Errata and comments list for "The Traffic Assignment Problem—Models and Methods"

Page	Row	Reads	Should read
13	4	This	Their
21	18	then	than
23	6	can be established	can not be established
23	22	more expensive one	most expensive one
24	-11	$v(\mathbf{f}^k, \mathbf{f}^{k-1}, \dots, \mathbf{f}^1)$	$v(\mathbf{f}^k, \mathbf{f}^{k-1}, \dots, \mathbf{f}^1, \mathbf{y}^{k-1})$
25	4	$\frac{3}{4}\mathbf{f}^k + \frac{1}{4}\mathbf{y}^k$	$\frac{3}{4}\mathbf{f}^k + \frac{1}{4}\mathbf{y}^{k-1}$
30	-6	α	$\dot{\beta}$
39	2	$orall k \in \mathcal{C}$	$\forall i \in \mathcal{N}, \forall k \in \mathcal{C}$
39	17	the link-node formulation	the optimality conditions of
71	12	Jorgenson	Jorgensen
95	-6	$g_{pq}: \Re_+ \mapsto \Re_+$	$g_{pq}: \Re_+ \mapsto \Re_{++}$
103	3	$k=0,1,\ldots$	$k=1,2,\ldots$
103	17	the all-or-nothing solution	modified all-or-nothing
105	7	problem as	problem are generated as
107	-13	${f(\mathbf{x}^k)} \to f(\overline{\mathbf{x}})$	$\{T(\mathbf{x}^k)\} \to T(\overline{\mathbf{x}})$
117	-7	is terms of	in terms of
124	-2	\mathbf{f}_{Ni}	\mathbf{f}_{Bi}
163	23	$\Phi^k(\mathbf{x}) = \mathbf{B}_k \mathbf{x}$	$\Phi^k(\mathbf{x}) = (1/\gamma_k) \mathbf{B}_k \mathbf{x}$
170	-3	and Lipschitz continuous	

Michael Patriksson 9 September, 2004

Page	Topic	Comment
24	Rows 9–10	meaning convergence as $K \to \infty$
89	Th. 3.19.a	Also co-coercivity of $-\mathbf{g}$ or \mathbf{t} is sufficient for uniqueness (simple proof by contradiction): Remark 3.6 still valid
162	Rows 19–20	Here, $\ \cdot\ $ obviously refers to the Euclidean vector norm
203	Ref. [589]	Also in: Variational Inequalities and Network Equilibrium Problems, Proceedings of the International School of Mathematics "G. Stampacchia" 19th Course on Variational Inequalities and Network Equilibrium Problems, held June 19–25, 1994, in Erice, Italy, F. Giannessi and A. Maugeri (eds.), Plenum Press, New York, NY, 1995, pp. 169–178.
206	Ref. [677]	Mathematical Programming, 65 (1994), pp. 331–345
209	Ref. [748]	Operations Research Letters, 16 (1994), pp. 265–269