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Some instances of variational inequality models over polyhedral sets can be stated in adisaggregated or aggregated formulation related by an affine variable transformation.
For such problems, we establish that sensitivity analysis results under parameterizations rely
neither on the strict monotonicity properties of the problem in terms of the disaggregated
variables, nor on any particular choice of their values at the solution. We show how to utilize
the affine transformation to devise computational tools for calculating sensitivity results and
apply them to the sensitivity analysis of elastic demand traffic equilibrium problems. The
results reached show that sensitivity results do not rely on the choice of any particular route
or commodity flow solution. Further, the sensitivity analysis, including the calculation of
the gradient of the equilibrium link flow if it exists, can be performed by means of solving
linearized traffic equilibrium problems.

Introduction
The paper concerns the sensitivity analysis of varia-
tional problems of the form

−f ���x� ∈ NC�x�� (1)

where � ∈ �d is the parameter, x ∈ �n is the solution,
f � �d ×�n �→ �n is a smooth function, C ⊆ �n is a
nonempty polyhedral set, and NC is the normal cone
mapping to C; that is,

NC�x�=
{
�z ∈ �n 	 zT�x−y�≤ 0�∀y ∈ C�� x ∈ C�

∅� x 
 C�

We focus our attention on the generalized differentia-
tion of the solution mapping

S� � �→ S���= {
x 	 −f ���x� ∈ NC�x�

}
� (2)

at a pair ��∗�x∗� with x∗ ∈ S��∗�. We further take a spe-
cial interest in cases where problem (1) is generated

by problems in a higher-dimensional setting, related
by a linear transformation, as follows.
Let D ∈ �m be a nonempty polyhedron, u ∈ �m the

solution, �� �d×�m �→�m be smooth, and A� �m �→�n

be a linear mapping. Consider the problem

−����u� ∈ ND�u�� u ∈ �m� (3)

If the two problems (1) and (3) are related by

C =A�D�� x =Au� and

ATf ���A�·��= ���� ·�� (4)

we then say that (1) (respectively, (3)) is an aggregated
(respectively, disaggregated) representation of the same
problem. Note that the linearity of the mapping A
implies that C is polyhedral if D is, and vice versa
(Rockafellar and Wets 1998, Proposition 3.55). Further,
in cases where ���� ·� is monotone, this property is
inherited by ATf ���A�·�� (Rockafellar and Wets 1998,
Exercise 12.4), and, vice versa, if f ��� ·� is monotone
on C, then ���� ·� is monotone on D.
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The remainder of the paper is organized thus: In
the next section we briefly outline the parameteriza-
tion made, and state a basic sensitivity result for the
case of problem (1). In §2, we then utilize the affine
transformation in setting up rules for the central com-
ponents in the sensitivity analysis calculations. A key
factor in enabling these calculus rules is that an entity
in the aggregated space (such as an element in the
normal or tangent cones to C) does not depend on the
selection of the element in the corresponding entity in
the disaggregated space (such as in the corresponding
cones to D).
The possibility to choose either a disaggregated

or an aggregated representation is particularly pro-
nounced in applications of variational problems asso-
ciated with games and transportation, where the vec-
tor u may represent a disaggregated representation
of the decision makers, or network flows in terms
of individual commodities. The aggregated version of
the problem then represents the decisions, or com-
modities, in some aggregated fashion which allows
problem (3) to be solved through the solution of (1).
Section 3 presents one such important application, the
(elastic demand) traffic equilibrium problem, in which
the mappings � and f measure the cost of travel at
different levels of aggregation, such as on routes or
individual links, and their parameterizations may be
associated with decisions on the part of society to
change the level of service of the traffic infrastruc-
ture in order to influence the travellers’ decisions on
when, by which mode, and on which route, trips will
be made. For these problems, the linear transforma-
tion described in (4) is a sum, and the corresponding
special cases of the sensitivity results of §1 are given
in the form of corollaries.
In §4, we then provide the corresponding results for

the sensitivity analysis of traffic equilibria and estab-
lish that the calculations correspond to strictly mono-
tone and affine variational inequality problems that
can be solved as special network equilibrium prob-
lems. We also give an illustrative example, and com-
pare the results obtained with some previous sensi-
tivity analysis techniques for traffic equilibrium prob-
lems. The paper concludes by mentioning some fur-
ther research work that is currently being conducted.

1. Parameterization and Sensitivity
Analysis

Throughout this paper we will assume, without fur-
ther reference, that the parameterization is done in
such a way that at any ��∗�x∗� with x∗ ∈ S��∗�, the
partial Jacobian matrix ��f ��

∗�x∗� for f with respect
to � at ��∗�x∗� has full rank; in other words,

rank��f ��
∗�x∗�= n� ��f ��

∗�x∗� ∈ �n×d� (5)

(In Dontchev and Rockafellar 2002, Definition 1.1,
Property (5) is termed ample.) We note that this prop-
erty can always be enforced, if necessary, through the
addition of an additive vector of canonical (dummy)
parameters to f . The paper by Dontchev and Rock-
afellar (2002) contains a full theory of Lipschitzian
properties of the solution mapping � �→ S��� defined
in (2), as well as of the graphical geometry associated
with its generalized differentiation. For its present
use, a small subset of the results obtained therein will
suffice. We first recall the concept of protoderivative:
the mapping S is said to be protodifferentiable at �∗ for
x∗ when x∗ ∈ S��∗� and the difference quotient map-
pings

��S��
∗ 	 x∗�� �′ �→ �−1�S��∗ +��′�−x∗�� � > 0�

converge graphically as � ↓ 0; in other words, there is
a mapping D� �d �→ �n such that graph ��S��

∗ 	 x∗�
converges to graph D as � ↓ 0. (For more details on
protoderivatives, consult Rockafellar and Wets 1998,
Chapter 8.) We also say that a mapping is piecewise
polyhedral if its graph is the union of a collection of
finitely many polyhedral sets. Further, for a vector z ∈
�n, z⊥ = �y ∈ �n 	 zTy = 0�.
The following two results were established in

Dontchev and Rockafellar (2002), as Theorems 7.1
and 7.4.

Theorem 1 (Protoderivatives). Assume that Con-
dition (5) holds. Then S is both graphically Lipschitzian of
dimension d and protodifferentiable at �∗ for x∗, with its
protoderivatives given by an auxiliary variational inequal-
ity, namely

DS��∗ 	 x∗���′�= {
x′ 	 r��′�x′�+NK�x

′� � 0}�
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where

r��′�x′� = ��f ��
∗�x∗��′ +�xf ��

∗�x∗�x′ and

K = TC�x
∗�∩f ��∗�x∗�⊥�

Furthermore, the mapping DS��∗ 	 x∗� is itself graphically
Lipschitzian of dimension d everywhere, and is piecewise
polyhedral.

The set K in the definition of the derivative
DS��∗ 	 x∗���′� is known as the critical cone associ-
ated with the variational inequality (1) for �= �∗ and
x = x∗.
The main interest in the above result is in the spe-

cial case where S is locally single-valued and Lip-
schitz continuous, when protodifferentiability turns
into something stronger, extending the strong reg-
ularity results of Robinson (1980). If S happens to
be single-valued and Lipschitz continuous around �∗

with x∗ being the unique element of S��∗�, protodif-
ferentiability implies that the mapping DS��∗ 	 x∗� is
likewise single-valued and Lipschitz continuous and
that

S���= S��∗�+DS��∗ 	 x∗���−�∗�+o�	�−�∗	��

where o�·� is such that o�t�/t converges to zero as
t → 0. This property is known as semidifferentiability
(see further Rockafellar and Wets 1998, §7.D). (This
is further ordinary differentiability precisely when
DS��∗ 	 x∗�, in addition, is linear.)

Theorem 2 (Semidifferentiability). Assume that
Condition (5) holds. Suppose further that S is convex
valued (as it is when f ��∗� ·� happens to be monotone)
around �∗, in the sense that S��� is a convex set for all �
in some neighborhood of �∗. Then the following properties
are equivalent:
(a) S is single-valued and Lipschitz continuous on some

neighborhood of �∗;
(b) DS��∗ 	 x∗� is single-valued on some neighborhood

of 0d (hence everywhere).
Moreover, then S is semidifferentiable at �∗ for x∗, and
DS��∗ 	 x∗� is not only Lipschitz continuous and positively
homogeneous, but also piecewise linear.

Suppose now that the situation is as described in
the Introduction, that is, that problem (1) is generated

through a linear transformation from the disaggre-
gated problem (3). We next establish decomposition
formulas providing the sensitivity calculations for (1)
to be performed with the aid of data from a solution
to problem (3).

2. Sensitivity Analysis for
Aggregated Variational Problems

The existence of a sensitivity analysis amounts, by
the above theorem, to the local existence of a single-
valued and Lipschitz continuous mapping S. The fact
that problem (1) also has a disaggregated representa-
tion and could also be described in terms of the vari-
ables u does not alter the analysis in any way; the only
point that needs to be analyzed is whether the calcu-
lation of DS��∗ 	 x∗� can be performed in some disag-
gregated fashion in terms in the variables u, thereby
perhaps facilitating a more efficient sensitivity analy-
sis. This question will be answered through the devel-
opment of a disaggregated formulation of DS��∗ 	 x∗�.
To this end, we first derive a disaggregated repre-
sentation of the critical cone K. The following result
is a special case of Theorem 6.43 in Rockafellar and
Wets (1998), but deserves a special proof for polyhe-
dral sets. (A related result was also previously given
by Outrata 1997, Lemma 1.1.)

Theorem 3 (Cone Decomposition). Let x̄ ∈ C, and
consider any ū ∈D with Aū= x̄.
(a) NC�x̄�= �v ∈ �n 	ATv ∈ ND�ū��;
(b) TC�x̄� = �w ∈ �n 	 ∃z ∈ TD�ū� with Az = w� =

A�TD�ū��.

Proof. The result in (a) follows from the relations

v ∈ NC�x̄� ⇐⇒ x̄ ∈ argmax
x∈C

vTx

⇐⇒ ū ∈ argmax
u∈D

vTAu= argmax
u∈D

�ATv�Tu

⇐⇒ ATv ∈ ND�ū�= �AT�−1�NC�x̄���

where the first is by definition of NC�x̄�, the second
by the definition of C through the linear mapping A,
and the fourth by definition of ND�ū�.
For the result in (b), we first note that TC�x̄� =

NC�x̄�
∗, by polarity. But, on the other hand,(

A�TD�ū��
)∗ = {

v ∈ �n 	 vTw ≤ 0�w ∈A�TD�ū��
}

= {
v ∈ �n 	 vTAh≤ 0�h ∈ �TD�ū��

}
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= {
v ∈ �n 	 �ATv�Th≤ 0�h ∈ �TD�ū��

}
= {

v ∈ �n 	ATv ∈ �TD�ū�
∗�
}

= {
v ∈ �n 	ATv ∈ �ND�ū��

}
= NC�x̄��

by the result in (a). Hence,

TC�x̄�= N�x̄�
∗ =A�TD�ū��

∗∗ = clA�TD�ū��=A�TD�ū���

where the last equality follows because TD�ū� is poly-
hedral, hence also A�TD�ū��, which then in particular
is closed. �

The following result is given in Rockafellar and
Wets (1998, Exercise 6.44). The result will be used in
the context of traffic equilibrium models in the next
section.

Corollary 4 (Aggregation by Sums). Assume fur-
ther that D = C1×C2× · · · ×Cr , where each set Ci is a
polyhedron in �n, and that A�u1�u2� � � � �ur �= u1+u2+
· · ·+ur with ui ∈ �n for all i, that is, A= �In� In� � � � � In�
and C =∑r

i=1Ci. Let x̄ ∈ C and consider any collection of
vectors ūi ∈ Ci with x̄ =∑r

i=1 ūi.
(a) NC�x̄� = �v ∈ �n 	 v ∈ NCi

�ūi� for all i� =⋂r
i=1NCi

�ūi�;
(b) TC�x̄�=

∑r
i=1 TCi

�ūi�.

In the same context, consider now any v̄ ∈ NC�x̄�
and the critical cone TC�x̄�∩ v̄⊥. Note that for the per-
turbed problem (1), the corresponding choice is v̄ =
−f ��∗�x∗�. (Obviously, �−f ��∗�x∗��⊥ = f ��∗�x∗�⊥.)

Theorem 5 (Critical Cone Decomposition).

TC�x̄�∩ v̄⊥ =A
(
TD�ū�∩ �ATv̄�⊥

)
� (6)

Proof. Consider any w̄ ∈ TC�x̄�∩ v̄⊥, and h̄ ∈ TD�ū�
with Ah̄= w̄, as guaranteed by Theorem 3(b). Then,

w̄ ∈ TC�x̄�∩ v̄⊥

⇐⇒ 0= v̄Tw̄ ≥ v̄Tw� w ∈ TC�x̄��

⇐⇒ 0= v̄TAh̄≥ v̄TAh� h ∈ TD�ū��

⇐⇒ 0= �ATv̄�Th̄≥ �ATv̄�Th� h ∈ TD�ū��

⇐⇒ h̄ ∈ TD�ū�∩ �ATv̄�⊥�

where the first equivalence follows by the definition
of TC�x̄� and the relation v̄ ∈NC�x̄� (cf. also Rockafellar

and Wets 1998, Proposition 6.5), and the second by
the definition of the mapping A. (We note that ATv̄ ∈
ND�ū�= TD�ū�

∗� as guaranteed by Theorem 3(b).) �

Corollary 6 (Aggregation by Sums). In the spe-
cial case given in Corollary 4,

TC�x̄�∩ v̄⊥ =
r∑

i=1

(
TCi

�ūi�∩ v̄⊥) �
Proof. We note that v̄ ∈ NC�x̄� amounts to v̄ ∈

NCi
�ūi� for all i; cf. Corollary 4(a). The result then fol-

lows from Theorem 5 and Corollary 4. �

We shall utilize the above cone decompositions to
derive rules of calculus for the sensitivity of traffic
equilibria. We first provide an outline of the mod-
elling of such problems.

3. Traffic (Wardrop) Equilibrium
Let � = �� ��� be a transportation network, where
� and � are the sets of nodes and directed links
(arcs), respectively. For certain ordered pairs of nodes,
�p� q� ∈�, where node p is an origin, node q is a des-
tination, and � is a subset of � ×� , there are travel
demands dpq , given by functions gpq��� ·�� �	�	 �→ �+
of the least costs of travel between the nodes p and
q given the parameter vector � ∈ �d; these functions
are nonnegative, upper bounded, and continuous on
�	�	 for each �p� q� ∈ �. We assume that the network
is strongly connected; that is, at least one route joins
each origin-destination (OD) pair.
Wardrop’s user equilibrium principle states that for

every OD pair �p� q� ∈�, the travel costs of the routes
utilized are equal and minimal for each individual
user, and in the elastic context, that the total demand
in the OD pair equals the demand function at this
least cost, if positive. We denote by �pq the set of
simple (loop-free) routes for OD pair �p� q�, by hpqr the
flow on route r ∈�pq , and by cpqr = cpqr ���h� the travel
cost on the route as experienced by an individual user
given the vector h ∈ �	�	 of route flows, where 	�	
denotes the total number of routes in the network.
With this notation, an equilibrium flow is defined by
the conditions

hpqr > 0 �⇒ cpqr = ,pq� r ∈�pq� �p� q� ∈�� (7a)

hpqr = 0 �⇒ cpqr ≥ ,pq� r ∈�pq� �p� q� ∈�� (7b)
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where the value of ,pq = ,pq���h� is the minimal (i.e.,
equilibrium) route cost in OD pair �p� q�. By the non-
negativity of the route flows, the system (7) can be
more compactly written as the complementarity sys-
tem

0	�	 ≤ h⊥ (
c���h�−-,

)≥ 0	�	� (8)

where c��� ·�� �	�	
+ �→ �	�	

++ is the vector of route travel
cost functions given the parameter vector � ∈ �d, - ∈
�	�	×	�	 is the route-OD pair incidence matrix (i.e., the
element .rk is 1 if route r joins OD pair k= �p� q� ∈�,
and 0 otherwise), and a⊥ b, for two arbitrary vectors
a� b ∈�n, means that aTb = 0. The Wardrop conditions
state that an equilibrium state is reached precisely
when no traveller can decrease his/her travel cost by
unilaterally shifting to another route.
The condition that the total demand dpq in the OD

pair �p� q� ∈� equals the demand function at the least
cost ,pq is stated as follows:

dpq > 0 �⇒ dpq = gpq���,�� �p� q� ∈��

dpq = 0 �⇒ dpq ≥ gpq���,�� �p� q� ∈��

which, similar to conditions (7), can be written as a
complementarity system as

0	�	 ≤ d ⊥ (
d−g���,�

)≥ 0	�	� (9)

To cast the Wardrop conditions as a variational
inequality problem, we need to decide in which space
we wish to represent the flows and the flow feasi-
bility requirements. A general form is obtained by
describing the set of feasible, aggregate link flows as
the solution in v ∈ �	�	 to the linear system

v = Vw� (10a)

Ww = d� (10b)

w ≥ 0l� (10c)

where w ∈�l is the (disaggregated) vector of the com-
modity flows, V ∈ �	�	×l is an incidence matrix which
describes the aggregation of these flows into a corre-
sponding link flow v ∈ �	�	, and W is an incidence
matrix which describes the feasibility requirements
with respect to the demand, d, in the commodity flow
space.

The most common representation of the Wardrop
conditions as a variational inequality problem is in
terms of the route flow variables hpqr . We obtain this
formulation by identifying w = h, d ∈ �	�	 as the vec-
tor of each OD pair’s demand, and W = -T. In a dis-
aggregated version of the Wardrop conditions, we con-
sider only utilizing the parts (10b)–(10c) of system (10)
above, thus describing the (polyhedral) set

Hd =
{
�h�d� ∈ �	�	

+ ×�	�	 	 -Th= d
}

of demand-feasible flows. The complementarity con-
ditions (8) and (9) clearly are equivalent to h and d =
-Th� satisfying

−[c���h�−-,�d−g���,�
]∈N�	�	

+
�h�×N�	�	

+
�d�� (11)

To further simplify the problem formulation, we
now stipulate further that the function −g��� ·� is
strictly monotone on �	�	, whence −g��� ·� is then also
maximal (Rockafellar and Wets 1998, Example 12.7).
Problem (11) can then be written as[−c���h��g−1���d�

] ∈ NHd
�h�d�� (12)

where g−1��� ·� denotes the single-valued inverse of
the demand function g��� ·�. To see this directly, note
that, together with the feasibility requirement that
-Th = d must hold, systems (8) and (9) describe
the optimality conditions for �h�d� solving the linear
program to minimize c���h�Tyh − g−1���d�Tyd over
y = �yh�yd� ∈ Hd; utilizing the strict monotonicity of
−g��� ·�, this is precisely (12).
In the case where the travel cost of a route is the

sum of the travel costs on the links defining it (i.e.,
the route costs are additive), then the above Wardrop
conditions can be described in terms of link flows.
We then further identify V = 6 in (10a), where 6 ∈
�0�1�	�	×	�	 is the link-route incidence matrix (i.e., the
element 7ar equals 1 if route r utilizes link a, and 0
otherwise), and thus the (polyhedral) set of demand-
feasible link flows

F̂d =
{
�v�d� ∈ �	�	 ×�	�	 	 ∃�h�d� ∈Hd with v =6h

}
�

Then, problem (11) can be equivalently written as[−t���v��g−1���d�
] ∈ NF̂d

�v�d�� (13)
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where t��� ·�� �	�	
+ �→ �	�	

++ is the vector of link travel
cost functions given the parameter �. (The link
and route costs are related by c���h� = 6Tt���v� =
6Tt���6h�, for any feasible pair �h�v�.)
The set of feasible link flows can also be described

by the OD-specific link flows that satisfy the demand
for transportation and flow conservation constraints
for all the nodes of the network; this is the other pop-
ular representation of feasible flows. In system (10),
we then identify W as a block-diagonal matrix with
	�	 blocks Wk, with Wk = E, E ∈ �−1�0�1�	� 	×	�	 being
the node-link incidence matrix of the network. Fur-
ther, d is a (	�	 · 	� 	)-vector, with 	�	 vectors dk each
being a vector of OD-specific demands, stacked on
top of each other. (The elements of dk sum to zero.)
We also identify w as the (	�	 · 	�	)-vector of commod-
ity link flows wak. Hence, (10b)–(10c) correspond to
the commodity-specific flow conservation constraints,
giving rise to the set

Wd =
{
�w�d� ∈ �	�	·	�	

+ ×�	�	·	� 	
+ 	 Ewk = dk� k ∈�

}
�

Finally, V is the block-diagonal (	�	 × 	�	)-matrix
�I 	�	� I 	�	� · · · � I 	�	�, which describes the aggregation of
the commodity link flows wk into v: v = ∑

k∈� wk.
Summarizing, then, system (10) describes the (poly-
hedral) set of demand-feasible link flows

Fd =
{
�v�d� ∈ �	�	 ×�	�	·	� 	

∣∣∣∣∃�w�d� ∈ �	�	·	�	
+ ×�	�	·	� 	

with v = ∑
k∈�

wk and Ewk = dk

}
�

giving the problem

�−t���v��g−1���d�� ∈ NFd
�v�d�� (14)

In the present setting, of course, k is identified with
an OD pair �p� q� ∈ �, and, further, each vector dk

has precisely two nonzeros (so, g−1��� ·� still operates
in �	�	). We may, however, let k denote a less dis-
aggregated flow such as flows from different origins,
different vehicle types, etc. The two representations
that we have chosen here are in that sense at the two
extremes in terms of level of aggregation. We also

note that in more generality, we may consider differ-
ent networks, that is, different matrices Ek, for each
commodity k, or type k of traffic. This will necessar-
ily also lead to a proper modification of the matrix V

above.
Note that the set of link flows in F̂d is included in

that of Fd because the latter contains cyclic flows, but
due to the positivity assumption on t��� ·� no equilib-
rium flow will utilize any cyclic flow, so this alterna-
tive representation is, in that sense, equivalent.
For further reading on these traffic equilibrium

models, consult Patriksson (1994) and Nagurney
(2000).
The connections between the above models and the

perturbed systems (1) and (3) are given as follows.
For the route-link representation, we can show that
(12) corresponds to letting

D =Hd: u=
(
h

d

)
: ����u�=

(
c���h�

−g−1���d�

)

in the disaggregated system (3), while the aggregated
formulation (1) follows from letting

A =
(

6 0	�	×	�	

0	�	×	�	 I 	�	

)
: x =

(
v

d

)
:

f ���x� =
(

t���v�

−g−1���d�

)
= f ���Au�� (15)

As has already been shown, ����u�=ATf ���Au� also
holds.
For the node-link formulation, its disaggregated

formulation corresponds to letting

D = Wd: u=
(
w

d

)
:

����u� =



t��� �I 	�	� I 	�	� · · · � I 	�	�w�

t��� �I 	�	� I 	�	� · · · � I 	�	�w�

���

t��� �I 	�	� I 	�	� · · · � I 	�	�w�

−g−1���d�


�
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while the aggregated formulation (14) follows from
letting

A =
(
I 	�	�I 	�	�···�I 	�	 0	�	×	�	

0	�	×	�	·	�	 I 	�	

)
: x=

(
v

d

)
:

f ���x� =
(

t���v�

−g−1���d�

)
=f ���Au�� (16)

As above, it is also possible here to establish that
����u�=ATf ���Au� holds.
When the travel cost function t��� ·� is strictlymono-

tone on �	�	
+ , the upper boundedness of the demand

function implies the existence of unique demand and
link flow solutions �d�v� (e.g., Patriksson 1994, and
Nagurney 2000). However, it does not follow in gen-
eral that the equilibrium route flow h is unique
because the matrix 6 in general does not have full
rank (that is, many route flows aggregate to the same
equilibrium link flow). Seemingly, this fact might pre-
clude the use of sensitivity analysis results, since
they, in general, rely on some form of local single-
valuedness of the solution mapping � �→ S���. The
main conclusion of this paper is that a sensitivity
analysis may indeed be performed, assuming a local
uniqueness in the link flow space. The main reason for
the concern about the nonuniqueness of route flows
can be attributed to the formulation of the problem
in the route flow space, while the appropriate space
is that of link flows. In fact, the sensitivity analysis
results can be stated, and established to be correct,
without even providing any explicit representation of
these link flows.

4. Sensitivity Analysis of Traffic
Equilibria

4.1. The Critical Cone
The critical cone K=TQ�v

∗�d∗�∩�t��∗�v∗��−g−1��∗�d∗��⊥

(the set Q being either F̂d or Fd) is, roughly speaking,
the set of feasible flow adjustments (circulations)
that, on the aggregate, retain the equilibrium travel
costs and demands, and is therefore an equilib-
rium. Indeed, the problem defined in calculating
DS��∗ 	 �v∗�d∗����′� is a multicommodity flow prob-
lem, which we now turn to establish.

Theorem 7 (Critical Cone Decomposition for
Traffic Equilibria).
(a) Let �v∗�d∗� be a solution to (13) for a given

�∗, and h∗ an arbitrary vector of consistent equilibrium
route flows; that is, v∗ = 6h∗. The set K = TF̂d

�v∗�d∗�∩
�t��∗�v∗��−g−1��∗�d∗��⊥ is given by

A

 �h′�d′�∈�	�	×�	�	

∣∣∣∣∣∣∣∣∣
-Th′ =d′:

h′
pqr free if h

∗
pqr >0

h′
pqr ≥0 if h∗

pqr =0 and cpqr �h
∗�=,pq

h′
pqr =0 if h∗

pqr =0 and cpqr �h
∗�>,pq

�r ∈�pq� �p�q�∈��

�

where A is given in (15).
(b) Let �v∗�d∗� be a solution to (14) for a given �∗, and

w∗ an arbitrary vector of consistent equilibrium commodity
link flows; that is, v∗ =∑

k∈� w∗
k . The set K = TFd

�v∗�d∗�∩
�t��∗�v∗�� −g−1��∗�d∗��⊥ is given by

A

 �w′�d′�∈�	�	×	�	×�	�	·	� 	

∣∣∣∣∣∣∣∣∣
Ew′

k=d′
k

�k∈��
:

w′
ijk free if w∗

ijk >0
w′

ijk≥0 if w∗
ijk=0 and tij �v

∗�=,jk−,ik

w′
ijk=0 if w∗

ijk=0 and tij �v
∗�>,jk−,ik

��i�j�∈�� k∈��

�

where A is given in (16), and where now a link a ∈ � is
identified by its origin node i and terminal node j, and
where ,ik denotes the equilibrium (least) travel cost from
the origin node of commodity k ∈� to the node i ∈ � .

Proof. For the result in (a), we first note that by
Corollary 4(b),

TF̂d
�v∗�d∗� =

 �v′�d′�∈�	�	×�	�	

∣∣∣∣∣∣
v′ =6h′:-Th′ =d′:

h′
pqr free if h

∗
pqr >0

h′
pqr ≥0 if h∗

pqr =0
�r ∈�pq� �p�q�∈��

�
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For any �v′�d′� ∈ TF̂d
�v∗�d∗� it holds that t��∗�v∗�Tv′ =

c��∗�h∗�Th′, so

t��∗�v∗�Tv′ −g−1��∗�d∗�Td′

= ∑
�p�q�∈�

( ∑
r∈�pq

cpqr ��
∗�h∗�h′

pqr −g−1
pq ��

∗�d∗� d′
pq

)

= ∑
�p�q�∈�

(
,pq

( ∑
r∈�pq

h′
pqr −d′

pq

)
+ ∑

r∈�pq

spqrh
′
pqr

)
= ∑

�p�q�∈�

∑
r∈�pq

spqrh
′
pqr �

where we have defined spqr = cpqr ��
∗�h∗�−,pq , r ∈�pq ,

�p� q� ∈ �, to be the slack variables in the Wardrop
conditions (7). (Also, g−1

pq ��
∗�d∗� denotes the compo-

nent �p� q� of the inverse demand function g−1��∗� ·�
evaluated at d∗.) Obviously, spqr ≥ 0 always holds, and
for the last sum to be zero, it is both necessary and
sufficient that h′

pqr = 0 holds for routes where h∗
pqr = 0

and spqr > 0. �

Proof. The proof for (b) is analogous. First, note
that, again by Corollary 4(b),

TFd
�v∗�d∗�

=

�v′�d′� ∈ �	�	 ×�	�	·	� 	

∣∣∣∣∣∣
v′ = ∑

k∈�
w′

k:
Ew′

k = d′
k

�k ∈��
:

w′
ijk free if w

∗
ijk > 0

w′
ijk ≥ 0 if w∗

ijk = 0
��i� j� ∈ �� k ∈��

 �

The Wardrop Conditions (7) take, for the node-link
representation, the following form:

0 ≤ wijk ⊥ tij ���v�+,ik−,jk ≥ 0� �i� j� ∈ �� k ∈��

(17)

or,

0	�	 ≤wk ⊥ t���v�−ET,k ≥ 0	�	� k ∈��

Now,

t��∗�v∗�Tv′ −g−1��∗�d∗�Td′

= ∑
�i�j�∈�

∑
k∈�

(
tij ��

∗�v∗�w′
ijk−g−1

k ��∗�d∗�Td′
k

)

= ∑
�i�j�∈�

∑
k∈�

(
�,jk−,ik+ sijk�w

′
ijk−,Tk d

′
k

)
= ∑

�i�j�∈�

∑
k∈�

sijkw
′
ijk+

∑
k∈C

,k �Ewk−d′
k�

= ∑
�i�j�∈�

∑
k∈�

sijkw
′
ijk�

where, as above, sijk = tij ��
∗�v∗�−,jk+,ik ≥ 0, �i� j� ∈

�, k ∈�, are the slack variables in the Wardrop condi-
tions (17). The above sum is zero if and only if w′

ijk = 0
holds for the links �i� j� ∈ � and commodities k ∈ ��

where w∗
ijk = 0 and sijk > 0. �

The result (a) above was originally established
(although in a different presentation) in Qiu and Mag-
nanti (1989) as a special case of a general result for
polyhedral sets having a special representation. The
proof made here, however, is much more direct and
intuitive.
A closer look at these critical cones reveals that

they define multicommodity flow polyhedra where
the flows are further restricted in sign for those com-
modity flow variables whose value in some equilib-
rium solution is zero. Those variables that happen to
define a shortest route in this solution are restricted to
be nonnegative; whereas those that are more expen-
sive are restricted to be zero.
Next, the cost mapping r defined for the problem

DS��∗ 	 �v∗�d∗����′� in Theorem 1 here becomes

r��′� �v′�d′�� =
(

�vt��
∗�v∗�v′ +��t��

∗�v∗��′

−�dg
−1��∗�d∗�d′ −��g

−1��∗�d∗��′

)
�

(18)

that is, a linearization of the original mapping
�t�−g−1� at ��∗�v∗�d∗� in the direction of ��′�v′�d′�.
This mapping is affine in �v′�d′�, so the problem
DS��∗ 	 �v∗�d∗����′� amounts to solving an affine cost
multicommodity flow problem. We next provide suf-
ficient conditions on the original mapping so that the
solution to this problem provides the sensitivity anal-
ysis sought.

4.2. Sensitivity Analysis
Theorem 8 (Sensitivity Analysis of Traffic Equi-

libria). Assume that condition (5) holds for problem
(13) (or, (14)). Suppose that, for �∗ given, problem (13)
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(or, (14)) has a solution �v∗�d∗�. Suppose further that
� �→ t��� ·� (respectively, � �→ −g−1��� ·�) is differentiable
at ���v∗� (���d∗�), and monotone (respectively, strictly
monotone) on the critical cone K, for every � in a neigh-
borhood of �∗. Finally, assume that

sTv �vt��
∗�v∗�sv − sTd �dg

−1��∗�d∗�sd > 0�

s =
(
sv
sd

)
∈ �K−K�\{0	�	+	�	}

that is, that the Jacobian of t��∗� ·� (and −g−1��∗� ·�) at
��∗�v∗� (��∗�d∗�) is positive definite on the critical sub-
space �K−K�. Then, the solution mapping S to the problem
(13) (and (14)) is single-valued and Lipschitz continuous
on some neighborhood of �∗ and hence semidifferentiable
at �∗ for �v∗�d∗�, while DS��∗ 	 �v∗�d∗�� is single val-
ued everywhere, and hence Lipschitz continuous, positively
homogeneous, and piecewise linear.
If further, in the Wardrop conditions (7) (respectively,

(17)), the slack variables spqr are strictly positive for every
r ∈�pq and �p� q� ∈� with h∗

pqr = 0 (respectively, sijk > 0
for every �i� j� ∈� and k ∈� with w∗

ijk = 0), that is, strict
complementarity holds for some disaggregated solution to
the equilibrium problem, then the solution mapping S is
differentiable at �∗, and DS��∗ 	 �v∗�d∗�� is linear.

Proof. We establish that condition (b) in Theorem 2
is satisfied. That the solution set to (13) and (14) is
convex valued follows from the monotonicity of the
mappings t��� ·� and −g−1��� ·� on the feasible set K of
DS��∗ 	 �v∗�d∗����′�. It is furthermore single valued by
the assumption on the Jacobian of �t��� ·��−g−1��� ·��
being positive definite on the subspace spanned by K.
The results, except the last one, then follow from The-
orem 2. The last result follows from the observation
that under the strict complementarity assumption, K
locally changes linearly with �v∗�d∗�. �

Quite obviously, the first result holds under
a continuous differentiability and strong mono-
tonicity assumption on the mapping �v�d� �→
�t���v��−g−1���d�� on the whole space, but this
assumption is far from necessary. Whether all the
common travel time and demand functions will actu-
ally fulfill the assumptions of this theorem is an inter-
esting subject for further investigation.
We briefly mention two related results from the lit-

erature. In the context of problem (13), Qiu and Mag-
nanti (1989, Theorem 4.1.1) establish that the mapping

S is strongly regular in the sense of Robinson (1980)
(that is, single valued and locally Lipschitz continu-
ous, hence directionally differentiable since F̂d is polyhe-
dral), at a reference parameter value �∗, if, in our set-
ting, (a) in a neighborhood of ��∗�v∗�d∗� (for �v∗�d∗�∈
S��∗�), ���v�d� �→ �t���v��−g−1���d�� is continuous
and further Lipschitz continuous with respect to �

at �v∗�d∗�, and differentiable with respect to �v�d� at
�v∗�d∗�; (b) the condition (18) holds. To reach their
conclusion, they select a (uniquely determined) rep-
resentative equilibrium route flow solution by means
of solving a strictly convex quadratic projection prob-
lem; a process which is unnecessary, as seen above.
Their result is stated under slightly milder assump-
tions, but on the other hand our results are more far-
reaching. In particular, our results immediately imply
the semismoothness of S, which will enable the use
of bundle-type descent approaches in applications to
bilevel optimization (see below). (See Patriksson and
Rockafellar 2002, and Patriksson 2001 for detailed dis-
cussions on this topic, and Mifflin 1977 for a def-
inition of semismoothness.) Outrata (1997, Proposi-
tion 1.2) establishes strong regularity for a wider
class of problems, under conditions which here trans-
late to strong monotonicity of the mapping �v�d� �→
�t���v��−g−1���d�� on F̂d, and a condition like (18)
but for a larger subspace. A similar result to Outrata’s
is also reached independently by Yen (1995, Theo-
rem 4.1), where, however, the parameterized demand
is inelastic.
A few final words are now stated on the use of the

results of this paper in the solution to bilevel prob-
lems in transportation analysis and their relation to
previous analyses in that context. If we consider a
minimization in the parameter values � over some
set P ⊂ �d and for some objective function ?� P ×
�	�	 ×�	�	 �→�∪�+�� of the form ?��∗�v∗�d∗�, where
�v∗�d∗� is a pair of equilibrium flows and demands
given the parameter vector values �∗, then we speak
of a mathematical program with equilibrium constraints
(MPEC) (e.g., Luo et al. 1996, Outrata et al. 1998). For
such problems, having sufficiently strong differentia-
bility properties of the solution mapping S is essential
for its efficient solution. Attempts to define descent
algorithms for the minimization of ? in the context
of transportation analysis have most often been based
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on either ignoring the possible nondifferentiability of
? due to the nondifferentiability of S, or on heuris-
tic attempts to circumvent the underlying problem
of the nonstrict complementarity of the equilibrium
solutions. One such heuristic is given in Friesz et al.
(1990), wherein a route flow is heuristically adjusted
from an equilibrium to reach a strictly complementary
flow. Another strategy stems from Tobin and Friesz
(1988) (see also, for example, Yang and Bell 1997 and
Cho et al. 2000), and is based on the calculation of
a “derivative” of S through sensitivity information,
also involving the choice of a particular representative
commodity flow solution consistent with �v∗�d∗�. The
formulas include quite involved matrix calculations
which, moreover, depend on relations between the
number of OD pairs and links to be satisfied in order
to even be applicable. Moreover, even if the formula
is applicable, it may not yield a value which can be
interpreted as a gradient (cf. the example in Patriks-
son 2001). In principle, the gradient, if it exists, can
instead be obtained from d calculations of the direc-
tional derivative along coordinate directions; more
efficient means of calculation are interesting to study
further. Needless to say, such a strategy need not yield
a true derivative unless strict complementarity holds,
and further, as we have pointed out already, the sensi-
tivity analysis of traffic equilibrium problems cannot
be influenced by making any such particular choice.
We mention finally that a descent algorithm which is
valid even for nonmonotone travel cost mappings is
found in Patriksson and Rockafellar (2002).

4.3. An Illustrative Example
An example problem for the fixed demand version of
the problem (13) is found in Qiu and Magnanti (1989).
In the following, we consider the elastic demand
problem (14).
Consider the small-scale traffic network depicted in

Figure 1.
For this network, we have the data in Table 1.
We consider the case where �∗ = ��∗

1��
∗
2�
T = �0�0�T,

and �′ = �2�1�T, which we can interpret as a case
where tolls are to be introduced on the Links �1�2�
and �2�4�, the first toll being double the size of the

21

5

4

3

Figure 1 A Traffic Network

second. At �∗, then, we have the following solution to
the elastic demand traffic equilibrium problem:

v∗ =



5
2
2
5
3
2
2


� t��∗�v∗�=



5
10
15
5
15
20
10


�

d∗ =
(
4
5

)
� ,∗ =

(
20
25

)
�

We remark that the commodity link flow solution is
not unique; two possible combinations of commodity
flows are:

w̃∗
1 =



2
2
2
0
0
0
2


� w̃∗

2 =



3
0
0
5
3
2
0


� and

ŵ∗
1 =



3
1
2
1
0
0
2


� ŵ∗

2 =



2
1
0
4
3
2
0


�
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Table 1 Network Data

Link tij ��� vij � OD pair gpq��pq�

1: �1�2� 5
2 + 5

2 v12+�1 1: (1,4) 44−2�14

2: �1�5� 2+4v15 2: (3,5) 55−2�35

3: �2�4� 11+2v24+�2
4: �2�5� 5

2 + 1
2 v25

5: �3�1� 3+4v31
6: �3�2� 4+8v32
7: �5�4� 2+4v54

We note in particular that in the commodity flow solu-
tion w̃∗, Link �2�5� has no flow in the first commodity
and Link �1�5� has no flow in the second commod-
ity. However, these links lie on a shortest route from
Node 1 to Node 4, and from Node 3 to Node 5, respec-
tively. So, w̃∗ is an example of a nonstrictly comple-
mentary Wardrop solution. The solution ŵ∗, however,
is strictly complementary.
The travel cost function t��∗� ·� is affine and sepa-

rable, and in particular strongly monotone. The same
conclusion can be drawn for −g��∗� ·�, whence the
conditions of the first part of Theorem 8 are ful-
filled. We also note that because ŵ∗ is strictly comple-
mentary, the equilibrium link flow and demand solu-
tion are differentiable at �∗. (This is true for almost
all values of �∗. Unfortunately, however, it cannot be
expected to be true at optimal solutions to an MPEC
problem involving an optimization in �.) Whether,
for a given �∗, there exists a strictly complementary

21

5

4

3

21

5

4

3

Figure 2 Feasible Circulation Networks for the Two Commodities

solution can be investigated through the solution of
an entropy problem, whereby the aggregated solu-
tion is distributed over the commodities by means of
maximizing the entropy function. If a feasible com-
modity solution exists, wherein all links lying on a
shortest route have a positive flow, then such a flow
will be generated. (See Larsson et al. 2001, for fur-
ther details on this entropy problem in the context of
problem (13).)
When setting up the problem DS��∗ 	 �v∗�d∗����′�

we note again that whether we choose w̃∗ or ŵ∗,
or any other disaggregated flow consistent with v∗,
makes no difference whatsoever to the result in terms
of �v′�d′�. (Of course, the perturbations will in gen-
eral not be unique in the commodity space, however.)
We here choose to work with ŵ∗. Given this repre-
sentation of the equilibrium link flow, we obtain the
networks (in Figure 2) representing the critical cone
K given in Theorem 7(b).
For these networks, we have the differentiated link

costs and demand functions given in Table 2. (Note
that ��g−1� = ��g�−1.) Due to the separability of the
costs and demands, the affine variational problem is
equivalent to an optimization problem over K, where
the objective is the minimization of

2v′
12+
5
4
�v′
12�
2+2�v′

15�
2+v′

24+ �v′
24�
2+ 1
4
�v′
25�
2

+2�v′
31�
2+4�v′

32�
2+2�v′

54�
2+ 1
4
�d′
14�
2+ 1
4
�d′
35�
2�
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Table 2 Network Data

Link t′ij �v
′
ij � OD pair g′

pq ��
′
pq �

1: �1�2� 2+ 5
2 v

′
12 1: (1,4) −2� ′

14

2: �1�5� 4v ′
15 2: (3,5) −2� ′

35

3: �2�4� 1+2v ′
24

4: �2�5� 1
2 v

′
25

5: �3�1� 4v ′
31

6: �3�2� 8v ′
32

7: �5�4� 4v ′
54

The solution to this problem is as follows:

v′ =



−0�6625
0�0700

−0�5304
−0�1271
−0�0628
0�0050
0�0007


� t′�v′�=



0�3438
0�2800

−0�0607
−0�0636
−0�2513
0�0400
0�0028


�

d′ =
(−0�5297
−0�0578

)
� , ′ =

(
0�2648
0�0289

)
�

and

w′
1 =



−0�4622
−0�0674
−0�5304
0�0681
0
0
0�0007


� w′

2 =



−0�2003
0�1374
0

−0�1953
−0�0628
0�0050
0


is one representative commodity flow adjustment.
The result is the expected: d′ is negative in both com-
modities, meaning that the demand is decreasing, and
we see from v′ that flow is not only reduced as a con-
sequence, but also redistributed from the two tolled
Links �1�2� and �2�4�—that is, Links 1 and 3—to the
other links.

5. Final Remarks
The results obtained in this paper have immediate
application to solution algorithms for OD estimation
or adjustment problems, where sensitivity analysis is
used to direct the update of a prior OD matrix. Algo-
rithms previously proposed for this problem (e.g.,

Spiess 1990, Drissi-Kaïtouni and Lundgren 1992, Yang
1995, and Codina and Barceló 2000) can be viewed as
heuristic algorithms which use simplifications of the
correct formula for the directional derivative of the
demand matrix. In a forthcoming paper (Patriksson
2001), we provide further results on the sensitivity of
traffic equilibria, including the existence and calcula-
tion of gradients or, in their absence, of subgradients of
the equilibrium solution, and relationships between
the sensitivity analyses of deterministic and stochas-
tic user equilibria. These results are useful in devis-
ing bundle algorithms for MPEC problems arising in
transportation science.
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