θa(ua). Further,θk(̃u) ≥ θk(u) sincẽu ≥ u,
and it follows thatθ(̃u) ≥ θ(u). Since the dual objective is maximized onR|A|, one can
therefore, without loss of generality, impose the restrictionsua ≥ ca(0), a ∈ A (this is
done by Larsson et al. [40] for the untolled program (30), with the same motivation).
The Lagrange dual (5) may now be stated as

max θ(u),
s.t. ua ≥ ca(0), a ∈ A, (38)

with solution setU∗. Due to the conclusions drawn in Section 2, this is a convex program.
It has an interesting interpretation; whereas in the primal program (33) the equilibrium
arc flowsare sought, (38) is the problem of determining the equilibriumarc travel times.

The following proposition relates the primal and dual solutions.

Proposition 6 (Primal–dual optimality). Let u∗ ∈ U∗ be arbitrary. Then, strong
duality holds, that is,θ(u∗) = z∗. Further, f ∗a = fa(u∗a), a ∈ A, and

H∗k = Hk(u∗)
⋂[hkr ]r∈Rk

∣∣∣∣∣∣
∑
`∈C

∑
r∈R`

δ`rah`r = f ∗a , a ∈ A
 , k ∈ C. (39)

Proof. The strong duality follows from Theorem 6.2.4 in Bazaraa et al. [3]. (The
application of that theorem requires that the program (33) has a feasible solution and
that the inclusion0 ∈ int {[ fa −∑k∈K

∑
r∈Rk

δkrahkr ]a∈A | ([ fa]a, [hkr ]kr ) satisfies
(33b)–(33c)} holds; the latter of these assumptions differs slightly from Assumption 1
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and is clearly satisfied.) By the above and Theorem 28.3 in Rockafellar [55] (see also
Patriksson [49, Theorem 2.1]), the conditions (29) and (32) are the first-order optimality
conditions for the program (33). Further, the set of optimal solutions to (33) may be
characterized as the set of Lagrangean subproblem solutions atu∗ that also satisfy
the constraints (33d) (Bazaraa et al. [3, Theorem 6.2.5]; cf. also the relation (7)).
The uniqueness offa(ua), ua ∈ <, yields that f ∗a = fa(u∗a) for all a ∈ A, and the
expression (39) follows.

ut
The proposition states that the optimal arc flow[ f ∗a ]a∈A is obtained from the solutions
to the subproblems (35) atu∗ ∈ U∗. However, an optimal route flow pattern[h∗kr ]r∈Rk ∈
H∗k is, in general, not directly available from the subproblem (34) even if an optimal dual
solution is at hand. This is so because the set

∏
k∈C Hk(u∗) is usually not a singleton,

since the functionθk is usually nonsmooth atu∗. (For the case when[ f ∗a ]a∈A is known,
an algorithm for calculating a solution[h∗kr ]r∈Rk ∈ H∗k is given in Drissi-Kaïtouni [17].)

Proposition 7 (Equilibrium tolls). Let u∗ ∈ U∗ be arbitrary and[ f ∗a ]a∈A optimal in
the program (33). Then, the equilibrium tolls satisfy

p∗a
{= u∗a − ca( f ∗a ), if f ∗a > 0,
∈ πa(0), if f ∗a = 0,

a ∈ A.
Proof. Since[ f ∗a ]a∈A andu∗ solves the primal–dual pair (33), (38), the generalized KKT
conditions (Rockafellar [55, Theorem 28.3]) yield, for alla ∈ A, that pa( f ∗a ) ∈ πa( f ∗a )
holds, and thatu∗a = ca( f ∗a )+ pa( f ∗a ) holds wheneverf ∗a > 0.

ut

4.3. The algorithm

The algorithm is based on the solution of the Lagrange dual (38) by the subgradient op-
timization method (9)–(11). A few comments regarding its implementation are needed.
All calculations can be made in arc flows exclusively. By aggregating the feasible
shortest route flow pattern[hkr (ut)]r∈Rk,k∈C into afeasible arc flowsolution

yt
a =

∑
k∈C

∑
r∈Rk

δkrahkr (ut), a ∈ A, (40)

a subgradient toθ at ut (cf. the definition (37)) is defined byyt
a − fa(ut

a), a ∈ A. The
adaption of the standard subgradient algorithm (that is, the iteration formula (9) with
νt = 0) to the program (38) is then given by

u
t+ 1

2
a =ut

a + αt
(
yt

a− fa(u
t
a)
)
, ut+1

a =max
{

u
t+ 1

2
a ; ca(0)

}
, a ∈ A, t = 0,1, . . . .

Remark 2 (Redundant subgradient projection).Every subgradient ofθ at ut defines
a locally feasible direction in the program (38). This is so because if, for somea ∈ A,
ut

a = ca(0), then the formula (36) yieldsfa(ut
a) = 0, implying thatyt

a − fa(ut
a) ≥ 0.

Therefore, when applied to the program (38), the subgradient projection (see Section 2.2)
is equivalent to the standard subgradient method, in which{νt} = {0}.

ut
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The evaluation of the objective functionθ at u essentially requires the calculation
of a shortest route pattern; in each iterationt, the valueθ(ut) defines alower boundon
the optimal valuez∗ of (33).

Embedded in the subgradient scheme is the generation of feasible solutions to the
primal problem (33) through the computation of convex combinations of shortest route
flow patterns, according to the formula (21). Previous experience from applications of
the method (9)–(11) has demonstrated that the ergodic convergence of the sequence
of subproblem solutions defined by (20)–(21) is superior to that defined by (13) (see
Larsson and Liu [39], Larsson et al. [40], and Petersson and Patriksson [50]). Therefore,
we employ step lengths according to the formula (20) and define the ergodic sequence of
subproblem solutions by (21). For illustration purposes, we however also show results
from the application of the formula (13). As pointed out in Remark 1, the ergodic
sequences may be initialized at any iterationt0 ≥ 1; previous experience also indicates
that it is indeed preferable to choose at0� 1 (see also Larsson et al. [43]).

When applying the formula (21), the ergodic sequences{ f̂ t
a}, a ∈ A, of feasible arc

flow solutions are computed as7

f̂ t0
a = yt0−1

a , f̂ t
a=

t − t0
t − t0+ 1

f̂ t−1
a + 1

t − t0 + 1
yt−1

a , t= t0 + 1, t0+ 2, . . . (41)

(When applying (13), a corresponding formula is obtained.) It is thus not necessary to
store all the route flow patterns[hkr (ut)]k,r,t . Denoting the objective function of the
program (33) byz(f ), wheref = [ fa]a∈A, it follows thatz(̂f t), t ≥ t0, are upper bounds
converging toz∗.

4.4. Numerical experiments

Theproposedmethodwasimplemented inFortran-77onaDigitalAlphaStation2004/166
and tested on the Sioux Falls network (LeBlanc et al. [47]). This network has 24 nodes, 76
directed arcs, and 528 origin–destination pairs. We imposed positive tolls on 12 arcs in the
network, namelyτa = 0.02 on arcs(16,18)and(18,16), τa= 0.05 on arcs(4,5), (5,4),
(11,12), and(12,11), τa = 0.06 on arcs(9,10), (10,9), (15,22), and(22,15), and,
finally,τa = 0.07 on arcs(21,24)and(24,21). The flow breakpoint,ϕa, for each of these
arcs was chosen as 90% of the flow on the arc at equilibrium for the original (untolled)
problem (these values were computed by the DSD code of Larsson and Patriksson [41]).

After calibrations of the method, the following strategies and parameter values
were chosen. The step lengths were generated according to the formula (20) with
µ = M = 1/75 andb = 1, that is,αt = (75(t + 1))−1. In order to receive the
best primal convergence the sequence of step lengths used in the dual method should
be slowly decreasing so that all of the optimal segments of the dual functionθ are
attained by the sequence{ut} with appropriate frequencies. The proper choice of the
sequence{αt} is evidently problem-dependent. In the first test, the feasible arc flows were
computed according to the formula (41) witht0 = 1, that is, the averaging was initiated

7 The reason for not defining the sequences{ f̂ t
a} by averages of the subproblem solutionsfa(us

a), s =
t0, . . . , t − 1, is that, wheneverut 6= u∗, the subproblem solutions[ fa(ut

a)]a∈A typically do not define
a feasible flow; the sequences{ fa(ut

a)} are, however, convergent tou∗.
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at iteration 1. In the second test, the averaging was initiated after 49 iterations, that is,
t0 = 50. The shortest route calculations were made using a standard implementation of
Dijkstra’s algorithm.

For these two tests, lower and upper bounds were recorded for 100 and 50 iterations,
respectively, and the bounds found up to iterationt, for t = 1, . . . ,100, are shown in
Figure 3. The upper bounds obtained when the averaging starts at iterationt0 are defined
by ẑt0

t = mins=t0,... ,t{z(̂f s)}, t ≥ t0, wherêf s is given by the formula (41). The lower
bounds from the dual feasible solutions are defined byθt = maxs=0,... ,t{θ(us)}, t ≥ 0.
We define the relative difference between the upper and lower bounds after 100 iterations
as(̂zt0

100− θ100)/θ100. For the two values oft0 (1 and 50) these relative differences were
0.656% and 0.171%, respectively. The final lower bound wasθ100= 42.7037, and the
final upper bounds werêz1

100= 42.9840 and̂z50
100= 42.7766, which exceed the optimal

valuez∗ = 42.7576± 0.0006 (this value was obtained by our code running for 10,000
iterations) with 0.529% and 0.0444%, respectively.
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43.5
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44.5

45

45.5

46

ẑ1
t

ẑ50
t

θt

z∗

Fig. 3. The bounds onz∗ found up to iterationt using the formula (21), fort0 = 1 and 50, respectively

The curves in Figure 4 are generated similarly to those in Figure 3. The difference
is that the convex combinations were here computed according to the formula (13),
and that we made an additional test where the averaging scheme was initiated after
4 iterations, that is,t0 = 5. The corresponding upper bounds are here denotedzt0

t .
For the three values oft0 (that is, 1, 5 and 50) the relative differences between the
bounds were 4.487%, 0.754% and 0.188%, respectively. The final upper bounds were
z1

100= 44.6200,z5
100= 43.0258 andz50

100= 42.7838, which exceed the optimal value
with 4.36%, 0.627%, and 0.0613%, respectively.

Concerning the difference in behaviour between the schemes using either the for-
mula (13) or (21), consider the convergence of{z1

t } and {̂z1
t }, respectively. The initial

all–or–nothing flow patterny0 = f
1 = f̂ 1 (generated with link costs corresponding to

zero flow) is composed of routes that are not used to such a large extent in the equilib-
rium solution,f∗, since their travel costs are too high when the flow is large (in fact,
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Fig. 4. The bounds onz∗ found up to iterationt using the formula (13), fort0 = 1, 5 and 50, respectively

z(y0) = 160.29). In the formula (13), however, this flow pattern receives a weight that
is considerably larger than that of the subsequent patterns, and hence its weight inf

t

will be substantial even for large values oft. This explains the very poor convergence
of {z1

t }, compared to{̂z1
t }, where, according to the formula (21), the weight ofy0 clearly

becomes negligible rather quickly. From this discussion and the experiments shown in
Figures 3 and 4 we conclude that the formula (21) combined with a relatively large
value oft0 yields the best results. Note that the delayed start of averaging is supported
in theory by the result thatHk(ut) ⊆ Hk(u∞) holds for allt that are sufficiently large
(cf. Proposition 4 and the discussion following the formulation (34)).

Definingyt = [yt
a]a∈A, we compare the primal objective values obtained from the

sequence{yt}100
t=0 of feasible arc flows with those from the corresponding ergodic se-

quence{̂f t}100
t=50. Figure 5 illustrates that the objective values from the ergodic sequence

converges rapidly to the optimal valuez∗, whereas the sequence of objective values
from the all–or–nothing solutionsyt is clearly nonconvergent. Moreover, the time used
for computing the ergodic sequence{̂f t} is negligible (in fact, it amounts to less than
one percent of the total computing time used by the procedure). Performing 100 itera-
tions (including initializations and generation of output files) took 0.6 CPU-seconds on
average.

We conclude that the proposed method, where the activation of the averaging pro-
cedure is delayed until the dual iterates are near-optimal, is a feasible approach to the
traffic equilibrium assignment problem under road pricing. In particular, fort0 = 50,
the rate of convergence of the upper bound is very good once the averaging scheme has
been activated.

The distance between a subproblem solution(f (ut), [hkr (ut)]k,r ) and the set defined
by the constraints (33d) is proportional to the length of a subgradientγ t = yt − f (ut) of
θ at ut . Analogously,gt = f̂ t − (t − 49)−1∑t−1

s=49 f (us) measures the distance between
an averaged subproblem solution and the set defined by (33d). Figure 6 illustrates
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Fig. 5. Objective values with and without averaging the all–or–nothing flow patterns

that the sequence{γ t} is nonconvergent, whereas the sequence{gt} converges to zero
(cf., Proposition 5), that is, the ergodic sequence of subproblem solutions converges to
a feasible solution to (33).

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

‖γ t‖2: −−−
‖gt‖2: ————

Fig. 6.A measure of the distance from subproblem solutions and ergodic subproblem solutions to the feasible
set

We will now study two specific tolled arcs in the network; one with an equilibrium
flow strictly greater than its flow breakpoint and one with a flow equal to its breakpoint,
in order to study the convergence characteristics of the toll levels.

In Figure 7 we consider arca = (16,18) with travel time functionca( fa) =
0.03+0.00000003· f 4

a, toll levelτa = 0.02, flow breakpointϕa= 13.82, and equilibrium
flow f ∗a ≈ 14.39 (that is, f ∗a > ϕa, and hence the equilibrium toll for this arc must be
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Fig. 7. The toll levelsut
a − ca( fa(ut

a)) for an arc with f ∗a > ϕa

πa( f ∗a ) = τa; cf., the formula (31)). The graph shows the estimated tollspa( fa(ut
a)) =

ut
a− ca( fa(ut

a)) for t = 1, . . . ,100. The total arc cost at equilibrium isu∗a ≈ 0.05129;
it is composed by the tollp∗a = 0.02 and the travel timeca( f ∗a ) ≈ 0.03129. Note that,
by definition, 0.00≤ pa( fa(ut

a)) ≤ 0.02 for all t.
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Fig. 8. The toll levelsut
a − ca( fa(ut

a)) for an arc with f ∗a = ϕa

The arc chosen for Figure 8 isa = (9,10) with travel time functionca( fa) =
0.03+0.00000012· f 4

a, toll levelτa = 0.06, flow breakpointϕa= 19.53, and equilibrium
flow f ∗a = ϕa. The set of equilibrium tolls for this arc must clearly be a subinterval of
[0.00,0.06], according to the formula (31); the actual value,pa( fa(u∞a )), obtained in
the limit from the application of the dual scheme depends on the initial dual solution
and the step lengths chosen. The graph illustrates the estimated tollspa( fa(ut

a)) =
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ut
a−ca( fa(ut

a)) for t = 1, . . . ,100. Note that, by definition, 0.00≤ pa( fa(ut
a)) ≤ 0.06

for all t.

5. Conclusions and further research

The procedure analyzed in this paper generates an ergodic sequence of subproblem
solutions within a Lagrangean dual subgradient scheme for the solution of a convex
program. This ergodic sequence converges to the primal solution set, without requiring
the solution of any coordinating master problem.

The method has been implemented for solving traffic equilibrium assignment prob-
lems under road pricing. The numerical experiments show that the solutions obtained
from the ergodic sequence of subproblem solutions are of considerably better quality
than those generated by the basic subgradient scheme.

A property of the dual subgradient method is that it can be initialized at any dual
feasible solution. For the traffic assignment problem, an estimate of the equilibrium
travel times may be used as a starting solution.

We remark that more general equilibrium models with pricing may be constructed
and solved with the proposed methodology, along the lines presented in Larsson et
al. [40] for the basic equilibrium model. In particular, the fixed demand model considered
in Section 4.1 may be generalized to allow for elastic demands, that is, where eachdk is
a (nonnegative and nonincreasing) function of the least route cost for origin–destination
pairk.

Sherali and Choi [59] solve Lagrangean dual formulations oflinear programsby
subgradient methods, and establish the ergodic convergence of sequences of primal sub-
problem solutions; their analysis allows for more general choices of convexity weights
and step lengths in the subgradient scheme than our analysis does. An interesting subject
for further research is therefore the generalization of our results to these more general
choices.

We have recently been able to extend the results of this paper to general convex–
concave saddle point problems.

Further, it would be interesting to employ our method in applications such as, for
example, the large linear programs withsoft constraints studied in Hauer and Hogan-
son [29].

An extension of the results of this paper that would be of practical interest is to retain
the ergodic convergence while allowing for an inexact solution of the subproblems; such
solutions would provideεt-subgradients to the dual objective function. Convergence is
indeed retained provided that<+ > {εt} → 0 and

∑∞
t=0αtεt <∞.

We are currently investigating the application of the results of this paper in the field
of discrete optimization. In such applications, the elements of an ergodic sequence in
the limit solve a convexification of the original problem; this property can be exploited
in various solution strategies.
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58. Ruszczýnski, A. (1989): An augmented Lagrangean decomposition method for block diagonal linear

programming problems. Oper. Res. Lett.8, 287–294
59. Sherali, H.D., Choi, G. (1996): Recovery of primal solutions when using subgradient optimization

methods to solve Lagrangian duals of linear programs. Oper. Res. Lett.19, 105–113
60. Shor, N.Z. (1985): Minimization Methods for Non-Differentiable Functions. Springer, Berlin
61. Small, K.A. (1992): Using the revenues from congestion pricing. Transportation19, 359–381
62. Svanberg, K. (1982): An algorithm for optimum structural design using duality. Math. Program. Study

20, 161–177
63. Uzawa, H. (1958): Iterative methods for concave programming. In: Arrow, K.J., Hurwicz, L., Uzawa, H.,

eds., Studies in Linear and Nonlinear Programming, pp. 154–165. Stanford University Press, Stanford,
CA

64. Wardrop, J.G. (1952): Some theoretical aspects of road traffic research. In: Proceedings of the Institute
of Civil Engineers, Part II, pp. 325–378


