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Abstract. Lagrangean dualization and subgradient optimization techniques are frequently used within the
field of computational optimization for finding approximate solutions to large, structured optimization prob-
lems. The dual subgradient scheme does not automatically produce primal feasible solutions; there is an
abundance of techniques for computing such solutions (via penalty functions, tangential approximation
schemes, or the solution of auxiliary primal programs), all of which require a fair amount of computational
effort.

We consider a subgradient optimization scheme applied to a Lagrangean dual formulation of a convex
program, and construct, at minor cost, an ergodic sequence of subproblem solutions which converges to the
primal solution set. Numerical experiments performed on a traffic equilibrium assignment problem under
road pricing show that the computation of the ergodic sequence results in a considerable improvement in the
quality of the primal solutions obtained, compared to those generated in the basic subgradient scheme.

Key words. convex programming — Lagrangean duality — Lagrangean relaxation — subgradient optimization
— ergodic convergence — primal convergence — traffic equilibrium assignment — road pricing

1. Introduction

When solving large, structured optimization problems through the utilization of La-
grangean dual formulations, subgradient optimization methods are popular since they
remarkably often are able to quickly identify near-optimal dual solutions. However,
the subgradient schemes do not directly provide solutions to the primal problem. We
present a simple means to construct such a solution by forming an ergodic sequence of
Lagrangean subproblem solutions; our analysis generalizes tholgeefar programs

by Shor [60] and Larsson and Liu [39] to the case of germyalexprograms.

Associated with a convex minimization program is a Lagrangean dual program. The
corresponding Lagrange function is convex (concave) with respect to its primal (dual)
variables, and the solutions to this primal—dual pair of programs are the saddle points to
the Lagrange function. In a Lagrangean dual approach for solving a convex program, the
Lagrange function is maximized with respect to its dual variables, and the corresponding
primal solutions are derived from subproblems, which are usually considerably more
easily solved than the original program. For some early and important developments
of Lagrangean duality theory in nonlinear programming, see Uzawa [63], Everett [20],
and Falk [21].
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Over the last few decades, Lagrangean dualization techniques (e.g., Geoffrion [25])
have become widely used within the field of computational optimization. Some examples
are given in the following. An early application of Lagrangean dual techniques was the
Dantzig—Wolfe decomposition methidd®] for linear programming problems (although
itwas not described in these terms), which employs an inner approximation of the convex
set defined by their constraints; this approximation can be interpreted as the dual of
a tangential approximation of the objective function of the Lagrange dual with respect to
these constraints (e.g., Lasdon [46, Section 8.6]).0dgrangean relaxatiotechnique
has proven to be a powerful tool for designing efficient heuristic solution methods for
many classes of structured large scale optimization problems, in particular within the
field of discrete optimization (e.g., Geoffrion [26], Fisher [23], and Beasley [4]). In
augmented Lagrangean methddsg., Rockafellar [56], and Bertsekas [7]) a quadratic
penalty term is added to the objective function before the program is dualized; this
type of combination of Lagrangean relaxation and penalty methods has been successful
in many applications (e.g., Ruszémwki [58]). The application of Lagrangean dual
techniques to network flow problems with (strictly) convex and separable cost functions
some times gives rise to highly parallelizable algorithms (see Bertsekas and Tsitsiklis [8,
Chapter 5]).

We next review a number of applications that demonstrate the strength of dual so-
lution approaches to large scale structured optimization problems. In an algorithm for
optimum structural design, Svanberg [62] solves an approximate design problem —
with strictly convex objective and linear inequality constraints — using Lagrangean
duality; the dual objective is smooth and it is maximized by steepest ascent (slightly
modified to take care of the nonnegativity restrictions). Lamond and Stewart [38] show
that many balancing methods used in transportation planning and in other fields are
special cases of a method developed by Bregman [9] applied to a Lagrange dual of
a gravity model. The minimization of a strictly convex, separable function subject to
convexity constraints can be efficiently made by utilizing Lagrangean duality (e.g., Cot-
tle et al. [11]); special cases of this program (e.g., the Euclidean projection of a point
onto a simplex) arise as subproblems in many iterative schemes for structured large
scale programming. Balakrishnan et al. [2] develop a dual ascent procedure to solve
large scale uncapacitated network design problems; they report successful results from
applications to models arising in freight transportation. Fisher [24] solves vehicle rout-
ing problems to optimality by a branch—and—bound algorithm, where lower bounds
are generated using Lagrangean relaxation, the resulting subproblem solutions essen-
tially being k-trees; the algorithm has produced proven optimal solutions for several
difficult problems.

In the last few years, Lagrangean dual approaches have received a renewed interest
for the solution of large scalknear programs. Goffin et al. [27,28] propose a new
treatment of the master program in the Dantzig—Wolfe method; the resulting method
performs well in applications to large scale structured linear programs. Hauer and
Hoganson [29] solve large linear programs arising in forest management scheduling,
using Lagrangean relaxation and subgradient optimization; here the Lagrangean dual
approach is especially appropriate since the constraintsodirghat is, they need not
be fulfilled exactly. Jones et al. [34] apply the Dantzig—Wolfe decomposition principle
to different formulations of linear multicommodity network flow problems.
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1.1. Primal convergence in Lagrangean dual schemes

What then are the main advantages of Lagrangean dual approaches? Many computa-
tionally demanding optimization problems can be interpreted as fairly easily solvable
problems which are complicated by side constraints. An example of a problem which
can be characterized as such is the travelling salesman polytope, which can be expressed
by spanning tree constraints and node degree (side) constraints. In a Lagrangean relax-
ation formulation of a program, these side constraints are moved to the objective, where
they are included, weighted by multipliers. The relaxed problem that is thereby created
takes the side constraints into account implicitly (and the new program is more easily
solved than the original one). The solution to the relaxed problem will, in general, not
satisfy the relaxed constraints, but the violation can, in a certain sense, be minimized
through the solution of a Lagrangean dual program, which is always convex. Moreover,
the feasible solutions to the dual program yield bounds on the optimal objective value
of the original program.

However, the Lagrangean duality concept has a few drawbacks, some of which we
aim to remedy through this work. If the original program is nonconvex — if it is, for
example, a discrete optimization problem — then there is usually a gap between the
optimal primal and dual objective values; this property makes it difficult to construct
proper termination criteria for algorithms based on Lagrangean relaxation formulations.
Moreover, not even in the (unlikely) case that an exact dual solution is at hand is
a primal optimal solution easily available. One reason for this inconvenience is that the
Lagrangean function may not have a saddle pointin the nonconvex case. Another reason
is that the dual objective function (also in the convex case) is typically nonsmooth, espe-
cially at an optimal dual solution; then an optimal primal solution is (usually) a nontrivial
convex combination of the extreme subproblem solutions. Within linear programming
this property has been referred to asribacoordinabilityphenomenon [16]. In the case
that the original objective function is strictly convex, the Lagrangean dual objective
function is differentiable, whence this phenomenon does not appear. A lot of effort has
been putinto inducing primal convergence in Lagrangean relaxation schemes for convex
programming. We go on to an overview of the main types of approaches used for this
purpose.

Approach 1 (Removing the nonsmoothness)n the methods of Jennergren [32] and
Mangasarian [48] linear price functions and a quadratic perturbation of the linear object-
ive, respectively, are employed. Closely related to these approaches are the augmented
Lagrangean dual solution methods for convex programming (e.g., Rockafellar [56]
and Bertsekas [7]); these methods can be interpreted as combinations of Lagrangean
dualization and penalty approaches, where the nonlinear penalty term induces coor-
dinability. Dem’yanov and Malozemov [14, p. 230] solve convex—concave saddle point
problems; in order to receiv&rict convexity—concavity they add (subtract) a strictly
convex quadratic term to (from) the convex (concave) component of the function. Fein-
berg [22] introduces coordinability in a Dantzig—Wolfe type scheme, by using strictly
convex price functions.

In these methods, exact primal feasibility and complementarity are typically reached
in the limit only. Although their memory requirements are fairly low, each of their
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subproblems is computationally more demanding than that of the ordinary Lagrangean
dual approach.
O

Approach 2 (Using ascentmethods}or large block-angular linear programs, Ruszcz-
yhski [58] proposes an augmented Lagrangean method in which the multiplier steps form
an ascent procedure with respect to the ordinary Lagrange dual problem; its convergence
is finite. Ben-Tal and Bendsge [5] reformulate a problem of truss topology design to an
unconstrained minimization problem with a convex and piecewise quadratic objective
function; it is solved by am-steepest descent algorithm. In a proximal bundle method
applied to a Lagrange dual of a convex program, aggregated subproblem solutions
asymptotically solve the primal program (Kiwiel [35]); the aggregation weights are
computed through the solution of a quadratic program.

In these methods, feasibility and complementarity are typically reached in the limit
only (for linear programs, sometimes finitely, however). For large scale problems, these
guadratic programs are normally very large.

O

Approach 3 (Solving a master problem).In the Dantzig—\Wolfe decomposition prin-
ciple [13] a linear coordinating master program combines extreme Lagrangean sub-
problem solutions into an approximate solution to the original program (see also [46,
Section 8.6]). In the stochastic decomposition method for two-stage linear programs
by Higle and Sen [30], the objective function of the master program is a piece-wise
linear approximation of the original (implicitly defined) objective function. For convex
programs, Bazaraa et al. [3, p. 230] acquire feasibility and firidptimality through

the minimization of an inner approximation of the objective function over the convex
hull of the subproblem solutions.

In these methods, feasibility is maintained through the iterative process, while com-
plementarity is typically reached in the limit only. The master program s usually a large
linear (or, convex) program.

O

Approach 4 (Utilizing ergodic sequences)The construction of sequences of (weight-

ed) averages (that is, ergodic sequences) of solutions is a widely used technique for
inducing convergence properties that an original sequence lacks. Examples of this are
the method of successive averages by Powell and Sheffi [53], and the mean value cross
decomposition method by Holmberg [31]. In the stochastic decomposition method by
Higle and Sen [30], averages of approximate supporting hyperplanes are used to obtain
statistically valid lower bounds, and Petersson and Patriksson [50] employ averaging
techniques to solve saddle point problems arising from applications in the topology
optimization of mechanical structures. Shor [60, pp. 116-118] uses ergodic sequences
of Lagrangean subproblem solutions to generate optimal primal solutions in linear
programming; his ideas are further investigated and developed, and computationally
tested by Larsson et al. [40] for the traffic equilibrium assignment problem, and by
Larsson and Liu [39] for structured linear programs. Sherali and Choi [59] extend the
results of Shor and of Larsson and Liu to allow for more general choices of convexity
weights and step lengths in the subgradient scheme.
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In these methods, feasibility and complementarity are reached in the limit only. In
some cases the convergence is slow, but no additional optimization problem has to be
solved and the memory requirements are low.

]

1.2. Motivation and outline

In this work, we continue and further develop the ideas of Shor and of Larsson and
Liu, as described in Approach 4. Their results are generalized to convex programs
with possibly nonsmooth objective and/or constraint functions.

While in the methods of Approaches 1-3 above, the sub- or master problems
are computationally demanding, in our ergodic approach no auxiliary optimization
problem needs to be solved to induce primal convergence. Further, our method re-
quires a relatively small amount of additional memory, which is in contrast to the
methods of Approaches 2 and 3. In the methods of Approach 3, primal feasibility
is maintained throughout the iterative procedure. Our method, however, guarantees
neither primal feasibility nor complementarity in finite time when applied to gen-
eral convex programs. Therefore we also propose the use of heuristic projections of
averaged solutions onto the primal feasible set. (In the application to traffic equi-
librium assignment under road pricing, which is reported in Section 4, the special
problem structure enables us, however, to obtain primal feasibility throughout the
iterative procedure.) Our method is also motivated by applications safhcon-
straints, such as the large forest management scheduling problem solved by Hauer
and Hoganson [29], and applications involving capacity expansion decisions, such as
production and work force planning problems (e.g., Johnson and Montgomery [33,
Example 4-14]). We believe that our analysis fills a gap between the analyses of
linear programs and of strictly convex programs; in the latter case it is well known
that primal convergence holds without the generation of ergodic sequences.

In Section 2 we briefly review Lagrangean duality theory for convex program-
ming, together with a convergence result for conditional subgradient optimization
applied to the dual program, under a general step length rule that extends the diver-
gent series rule. The main contribution of this paper is contained in Section 3, where
we present two schemes for generating ergodic sequences of subproblem solutions
which induce convergence to the solution set of the primal program. We then show
that a sequence of heuristic projections of the averaged solutions onto the original
feasible set finitely reachesoptimality. In Section 4 we present results from an
application to traffic equilibrium assignment under road pricing, and in Section 5
we draw conclusions and discuss briefly some opportunities for further research.

2. Preliminaries

Let the functionsf : " — R andh; : X" — N,i € Z = {1,...,m}, be convex and
(possibly) nonsmooth, the s¥tc %" be convex and compact, and consider the convex
program
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f* =min f(x), (1a)
sthix) <0, ieZ, (1b)
X € X, (1c)

with solution setX*. We assume that the s&t is simple and that the feasible set
{xe X | hj(x) <0, ieZ}isnonempty.

The following definition is to be used in the sequel. Lettiige a nonempty, closed,
and convex set, we denote by

proj (X, S =argminjly —x|l, and dist (x, 9 =min|y —X|, (2)
yeS yeS

the Euclidean projection of the vectgronto the setS, and the Euclidean distance
from the pointx to proj (x, S), respectively. The functiodist (-, S is convex and
continuous.

We first give a summary of the relevant Lagrangean duality theory for convex
programs. Although this is a classical subject, with contributions dating back several
decades (see, e.g., Kuhn and Tucker [37] for an early work), to assist the reader we have
chosen the textbook by Bazaraa et al. [3] as our basic reference.

2.1. Lagrangean duality

The Lagrange functioll : R" x R™ — N with respect to the relaxation of the
constraints (1b) i(x, u) = f(x) + u"h(x) for all (x,u) € R" x R™, whereh(x) =
[hi(X)]iez for all x € R" andu = [ujlicz. For anyu € R, L(-, u) is convex ori".
The dual objective functiofi : ™ — R is concave and continuous and is defined by
the dual subproblem

6(u) = min f(x) + u" h(x), uenm (3)
xeX
The nonempty, convex and compact solution set to this subproblena a™ is
X(u) = {x e X ‘ fx) + uThx) < e(u)] . (4)

The Lagrange dual to the program (1) then is

0™ = supé(u),
s.t.u>0, )
with the convex solution se&f*. This dual program consists of maximizing a concave
function over a convex set; it is thus a convex programming problem. Furthesealy
duality for the primal-dual pair (1), (5), the inequalifu) < f(x) holds whenever
u=>0,x e X, andh(x) < 0(Bazaraa et al. [3, Theorem 6.2.1]).

The two following results are crucial in the development of our continued analysis.
We utilize the following notion of @losed mapA point-to—set magX : ™ > 2" is
closed if{ul} ¢ |®™M, {u} — u, x! € X(u') forallt, and{x!} — x imply thatx € X(u).



Ergodic, primal convergence in dual subgradient schemes for convex programming 289

Lemma 1 (X()is a closed map)Let the sequenc@l'} ¢ %™, the mapX(-) : K™
2% be given by the definition (4), and the sequepégby the inclusion! e X(ub). If
(Ut} — u, then{dist (x!, X(u))} — 0. If, in addition, X(u) = {x}, then{x!} — x.

Proof. Since the functiond andh are continuous, the ma}(-) is closed. Since the
setX is compact, any sequenge} C X is bounded, whencggist (x!, X(u))} — 0
follows. The second result is immediate.

]

For eactu € )™, we define the séi(u) of indices corresponding to strictly positive

multipliers,u;, as )
Zu) ={i €Z|u >0} (6)

Lemma 2 (The Lagrange function is affine on the subproblem solution set)The
functionsf andh;, i € Z(u), are affine onX(u) for everyu > 0. Further, if the function
f (the functionh;, i € Z(u)) is differentiable, therv f (Vh;, i € Z(u)) is constant on
X(u).

Proof. For anyu > 0, letx, y € X(u) be arbitrary and. € [0, 1]. By the convexity of
the functionsf andh;, i € Z(u), and the definitions (3) and (4),

o) < fOX+ L=y + Y uihi(x+ (1= 1)y)
ieZ(u)

E)»(f(x)—i- > Uihi(x)) —l—(l—)»)(f(Y)—l- > Uihi(Y))

ieZ(u) i€Z(u)
= A0(U) + (1 — 1) 6(u).

Hence, the above inequalities must hold with equality. Especially, theq(1— 1)y €
X(u). Sincex andy are arbitrary inX(u), this implies the first statement. The second
statement is then immediate.

|

A consequence of Lemma 2 is that, for all> 0 and everyi € Z(u), oh; is
constantomint  X(u); hence, for example, for evekrye rint  X(u), each subgradient
&; € ohi (X) defines a hyperplane that supports the functipat everyx € X(u).

The subdifferentialof the concave functio® atu € %™ is (Bazaraa et al. [3,
Definition 3.2.3])

30(U) = iy e |m ‘9(V)§9(U)+yT(v—u), vemm},

the elements of which are callsdibgradientsThe next proposition follows from [3,
Theorem 6.3.7], the convexity of the s¢t and Theorem 11 in [45].

Proposition 1 (Subdifferential to the dual objective function). For eachu € %™,
90(u) = {h(x) | x € X(u)}. Further, 0 is differentiable atu if and only if eachh; is
constant onX(u), in which casévé(u) = h(x) for anyx € X(u).

]
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This result implies that the functiof is differentiable atu € %™ if the set X(u) is
a singleton (Bazaraa et al. [3, Theorem 6.3.3]).
Thenormal coneo the seth] atu € R is

NmT(U)Z{vemT|UiUi=0, |€I}

The optimality conditions for the dual program (5) are given by the following (e.g., [3,
Theorem 3.4.3)).

Proposition 2 (Optimality conditions for the dual problem). The pointu € U* if
and only if there exists & € 89(u) such thaty < 0andu’y = 0, or, equivalently,
ad(u) N NmT w#£09 holds, that is—a0(u) + NmT (w > 0.

]

To obtain primal—-dual optimality relations, the primal feasible set must fudblestraint
gualification

Assumption 1 (Slater constraint qualification).The set{x € X | h(x) < 0} is hon-
empty.
i

Under Assumption 1, the convex ddtt is nonempty and compact, and, btrong
duality, 6(u) = f(X) holds for some paitx, U) such that the relatiors > 0, X € X,
andh(x) < 0 hold ([3, Theorem 6.2.4]). The next proposition states conditions under
which a pointx is optimal in (1), for the (unlikely) case that an optimal dual solution is
at hand; it follows from [3, Theorem 6.2.5].

Proposition 3 (Primal—dual optimality conditions). Let Assumption 1 hold and let
u e U*. Thenx e X*ifand only ifx € X(u), h(x) < 0, andu"h(x) = 0.
O

The composite mappingd) N (Ngm) is constant on the solution seft* (e.g., Lars-
son et al. [44, Proposition 2.1] and Burke and Ferris [10, Lemma 2]). Hence, under
Assumption 1, the solution set to the primal program (1) may be expressed as

X*:{xe X (U) ‘h(x)fo, uTh(x)zo}, @)

irrespective of the choice of € U*, and the primal—dual optimality conditions may be
expressed as

X,u) e X* x U* — h(x) € 30(u) N Nyym (U). (8)

At a dual solutioru € U*, the subproblem solution s¥i(u) is typicallynota singleton;

as a consequence, the dual objective function is nonsmoadth*pand a subgradient
that can be used to verify the optimality of such a solution, according to Proposition 2,
is not directly available.
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2.2. Convergence of dual subgradient optimization

We consider solving the Lagrangean dual program (5) byctmalitional subgradient
optimizationmethod [42], which is given by the following. Choose a starting solution
u® > 0 and compute iteratag according to the formula

U3 = ul 4 o (h(xh — '), uttl = [u”%] , t=0,1,..., (9)
+

wherex! e X(u') solves the dual subproblem (4) at, so thath(x!) e a9(u!) is
a subgradient t@ at u', »' € Nym(u') is an element of the normal cone 4] at
ut € MT, o is the step length chosen at iteratigrand[-] . denotes the Euclidean
projection onto the nonnegative orthatif.

If {v'} = {0}, then the method (9) reduces to the traditional subgradient optimization
method (e.g., Shor [60, Section 2]). Choosifig= proj (h(x"), Ny (u")) results in

if ut = 0 andh; (x!) < .
hi(x) — ot = {g. o, otbraive i) <01 .m0
(see Larsson et al. [42, Lemma 3.2]), defining the special case of the method (9) that is
called thesubgradient projection metho@\ote that this name is sometimes used for
traditional subgradient optimization although it there refers to the projectimﬁf&f
ontoRT.) The directiorh(x") — v from u' € KT, as defined in (10), is feasible in the
program (5).

The convergence of the method (9) is established in [42] for two different step
length rules. For the case whert} = {0}, Polyak [51,52] and Ermol’ev [19], among
others, establish convergence using several different step length rules (see also Shor [60,
Chapter 2]). In this work we utilize special cases of theergent seriestep length
rule [19].

The next convergence result specializes that established by Larsson et al. [42, Theo-
rem 2.7] to the Lagrangean dual problem (5); note that the boundedness condition on
the sequencev!} can always be fulfilled by construction.

Proposition 4. Suppose that Assumption 1 holds, and let the met®)oe applied to
the program(5), with the step lengthg; fulfilling the conditions

t—1 t—1
o >0, vt, limar=0, Ilim as =00, and lim af <oco. (11
t t—>o0 t t—>002(:) s t—>002(:) s ( )
S= S=

If the sequencé!} is bounded, thefu'} — u>® e U* and{A(ul)} — 0*.
O

To induce convergence of the method (9) &alaptivestep length selection rules,
based on line searches or formulas involving estimates of the optimal valus@ntbst
complete relaxatiostrategy of Dem’yanov and Vasil'ev [15, Section 3.4] can be used
([42, Corollary 2.8]). It works as follows. Define the sequeriagisand{ot } with o, < ot
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for all t, and both satisfying the conditions (141 Buppose that at some iteratigran
adaptive rule has generated a (tentative) step léiigifhe step length; used is defined
as the projection d& onto the intervale;, @t]. The sequencgx}, resulting from this
safeguarding strategy, satisfies the conditions (11).

From Propositions 2 and 4 it follows that the 8etu*) N NmT(u‘x’) iS nonempty.
The next proposition, which is a special case of Theorem 3.9 in [44], establishes that the
sequencgh(x!)} of subgradients to the dual objective function converges in an ergodic
sense to an element that verifies optimality in terms of Proposition 2. We define the
sequencéA;} of cumulative step lengths by

t—1
A=) os,  t=12.... (12)
s=0

Proposition 5. Let Assumption 1 hold and the meth@)—(11) be applied to the pro-
gram(5). Further, let the sequencé#} and{g'} be defined by12)and

-1
g =AY whx®),  t=12...

s=0
respectively, wherg® e X(u®) for all s. If the sequencgr'} is bounded, then

idist (gt, U™ N NmT(u‘X’)>} ) ]

In the next section we establish that the sequeméleof subproblem solutions
converges in an ergodic sense to the solutiorXSeds expressed in (7).

3. Ergodic primal convergence

The application of the method (9)—(11) to the program (5) produces a seq(hce
of solutions to the subproblem (3). We propose two schemes for generating an ergodic
sequence of subproblem solutions; each of these sequences is shown to converge to the
solution set,X*. Their generation is computationally cheap, and their storage requires
a relatively small amount of memory. In the first scheme, the sequence is defined by
(convexity) weights that are proportional to the step lengths;The second scheme
presumes the use of step lengths that generalize a modified harmonic series to allow for
the utilization of the almost complete relaxation strategy (and which also satisfies the
conditions (11)); in this case, the ergodic sequence is defined by equal weights. We also
present a heuristic projection procedure for the finite attainment of pewaptimality.
Henceforth, we make repeated use of the following lemma; it is a special case
of a result of Silverman and Toeplitz, and a proof can be found in, e.g., Knopp [36,
Theorem 2, p. 35].

1t may, for example, be appropriate to let the sequences be givenbsy./(b+1t) anda; = M/(b+1),
t=0,1,...,wherex > 0 (M > 0) is a very small (very large) constant amd- 0.
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Lemma 3. Assume that the sequengis} C N fulfils the conditions

t-1
Bs=0, s=0....t—1 > fs=1  t=12..,
s=0
and liMt— 00 Bts = O, s=01,....
Ifthe sequencib®} C R is suchthalims . o, bS = b, thenlim¢_, (Zts;% ,Btsbs> =bh.

O

3.1. Divergent series step lengths and proportional weights

The ergodic sequend®'} of subproblem solutions that is computed within the method
(9)—(11) applied to the program (5), is defined as the weighted averages

t—1
Yt = Atil Zasxs, t = l, 2, ey (13)
s=0

where the sequen¢dy} is defined in (12). Hence, each vecibis a convex combination
of the subproblem solutions found up to iteratipand thux' € X holds for allt.

The convergence of the sequer{gg to the setX* is established in terms of the
fulfilment of the optimality conditions of Proposition 3.

Theorem 1 (X'} converges to the solution setjSuppose that Assumption 1 holds, let
the method9)~(11) be applied to the prograr(5), the setX* and the sequend&'} be
given by the definitio(i7) and (13), respectively, and suppose that the sequénes
bounded. Then,

{dist (X', X*)} — 0.

Proof. Letting u™ be the limit of the sequende'}, as given in Proposition 4, we first
show that the sequend¢®'} converges to the set of subproblem solutions%t then
that it is feasible in the limit, and, finally, that it is complementaryt® in the limit.

By the convexity and nonnegativity of the functidist (-, S), and the definition
(12), the inequalities

t-1
0<dist (X', X(u™)) < At‘lzasdist (x5, X(u™))

s=0

hold for allt. By Lemma 1 and Proposition 4,

{dist (X% Xu*®)} -0 as s— oc. (14)

Utilizing Lemma 3, withfis = A las, bS = dist {x5, X(u>)} andb = 0, it then
follows that

{dist (X', XU™)} -0 as t— oo (15)
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By the convexity of the functionis,i € Z, h(x') < A7 YL ash(x®) forall t, and
from the iteration formula (9) it follows that(xS) < (uSt1 — u®)/as for all s. Hence,
hx) < A7t — u®) for all t. Proposition 4 implies that the sequer{cé — u°} is
bounded and, therefore,

lim suph; (x*) <0, Vi e 7. (16)

t—o00

Now, consider am € Z(u*°). From Proposition 4 it follows that, for some fixed
that is large enoughy! > 0 for allt > 7, and, by the iteration formula (9)fu! = 0
holds for allt. Therefore, by (9),

1t
hi(xh) = u, vt > 1. (17)
at
Choosingx € rint ~ X(u*) andg; e ah;(X), Lemma 2 yields that
hi) =hi() +& x—%,  Vxe Xu®).

Then, by the continuity of the functiom, for everys > 0 there exists an > 0 such
that

hi(x) <hi(X) + & (x—%) + % vx :dist  (x, X(U™)) <e.

From (14) follows thatist (x5, X(u*)) < ¢ for all s > «, for some fixedc > 7. The
relation (17) then yields
uwtl—us s
hi®) +& (-%)>—"1—-T - Vs>« (18)
s 3
Using the definition (13), we have for dlb «,

hi(x) = hi(0 +& (X' —%)
Kt t-1
> ALY o (0 + & (6 -%)) + ALY (uis+1 e “_35)
s=0 S=k

t_ux B
Ac (hi(2)+$iT(iK—x))+“'A”' —<1—%> 3

A '

where the firstinequality follows from the definition&fand the second isimplied by the
inequality (18). Sincé¢A¢} — oo and{ul} — u®™, thenAr 2 A, (hi () + & (X — %)) >
—§/3 andA{l(uit —uf) > —4§/3 for allt > « that are large enough. It follows that
hi(x) > —s forallt > «, that are large enough. Therefore, limiint, h; xH >0, and
the inequalities (16) then yield that lim, hi (X') = 0. Since this result holds for all
I € Z(u™), and, by the definition (6™ = O for alli € Z '\ Z(u™), it follows that

{(uw)Th(xt)}ﬁo as  t— oo (19)

The theorem follows from the relations (15), (16) and (19), and Proposition 3.
o
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For the case when the functiohsindh;, i € Z, are affine and the sétis a polytope
(that is, when (1) is a linear program), apd} = {0} in the method (9)—(11) applied to
the program (5), Theorem 1 reduces to a result of Shor [60, pp. 116-118].

The next result follows from Proposition 4, Theorem 1, and the relation (8).

Corollary 1 (X! verifies optimality in the limit). Under the assumptions of Theorem 1,

idist (h(it), 3U™) N NmT(uW)ﬂ )

3.2. Generalization of modified harmonic series step lengths, and equal weights

Now, let the step lengths used in the conditional subgradient optimization method (9)
be minorized and majorized, respectively, by the elements of two modified harmonic
series, that is

" M
£ = |, b>0, O<p<M<oo, t=01..., (20
ate[bﬂ b+t} g =K = (20)

and let the sequend®!} of averaged subproblem solutions be defined by equal weights,
as

1t—1

<t _ = S _

x_th, t=1,2.... (21)
s=0

Analogously to the previous subsection, we will here derive the convergence of the
sequencéX'} to the solution seX*, as expressed in the definition (7).

Theorem 2 (X!} converges to the solution setSuppose that Assumption 1 holds, let
the method9), (20) be applied to the prograr(b), the setX* and the sequend&!} be
given by the definition&) and(21), respectively, and suppose that the sequéngds
bounded. Then,

{dist (X', X*)} —o.

Proof. Using arguments analogous to those used in the derivation of the result (15), we
have that

{dist (X', X(U™))} -0 as t— oco. (22)

By the iteration formula (9) and the definition (20%x5) < aglust! —us) <
w (b + s)(ustl — ud), for all s. Hence, for alt > 1,

1 — S b — s+1 S 1 — s+1 S
YX:h(x)gm (u —u)+HZs(u —u)
s=0 s=0 s=0

t—1
b-1 (u =) + % <ut - %Zus). (23)

Mt s=0
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Since{u'} — u™, liMi_ s (ut)~1(b — 1)(ut — u% = 0. Applying Lemma 3, with
Bis = t71, b5 = uS, andb = u®, yields that{t~1 Y"'_t us} — u*. It follows that
the right-hand side of (23) tends to the origintas> oco. By the convexity of the
functionsh;, hj(x!) < t=1 2;;(1) hi (x5) holds for alli € Z, and therefore

lim suph; (x*) <0, Vi eT. (24)
t—o0
Now, consider an € Z(u*), and choose ar € rint  X(u*>) and§; e oh;(X).
Similarly to the derivation of the inequalities (18), utilizing the definition (20), we have
that, for everys > 0 there exists & > 0 such that

- _ b+s )
hi (%) + &7 (x°=X) > Ve (uf*l - uf‘) -7 Vs > «. (25)
Using the definition (21) we have, for dlb «,
hiX) = hi®) +& (% —X)
ll(*l b t—1
> > (hi X) + & (x°— i)) + > (uf*l - uf‘)
s=0 S=«k
1 2 t—k &
all stl_ sy - —= .2
+ M ;S(Ul u,) " 2
K _ _ b—1+«

t—-1
-0 D) - (0D

where the first inequality follows from the definition §f and the second from the

inequality (25). Since{u}} — u>, for all t > « that are large enough, it follows
thatt=e(hi (X) + & X — X)) > —8/4, M)~L(b — 1 + k) (u} — u) > —8/4, and,
utilizing Lemma 3, thaM—1(u! — (1 — t~ L)t — 011 u®) > —5/4. It follows
thath; (X!) > —é for all t > « that are large enough. Analogous to the result (19), then

{(u°°)T h(’x*)} 50 as t— oo (26)

The theorem follows from the relations (22), (24) and (26), and Proposition 3.
O

For the case when (1) is a linear program, &gl = {0} in the method (9), (20) applied
to the program (5), our Theorem 2 reduces to Theorem 3 of Larsson and Liu [39].
The next result is a consequence of Proposition 4, Theorem 2, and the relation (8).

Corollary 2 (X! verifies optimality in the limit). Under the assumptions of Theorem 2,

{dist (h(ﬁ‘), 30(U>®) N NmT(u"O))} - 0.
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3.3. Finite primal feasibility and-optimality

The following discussion concerns the method of Section 3.1, but is applicable to that
of Section 3.2 as well.

Theorem 1 establishes optimality in the limit for the sequefe of primal so-
lutions. While dual feasibility is maintained throughout the iterative procedure (9),
neither primal feasibility nor complementarity will, in general, be finitely satisfied by
the elements of the sequen@@}. However, eventuallx' will be both near-feasible
and near-complementary. For applications with soft constraints, such as the forest man-
agement scheduling problem presented by Hauer and Hoganson [29], for which primal
feasibility is not crucial, the elemen® will thus eventually be sufficiently close to
a feasible (and optimal) solution. Nevertheless, whenever primal feasibility is required
finitely, it might be necessary to apply a procedure that converts any finitely generated
primal solutior! into a feasible solution to the original convex program. One procedure
for enforcing feasibility is the solution of the Euclidean projection problem

9 where Y ={xe X |hx) <0}.(27)

F (st ; <t
proj (X,Y) = arg;g{n”x -X|
Solving this program regularly may, however, be computationally too expensive. It is
probably better to develop a heuristic procedure, which exploits the structure of the set
when searching for a feasible and near-optimal solution to the projection problem (27).
We letproj (%, Y) denote a heuristic projection of a poine %" onto the feasible
set of the program (1) which enjoys the following property.

Assumption 2 (Property of heuristic projection).? Letx e X and the self be de-
fined by (27). There exists a functién %y — Ry such that(e) > Ofor all ¢ > 0,
lim,_, g+ 8(¢) =0, and

lproj (X, Y) —proj (X, Y)[, <48(e) whenever dist (X,VY) <e.
|

Theorem 3 (Convergence by heuristic projection).etthe se¥ be defined bg27)and
suppose that Assumption 1 holds. Let the me(Bpd411)be applied to the prograrfb),
the sequencgk!} be given by the definitiofl3), and suppose that the sequerie§ is
bounded. Then, under Assumption 2,

{dist (proj n (X,Y),X*)} = 0.

Proof. By the definition (2) and the triangle inequality,

dist (proj w (X', Y),X*) < |proj w(X.Y)—proj (X.Y)|,
(28)
+dist (X', Y) +dist (X', X*).

2 This assumption expresses a continuity property on the difference between the heuristic projection and
the exact Euclidean projection.
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Since X* C Y, it follows from Theorem 1 that for any > O there is ar > 0
such thatlist (x',Y) < dist (X', X*) < & forall't > 7. Then, by Assumption 2,
Iproj w(X4,Y) —proj (X',Y)|2 < 8(¢) forallt > 7. From the inequality (28) it then
follows thatdist (proj (X', Y), X*) < 8(¢) + 2¢ for all t > 7. The result follows by
lettings — OT.

O

We can now construct an algorithm that employs heuristic projections and yields
convergence to the optimal value in the primal as well as in the dual procedure.

Corollary 3 (Finite termination at e-optimality). Let the assumptions of Theorem 3
hold. For eveng > Othere is ar > 0 such thatf(proj (X!, Y)) —6(ut) < ¢ holds for
allt > r.

Proof. Choose are > 0. From Theorem 3 and the continuity of the functibnit
follows that there is a > 0 such thatf(proj HXLY) < f*+ g/2 forallt > «.
By Proposition 4, there is a > « such thab(u') > 6* — ¢/2 holds for allt > 7. By
Proposition 3,f* = 6*, and thereforef(proj (X', Y)) — (') <eforallt > 7.

O

Since exact Euclidean projection is a special case of heuristic projection, the finite
attainment ok-optimality also occurs when an exact Euclidean projection is employed.

Remark 1 (Delayed start of averaging/hen developing the results of this section
we utilize the propertied the limit of the sequencék'}. Since the information from
the initial iterations of a subgradient optimization scheme is usually of low quality,
it is preferable to delay the initialization of the sequefic¢ until the iteratesy', are
near-optimal, in the sense that they are located on optimal segments of the dual objective
function (implying thath(x!) € 86(u>) if @ is polyhedral, and an indication of which
is that certain vectors occur repeatedly as subproblem solutions), aruﬂ thdl holds
for all i such thau® > 0 (implying thatv' + oy Utz — uttl) ¢ Nyim (U>)). This
behaviour is also apparent from the numerical experiments performed in the following
section. In our theoretical analysis, we initialize the ergodic sequences at the first
iteration. Since subgradient methods are memoryless, all of the results can, however, be
modified to the initialization of these sequences at any iteragionl, with the obvious
modification of the convex combination formula (13).

O

4. Application to traffic equilibrium assignment under road pricing

Traffic assignment deals with the estimation of route flows in each of the origin—
destination relations of a road network, and the travel times resulting from this allocation.
We consider the traffic equilibrium assignment model, which is based on the assumption
that all road users have complete information about the current traffic conditions, and
that they choose among the shortest routes available. An equilibrium state therefore has
the property that the travel times on routes that are used are equal, that is, they are all
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shortest with respect to the current traffic flow (Wardrop [64]). Since travellers use the
shortest routes, they do not generally fulfil society’s goal of efficient road usage (which
may, for example, be a minimal total travel time). In order to fulfil this goal, during the
last several yean®ad pricingsystems have been paid much attention (e.g., Small [61]
and The Economisf18]). In such systems, each vehicle pays a prespecified toll for
traversing certain arcs, possibly relative to the current traffic flow on these arcs.

4.1. Statement of the model

Consider a connected transportation netw@rk (N, A), with node sefV and a set

A of directed arcs. Lef ¢ N x N be a set of origin—destination pairs. For each pair,

k € C, there is a fixed positive demadgdof flow, associated with a specific commodity.
We denote the nonempty set of simple routes from the origin to the destination of the
k:th pair byRk and the flow on route € Ry by hy,. Feasibility with respect to demands
requires the route flow$i Jr ez, kec to satisfy the conditions

Z hie = di, kec, (29a)
reRy
hgr > 0, r e R, keC. (29b)

Letting [Skralr Ry keC.ac.4 b€ @n arc-route incidence matrix f@r with

PO if router € Rg contains ar@ € A,
ka =10, otherwise,

the arc flows,f,, are defined by the route flows,, through

fa=» "> dkahkr, ac A (29¢)

keC reRy

With each ar@a € A is associated the travel tintg( fa) for traversing it at arc flow
fa > 0. We presume that the free-flow travel tingg(0), is positive, and that the
functionscy : My — Ny are continuous, strictly increasing, and weakly coercive, that
is, they tend to infinity with the flow (these assumptions are quite natural because of the
congestion effects).

The Wardrop equilibrium conditions for the model (29a)—(29c) with cost functions
Ca, @ € A, are equivalent to the first-order optimality conditions (e.g., Patriksson [49,
Theorem 2.1]) for the program

fa
min Z[ ca(s)ds, (30)

acA 0
s.t. (29a)—(29¢)

which has a convex and differentiable objective function and linear constraints.



300 Torbjorn Larsson et al.

For each ar@ € A, let ta > 0 be the toll (measured in time equivalents) charged
each vehicle traversing the arc when the arc flow is greategthanO. The toll mapping
7a : Ry > 2" s defined by

{0}, 0 < fa < ¢a,
ma( fa) = [Oa Ta] , fa= Pa, aec A (31)
{ra}, fa > Pa,

The mappingr, is nonnegative, convex-valuédind closed (see Section 2.1) tin
for all a € A. Figure 1 illustrates three different types of toll mappings.

ma(fa) ma(fa) ma(fa)
A

Ta p—— Ta

»fa »fa »fa

a) b) ©)

Ya

Fig. 1. The toll mappingra for arca € A with respect to the arc flovia > 0.a) g > 0,773 > 0.b) 95 = 0,
ma > 0.¢)ma =0, i.e., an untolled arc

Letting ik denote the travel cost (time plus toll) at flofy, a € A, on the shortest
route from the origin to the destination of tkeh pair, the Wardrop user equilibrium
conditions for the model (29) with cost mappingst+ 74 may be stated as

he > 0= Y dka(Ca(fa) + Pa(fa)) =k, I € Ri, (32a)
acA
hie =0= > bk (Ca(fa) + Pa(fa)) = uk. 1€ R (32b)
acA
where
Pa(fa) € ma(fa), ae A, (32¢)

is the toll charged for traversing aecat flow f;. According to (31), ifta > 0 and

fa = ¢a, then the toll levelpa(fa) has a certain degree of freedom; by allowing
this degree of freedom, we can show that an equilibrium can be found by solving
a (nonsmooth) convex optimization problem. Asmuth [1] shows that a user equilibrium
always exists when the network is strongly connected and the cost mappings are positive,

3 All the results to be derived may be generalized to several toll levels for eaeheard. For simplicity
of notation, however, we consider only one level (which may also be zero) for each arc.

4 A point-to—set mapr : %ty — 2"+ is convex-valued if the set( f) is convex for allf € %, .
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upper semicontinuousand convex-valued. Bernstein and Smith [6] consider single-
valued, lower semicontinuo®isost functions; they show that under fairly mild regularity
conditions a user equilibrium always exists. The theory of road pricing has also been
discussed by Dafermos and Sparrow [12], among others. However, none of these papers
describe equivalent optimization models.

Similarly to the formulation (30) it can be shown (see the proof of Proposition 6)
that the conditions (29) and (32) are the first-order optimality conditions for the program

fa
Z* = min Z/ (Ca(s) + wa(9) ds (33a)
acA 0
s.t. > he = d, kec, (33b)
reRx

hi > 0, re Ry, keC, (33c)
3 bkahke = fa. ac A, (33d)

keC reRy
fa > 0, ac A (33e)

(The constraints (33e) are implied by (33¢)—(33d); they have been added to strengthen
the Lagrangean dual formulation to be presented.) As a result of the assumptions made
above, this program is a highly structured, convex optimization problem with a nonlinear
and possibly nonsmooth objective function. A real world instance of this model may
have several thousand nodes, arcs, and origin—destination pairs.

From the properties of the functioicg and point—to—set mappings, it follows
that the objective function (33a) is strictly convex with respect to arc flows. Hence, the
optimal arc flow,f*, a € A, is unique. However, if the arc flow variables are eliminated
from the problem, then the objective of the resulting equivalent problem in route flow
variables is, in general, non-strictly convex, since an arc flow pattern may correspond
to several route flow patterns. Hence, the sets of optimal route fldjuk € C, are in
generahotsingleton sets, but polytopes.

4.2. A Lagrangean dual formulation

For the untolled program (30) Larsson et al. [40] propose a Lagrangean dual approachin
which the arc flow defining constraints (29c) are relaxed. The resulting solution method
essentially consists of the repeated solution of shortest path problems; it is very simple,
both from a conceptual and implementational point of view. Its merits are that, despite its
dual character, it produces a feasible flow in each iteration, and that this is done without
the solution of any additional optimization problem. In this paper, we generalize this
method to the model (33).

5A point-to—set mapr : %y — 2"+ is upper semicontinuous if; € %y for all i, {fj} — f and
ti € m(f;), for alli, imply that{t; }jcz — t € =(f) for some subsequende

6 A single-valued functiort : 9t — 9t is lower semicontinuous if lim inf_+c(f) > c(f) forall f e 9.
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Lettingu = [ua]ac.4 be multipliers associated with the constraints (33d), we define
the Lagrangean dual objective function (cf., Definition 3) by

OU) =) 6k(U) + Y Oa(Ua).
keC acA

For eachk € C and allu € ™, 6k(u) is the optimal value of the shortest simple
route subproblem, with arc coaig, a € A, given by

Ok(u) = min Z (Z Uaakra> e,

reRx \acA
S.t. Z hir = dk, (34)
reRy
hge >0, r e Rk

The solution seHy(u) to this program is a bounded polyhedron; it is not necessarily
a singleton set (especially not at an optimal poirf), We let[hxr (W)]rer, € Hk(W),
k € C, denote an arbitrary set of solutions to the subproblems (34) ldbte that, by
a result of Robinson [54, Lemma 3.3}k(u) € Hk(u*) holds for anyu in a suffi-
ciently small neighbourhood af*; this result has a bearing to the algorithm devised in
Section 4.3.

For eacha € A and allug € N, 6a(uy) is the optimal value of the single—arc
subproblem

fa
Oa(ua) = ;nira /0 (Ca(S) + ma(s) — uUa) ds (35)

which has a strictly convex and nonsmooth objective function. Since each mapping
Ca + 7a is strictly increasing and weakly coercive, the program (35) is uniquely solved

by

0, Ua < Ca(0),
Ca(Ua), Ca(0) < Ua < Ca(ga),
faUa) = 1 & 2 A= acA (36)
Qa, Ca(9a) < Ua < Ca(pa) + Ta,
Cgl(ua — Ta), Ua > Ca(@a) + Ta,

Wherecgl is the continuous inverse mapping (e.g., Rudin [57, Theorem 4.17]) of the
continuous one—to—one mappicg a € A. One may note thaﬂgl is explicit for most
travel time functions used and thatneed not be differentiable. Figure 2 illustrates the
functionug — f3(uy) for arca = (16, 18) in the Sioux Falls network (see Section 4.4),
with ca(fa) = 0.03+ 0.00000003 f;‘.

The functiond : %M — 9% is the sum of theC| concave and piecewise linear
functionséy, k € C, and the|.4| concave and differentiable functiofg, a € A. It
is thus finite, continuous, concave, and subdifferentiabléitH; its subdifferential
mapping au € %M is the bounded polyhedron (cf., Proposition 1)

() = i {Z > Skrahir — fa(Ua):|
acA

keC reRy

[hkrlrer, € Hk(w), keCyp. (37)
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30
¢a = 1382 5L (ua — a)
25| Ta= 002 i

20 .

a
15— # *

-1
10l Ca~(Ua)

0
o . 1 1 1 1 1 1 1
0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07

Fig. 2. The solutionf, to the single arc flow subproblem as a functiorugf

By weak duality,#(u) < z* holds for allu € R/ To formulate the Lagrangean dual
program (cf., the program (5)) we consider an arbitrary poiat%i, and define

Ua = max{ua; ca(0)}, aec A

Then, fa(Ua) = fa(Ua), SO thata(Ua) = Ha(uz). Further gy (@) > 6k(u) sinceli > u,

and it follows thav(ti) > 6(u). Since the dual objective is maximized A, one can
therefore, without loss of generality, impose the restrictions ca(0), a € A (this is
done by Larsson et al. [40] for the untolled program (30), with the same motivation).
The Lagrange dual (5) may now be stated as

max 6(u),

S.t. U > ca(0), ac A, (38)

with solution setJ*. Due to the conclusions drawnin Section 2, this is a convex program.
It has an interesting interpretation; whereas in the primal program (33) the equilibrium
arc flowsare sought, (38) is the problem of determining the equilibruatravel times

The following proposition relates the primal and dual solutions.

Proposition 6 (Primal—dual optimality). Let u* € U* be arbitrary. Then, strong
duality holds, that isg(u*) = z*. Further, f; = fa(u}), a € A, and

Hy = Hk(u™) m [Nkrlrery Z Z Seraher = f3, @a€c Ay, keC. (39)
teCreRy

Proof. The strong duality follows from Theorem 6.2.4 in Bazaraa et al. [3]. (The
application of that theorem requires that the program (33) has a feasible solution and

that the inclusior® € int {[fa — > ycxc D _rer, Skrahkrlac4 | ([ fala, [Nkrlkr) satisfies
(33b)—(33c)} holds; the latter of these assumptions differs slightly from Assumption 1
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and is clearly satisfied.) By the above and Theorem 28.3 in Rockafellar [55] (see also
Patriksson [49, Theorem 2.1]), the conditions (29) and (32) are the first-order optimality
conditions for the program (33). Further, the set of optimal solutions to (33) may be
characterized as the set of Lagrangean subproblem solutianisthat also satisfy

the constraints (33d) (Bazaraa et al. [3, Theorem 6.2.5]; cf. also the relation (7)).
The uniqueness ofa(Ua), Ua € N, yields thatf}; = fa(u}) for all a € A, and the
expression (39) follows.

O

The proposition states that the optimal arc flofg 1< 4 is obtained from the solutions

to the subproblems (35) at € U*. However, an optimal route flow patteifif, ], <z, €

Hy is, in general, not directly available from the subproblem (34) even if an optimal dual
solution is at hand. This is so because the[§gt, Hk(u*) is usually not a singleton,
since the functiof is usually nonsmooth at*. (For the case whelf}]ac 4 is known,

an algorithm for calculating a solutighy, I; <, € Hy is givenin Drissi-Kaitouni[17].)

Proposition 7 (Equilibrium tolls). Letu* € U* be arbitrary and| f;]ac.4 optimal in
the program (33). Then, the equilibrium tolls satisfy

o 1= uj — ca(fy). ?f fx >0,
a1 € 7a(0), if =0,
Proof. Since[ f;]ac.4 andu* solves the primal—-dual pair (33), (38), the generalized KKT

conditions (Rockafellar [55, Theorem 28.3]) yield, foralé A, thatpa(f}) € ma(f})
holds, and thati; = ca(f}) + pa(f3) holds whenevef} > 0.

ac A

O

4.3. The algorithm

The algorithm is based on the solution of the Lagrange dual (38) by the subgradient op-
timization method (9)—(11). A few comments regarding its implementation are needed.
All calculations can be made in arc flows exclusively. By aggregating the feasible
shortest route flow patter[nkr(ut)],enk,kec into afeasible arc flowsolution

Y = Z Z Skrahir (UY), ac A, (40)

keC reRx

a subgradient té atu' (cf. the definition (37)) is defined by, — fa(ul), a € A. The
adaption of the standard subgradient algorithm (that is, the iteration formula (9) with
v! = 0) to the program (38) is then given by

t+3 ¢ t gt t+1_ t+3, 0 At=0.1
Ua 2=Uy+ ot (Ya— fa(uy), uz"=max{ua 2;ca(0)p, ac A t=0,1,....

Remark 2 (Redundant subgradient projectidByery subgradient of at u' defines
a locally feasible direction in the program (38). This is so because if, for somel,
ul, = ca(0), then the formula (36) yield$a(ut) = 0, implying thaty}, — fa(ul) > 0.
Therefore, when applied to the program (38), the subgradient projection (see Section 2.2)
is equivalent to the standard subgradient method, in whigh= {0}.

O
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The evaluation of the objective functighat u essentially requires the calculation
of a shortest route pattern; in each iteratipthe valued(u') defines dower boundon
the optimal value* of (33).

Embedded in the subgradient scheme is the generation of feasible solutions to the
primal problem (33) through the computation of convex combinations of shortest route
flow patterns, according to the formula (21). Previous experience from applications of
the method (9)-(11) has demonstrated that the ergodic convergence of the sequence
of subproblem solutions defined by (20)—(21) is superior to that defined by (13) (see
Larsson and Liu [39], Larsson et al. [40], and Petersson and Patriksson [50]). Therefore,
we employ step lengths according to the formula (20) and define the ergodic sequence of
subproblem solutions by (21). For illustration purposes, we however also show results
from the application of the formula (13). As pointed out in Remark 1, the ergodic
sequences may be initialized at any iteratigp- 1; previous experience also indicates
that it is indeed preferable to choos&as> 1 (see also Larsson et al. [43]).

When applying the formula (21), the ergodic sequerﬁé}s a € A, of feasible arc
flow solutions are computed as

t—t 1
Tto_\fo—1 Ft 0 2t-1 t—1
fo=y? fo= f , t=to+1Lt0+2,... (41
a a o a t—to—i—la +t—to+lya o+ o+ (41)
(When applying (13), a corresponding formula is obtained.) It is thus not necessary to
store all the route flow patterrisy (u')]krt. Denoting the objective function of the
program (33) byz(f), wheref = [ fa]ac, it follows thatz(f!), t > to, are upper bounds
converging taz*.

4.4. Numerical experiments

The proposed methodwasimplementedinFortran-77 onaDigital AlphaStatiof B84

and tested on the Sioux Falls network (LeBlanc et al. [47]). This network has 24 nodes, 76

directed arcs, and 528 origin—destination pairs. We imposed positive tollson 12 arcs in the

network, namely,; = 0.02 on arcg16, 18) and(18, 16), 74 = 0.050n arcg4, 5), (5, 4),

(11, 12), and(12, 11), =5 = 0.06 on arc99, 10), (10, 9), (15, 22), and(22, 15), and,

finally, za = 0.07 on arcg21, 24) and(24, 21). The flow breakpointp,, for each of these

arcs was chosen as 90% of the flow on the arc at equilibrium for the original (untolled)

problem (these values were computed by the DSD code of Larsson and Patriksson [41]).
After calibrations of the method, the following strategies and parameter values

were chosen. The step lengths were generated according to the formula (20) with

nw =M = 1/75 andb = 1, that is,ay = (75(t + 1))~L. In order to receive the

best primal convergence the sequence of step lengths used in the dual method should

be slowly decreasing so that all of the optimal segments of the dual fun¢tare

attained by the sequen¢a'} with appropriate frequencies. The proper choice of the

sequencéwy} is evidently problem-dependent. In the first test, the feasible arc flows were

computed according to the formula (41) with= 1, that is, the averaging was initiated

7 The reason for not defining the sequen(:%} by averages of the subproblem solutiofgug), s =
to,....t — 1, is that, wheneven! £ u*, the subproblem solutior{sfa(ug)]aEA typically do not define
a feasible flow; the sequencesi(ug)} are, however, convergent td.
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at iteration 1. In the second test, the averaging was initiated after 49 iterations, that is,
to = 50. The shortest route calculations were made using a standard implementation of
Dijkstra’s algorithm.

For these two tests, lower and upper bounds were recorded for 100 and 50 iterations,
respectively, and the bounds found up to iteratiofort = 1, ... , 100, are shown in
Figure 3. The upper bounds obtained when the averaging starts at itégatrerdefined
byii = MiNs=t,, .. {z(f )}, t > to, wherefS is given by the formula (41). The lower
bounds from the dual feasible solutions are defineéiby max—o_.. t{0(u%)},t > 0.

We define the relative difference between the upper and lower bounds after 100 iterations
as(f{’oo— 6100)/6100- For the two values df) (1 and 50) these relative differences were
0.656% and QL71%, respectively. The final lower bound wago = 42.7037, and the

final upper bounds weid ,, = 42.9840 and3), = 42.7766, which exceed the optimal
valuez* = 42.7576+ 0.0006 (this value was obtained by our code running for 10,000
iterations) with 0529% and 444%, respectively.

a6
\
|
45.5 — \ -
\
\
a5 - \ B
\
\
44.5 — \ -
k 1
. ~
N Z;
aal- N -
= ~
~ —

43.5 ~ o -
a3 -
Z*

4251 ,— -

Ot T
.
" ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
o 10 20 30 40 50 60 70 80 90 100

Fig. 3. The bounds o* found up to iteratiort using the formula (21), foip = 1 and 50, respectively

The curves in Figure 4 are generated similarly to those in Figure 3. The difference
is that the convex combinations were here computed according to the formula (13),
and that we made an additional test where the averaging scheme was initiated after
4 iterations, that istp = 5. The corresponding upper bounds are here den?ﬁ"led
For the three values df (that is, 1, 5 and 50) the relative differences between the
bounds were 4187%, 0754% and (L88%, respectively. The final upper bounds were
Zhoo = 44.6200,25,, = 43.0258 andzy9, = 42.7838, which exceed the optimal value
with 4.36%, 0627%, and (613%, respectively.

Concerning the difference in behaviour between the schemes using either the for-
mula (13) or (21), consider the convergenchﬂ and {Z!}, respectively. The initial

all-or—nothing flow pattery® = e} (generated with link costs corresponding to
zero flow) is composed of routes that are not used to such a large extent in the equilib-
rium solution,f*, since their travel costs are too high when the flow is large (in fact,
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Fig. 4. The bounds o* found up to iteratiort using the formula (13), folp = 1, 5 and 50, respectively

z(y°%) = 16029). In the formula (13), however, this flow pattern receives a weight that
is considerably larger than that of the subsequent patterns, and hence its Weﬁght in
will be substantial even for large valuestofThis explains the very poor convergence

of {2}}, compared t¢Zzt}, where, according to the formula (21), the weighy®tlearly
becomes negligible rather quickly. From this discussion and the experiments shown in
Figures 3 and 4 we conclude that the formula (21) combined with a relatively large
value oftg yields the best results. Note that the delayed start of averaging is supported
in theory by the result thatl(ut) < Hy(u®>) holds for allt that are sufficiently large

(cf. Proposition 4 and the discussion following the formulation (34)).

Definingy! = [y.]ac.4, We compare the primal objective values obtained from the
sequence{yt}tlgg of feasible arc flows with those from the corresponding ergodic se-
quence{?}tlzogo. Figure 5 illustrates that the objective values from the ergodic sequence
converges rapidly to the optimal valz&, whereas the sequence of objective values
from the all-or—nothing solutiong is clearly nonconvergent. Moreover, the time used
for computing the ergodic sequenﬁ‘é} is negligible (in fact, it amounts to less than
one percent of the total computing time used by the procedure). Performing 100 itera-
tions (including initializations and generation of output files) took 0.6 CPU-seconds on
average.

We conclude that the proposed method, where the activation of the averaging pro-
cedure is delayed until the dual iterates are near-optimal, is a feasible approach to the
traffic equilibrium assignment problem under road pricing. In particulartigfes 50,
the rate of convergence of the upper bound is very good once the averaging scheme has
been activated.

The distance between a subproblem solugf@n), [hy (ut)]k,r) and the set defined
by the constraints (33d) is proportional to the length of a subgragieaty! — f (u') of
6 atut. Analogouslyg! —ft— (t—491 Zg;}lgf(us) measures the distance between
an averaged subproblem solution and the set defined by (33d). Figure 6 illustrates
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Fig. 5. Objective values with and without averaging the all-or—nothing flow patterns

that the sequendg!} is nonconvergent, whereas the sequejgtconverges to zero

(cf., Proposition 5), that is, the ergodic sequence of subproblem solutions converges to
a feasible solution to (33).
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Fig. 6. A measure of the distance from subproblem solutions and ergodic subproblem solutions to the feasible
set

We will now study two specific tolled arcs in the network; one with an equilibrium
flow strictly greater than its flow breakpoint and one with a flow equal to its breakpoint,
in order to study the convergence characteristics of the toll levels.

In Figure 7 we consider ara = (16, 18) with travel time functionca(fy) =
0.03+-0.00000003f 2, toll level o = 0.02, flow breakpoinpa = 13.82, and equilibrium
flow f3 ~ 14.39 (thatis,f; > ¢a, and hence the equilibrium toll for this arc must be
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Fig. 7. The toll levelsu, — ca( fa(ul)) for an arc withf > ¢a

ma(f}) = a; cf., the formula (31)). The graph shows the estimated f@lsfa(ut)) =
ul — ca(fa(ul)) fort = 1,..., 100. The total arc cost at equilibriumug ~ 0.05129;
it is composed by the tolp; = 0.02 and the travel time,( f3) ~ 0.03129. Note that,
by definition, 000 < pa( fa(u)) < 0.02 for allt.
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Fig. 8. The toll levelsul, — ca( fa(ub)) for an arc withf = ga

The arc chosen for Figure 8 & = (9, 10) with travel time functionca(fa) =
0.03+0.00000012f;‘, toll level r; = 0.06, flow breakpoing; = 19.53, and equilibrium
flow f} = ¢a. The set of equilibrium tolls for this arc must clearly be a subinterval of
[0.00, 0.06], according to the formula (31); the actual valpg( fa(ug®)), obtained in
the limit from the application of the dual scheme depends on the initial dual solution
and the step lengths chosen. The graph illustrates the estimateqb;,tOflgug)) =
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ul —ca( fa(ul)) fort = 1, ..., 100. Note that, by definition, 00 < pa( fa(ul)) < 0.06
forall t.

5. Conclusions and further research

The procedure analyzed in this paper generates an ergodic sequence of subproblem
solutions within a Lagrangean dual subgradient scheme for the solution of a convex
program. This ergodic sequence converges to the primal solution set, without requiring
the solution of any coordinating master problem.

The method has been implemented for solving traffic equilibrium assignment prob-
lems under road pricing. The numerical experiments show that the solutions obtained
from the ergodic sequence of subproblem solutions are of considerably better quality
than those generated by the basic subgradient scheme.

A property of the dual subgradient method is that it can be initialized at any dual
feasible solution. For the traffic assignment problem, an estimate of the equilibrium
travel times may be used as a starting solution.

We remark that more general equilibrium models with pricing may be constructed
and solved with the proposed methodology, along the lines presented in Larsson et
al. [40] for the basic equilibrium model. In particular, the fixed demand model considered
in Section 4.1 may be generalized to allow for elastic demands, that is, where@ach
a (nonnegative and nonincreasing) function of the least route cost for origin—destination
pairk.

Sherali and Choi [59] solve Lagrangean dual formulationnafar programsby
subgradient methods, and establish the ergodic convergence of sequences of primal sub-
problem solutions; their analysis allows for more general choices of convexity weights
and step lengths in the subgradient scheme than our analysis does. An interesting subject
for further research is therefore the generalization of our results to these more general
choices.

We have recently been able to extend the results of this paper to general convex—
concave saddle point problems.

Further, it would be interesting to employ our method in applications such as, for
example, the large linear programs wabft constraints studied in Hauer and Hogan-
son [29].

An extension of the results of this paper that would be of practical interest s to retain
the ergodic convergence while allowing for an inexact solution of the subproblems; such
solutions would providet-subgradients to the dual objective function. Convergence is
indeed retained provided that, > {st} — 0 andzfio otEr < 00.

We are currently investigating the application of the results of this paper in the field
of discrete optimization. In such applications, the elements of an ergodic sequence in
the limit solve a convexification of the original problem; this property can be exploited
in various solution strategies.
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