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Abstract

We consider the introduction of side constraints for re®ning a descriptive or prescriptive tra�c equili-
brium assignment model, and analyze a general such a model. Side constraints can be introduced for several
diverse reasons; we consider three basic ones. First, they can be used to describe the e�ects of a tra�c
control policy. Second, they can be used to improve an existing tra�c equilibrium model for a given
application by introducing, through them, further information about the tra�c ¯ow situation at hand. As
such, these two strategies complement the re®nement strategy based on the use of non-separable, and
typically asymmetric, travel cost functions. Third, they can be used to describe ¯ow restrictions that a
central authority wishes to impose upon the users of the network. We study a general convexly side con-
strained tra�c equilibrium assignment model, and establish several results pertaining to the above described
areas of application. First, for the case of prescriptive side constraints that are associated with queueing
e�ects, for example those describing signal controls, we establish a characterization of the solutions to the
model through a Wardrop user equilibrium principle in terms of generalized travel costs and an equili-
brium queueing delay result; in tra�c networks with queueing the solutions may therefore be characterized
as Wardrop equilibria in terms of well-de®ned and natural travel costs. Second, we show that the side
constrained problem is equivalent to an equilibrium model with travel cost functions properly adjusted to
take into account the information introduced through the side constraints. Third, we show that the
introduction of side constraints can be used as a means to derive the link tolls that should be levied in
order to achieve a set of tra�c management goals. The introduction of side constraints makes the problem
computationally more demanding, but this drawback can to some extent be overcome through the use of
dualization approaches, which we also brie¯y discuss. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The mathematical tra�c planning tools known as tra�c assignment models are used to
describe, predict or prescribe a tra�c ¯ow pattern in a road network where there is some (®xed or
elastic) travel demand and, usually, where because of tra�c congestion the link travel times
increase when the load of tra�c becomes heavier. Depending of the characteristics of the real-
world tra�c situation modelled and the purpose of the model, they may also include a variety of
other model components. [See e.g. She� (1985), Nagurney (1993) and Patriksson (1994) for
overviews of tra�c assignment models.]
The tra�c ¯ow pattern is presupposed to comply with a performance criterion, which, typically,

involves a measure of the disutility, for example, cost, of the total tra�c ¯ow in the urban area.
(The cost of a travel is highly correlated to its duration in time, and we therefore use these two
terms synonymously.) The performance criteria most commonly employed are the two optimality
principles of Wardrop (1952). The ®rst one is based on the assumption of rational traveller
behaviour in the respect that each user of the congested tra�c network seeks to minimize his/her
own travel time, and it is therefore also known as the user optimum, or equilibrium, principle.
Wardrop's second performance criterion is the minimization of the average travel time (or,
equivalently, the total travel time), and it is therefore referred to as the system optimum principle.

1.1. Preliminaries

Let G � N ;A� � denote a strongly connected transportation network, with N and A being the
set of nodes and directed links (arcs), respectively. For certain ordered pairs of nodes, p; q� � 2 C,
where node p is an origin, node q is a destination, and C is a subset of N �N , there are ®xed
positive travel demands dpq which give rise to a link tra�c ¯ow pattern when distributed through
the network. Further, for each link a 2 A there is a positive and strictly increasing travel cost
function ta : R

jAj
� 7!R��.

The user equilibrium principle of Wardrop states that for each origin±destination (OD) pair
p; q� � 2 C, the routes utilized have equal and minimal travel costs, so that no traveller can
decrease his/her travel cost by shifting to another route in the OD pair. Denoting by Rpq the set
of (simple) routes in OD pair p; q� �, by hpqr the ¯ow on route r 2 Rpq, by h the vector of route ¯ows,
and by cpqr=cpqr�h� the travel cost on a route, an equilibrium ¯ow is de®ned by the conditions

hpqr > 0) cpqr � �pq; 8r 2 Rpq; �1a�

hpqr � 0) cpqr 5 �pq; 8r 2 Rpq; �1b�

where �pq is the equilibrium (that is, least) travel cost in OD pair (p; q). A user equilibrium state
can be interpreted as a Nash equilibrium in a non-cooperative game among the OD pairs; in this
game, each OD pair observes the tra�c ¯ows that result from the decisions made by the other
OD pairs, and then distributes its travel demand among the OD routes in such a way that the
routes utilized in the pair are among the least costly ones, at the costs obtained when the OD
travel demand has been distributed.
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The notion of an equilibrium should be thought of as a steady-state evolving after a transient
(disequilibrium) phase in which the travellers successively adjust their route-choices, in order to
minimize travel costs under the prevailing tra�c conditions, until a situation with stable route
travel costs and route ¯ows has been reached. [See e.g. Friesz et al. (1994) on the issue of an
adjustment process leading to a Wardrop equilibrium.]
In cases where the travel cost functions are separable, that is, where the travel costs can be

expressed as ta f� � � ta fa� �, the Wardrop conditions (1) are conform with the ®rst-order optimality
conditions for the convex network optimization problem (e.g. Beckmann et al., 1956; Dafermos,
1972)

[TAP]
minimize T f� � :�

X
a2A

�fa
0

ta s� �ds; �2a�

subject toX
r2Rpq

hpqr � dpq; 8 p; q� � 2 C; �2b�

hpqr50; 8r 2 Rpq; 8 p; q� � 2 C; �2c�

X
p;q� �2C

X
r2Rpq

�pqrahpqr � fa; 8a 2 A; �2d�

where

�pqra :�
1; if route r 2 Rpq uses link a;

8a 2 A; 8r 2 Rpq; 8 p; q� � 2 C;
0; otherwise;

8<:
is the link-route incidence matrix, and fa denotes the total ¯ow on link a. Below, we will also use
the notations H :� h 2 RjRj j h

n
satis®es (2b)±(2c)} and F :� f 2 RjAj j f

n
satis®es (2b)±(2d)}. The

reader should note that the Wardrop equilibrium principle is intimately associated with the
inherent Cartesian product structure of the feasible set of [TAP], that is, the independence of the
¯ows in the di�erent OD pairs, a fact that is exposed if the de®nitional constraints (2d) are used
to eliminate the link ¯ow variables from the problem.
The equilibrium assignment model [TAP] is well-known and frequently applied in transporta-

tion analysis; its popularity is to a large extent explained by its simplicity and nice interpretations,
which makes it easy to access for practitioners. Several methods have been developed for its
e�ective and e�cient solution. [See e.g. Patriksson (1994) for a thorough review of solution
methods.] Worth noting is that all e�cient algorithms for [TAP] exploit its Cartesian product
structure (e.g. Larsson and Patriksson, 1992).
The validity of the model [TAP] (i.e. its ability to describe real-world tra�c ¯ows accurately

enough with respect to the model's purpose) rests on the following presumptions. First, since the
Wardrop conditions postulate a steady-state situation, also the model [TAP] is valid for this
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situation only. Second, it requires the knowledge about su�ciently accurate estimates of the data
of the model's components (e.g. functional form and parameters of the link travel cost functions),
which, because of the steady-state assumption, must also be presumed to be stable.
Any model of a real-world tra�c equilibrium problem is, of course, approximate, since the data

used in the model are estimated quantities. Further, it is normally the average values of naturally
varying parameters that are estimated, and, furthermore, the values of these parameters may
change in an unpredictable manner because of unforeseen changes in the tra�c system described
by the model (e.g. accidents, the weather conditions, or the proportion of di�erent types of vehicles
in the tra�c ¯ow). Hence, both the knowledge about the data of the model and their stability may
be questionable. To ensure the validity of a model it is therefore natural to restrict its use to some
tra�c situations only, or to let some of its data depend of the situation under consideration. (An
example of this is the introduction of time-slices to capture variations in the real-world tra�c
system, especially the variations in travel demands and travel time characteristics.)

1.2. Motivation

The invalidity of a tra�c equilibrium model of the form [TAP] may also be due to its structural
limitations, that is, its inherent simplicity which makes it inapplicable to more complex tra�c
problems (e.g. Sender and Netter, 1970); examples of such limitations are that the travel demand
is presumed to be independent of the travel times and that there is no discrimination between
di�erent types of vehicles.
An illustrative example of a de®ciency of the model and its possible consequences is provided

by Hearn (1980), who comments on its property of allowing every road to carry arbitrarily large
volumes of tra�c. He states that this property causes that ``the predicted ¯ow on some links will
be far lower or far greater than the tra�c engineer knows they should be if all assumptions of the
model are correct''. Further, as a result of this, ``the model predictions are ignored, or, more
often, the user will perturb the components of the model (trip table, volume delay formulas, etc.)
in an attempt to bring the model output more in line with the anticipated results''.
In order to avoid such heuristic tampering with components of the model available, tra�c

planners must be supplied with analysis tools whose underlying tra�c models are su�ciently gen-
eral, reliable and accurate; much research has therefore been devoted to the task of re®ning the
basic tra�c equilibrium assignment model [TAP] in various respects. An overwhelming portion of
this research has dealt with extensions of the equilibrium model's travel cost functions.
Flow relationships such as interactions between the ¯ows on intersecting links or between

vehicles of di�erent types are captured by introducing non-separable, and typically also asym-
metric, travel cost functions [e.g. Akcelik (1988) and Toint and Wynter (1996), respectively].
However, due to the non-integrability of such functions, the problem of ®nding a solution to the
Wardrop conditions can then not be formulated as an optimization model of the form [TAP].
Instead, these conditions are in this more general case stated as the ®nite-dimensional variational
inequality problem of ®nding an f� 2 F such that

[VIP]

c f �� �T fÿ f �� �50; 8f 2 F;
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where c : R
jAj
� 7!R

jAj
�� is the travel cost mapping. Of course, since the variational inequality pro-

blem is merely a restatement of Wardrop's user equilibrium principle, the basic assignment model
[TAP] and this class of more general assignment models both comply with the same fundamental
behavioural principle. Finite-dimensional variational inequality models arise also in several other
areas of operations research and applied mathematics, and have been extensively studied, mainly
from a theoretical and algorithmical point of view [see Harker and Pang (1990) for a recent sur-
vey of general theory, algorithms, and areas of applications of this class of mathematical models,
and, for example, Nagurney (1993) and Patriksson (1994) for overviews of this ®eld in the context
of tra�c assignment].
While improving the basic model's ability to accurately describe, reproduce, and predict a real-

world tra�c situation, the utilization of non-separable, and possibly asymmetric, travel time
functions is, however, not a natural and adequate means for handling supplementary tra�c ¯ow
restrictions such as for example those imposed by a tra�c control policy. [See Yang and Yagar
(1994) for an example of a tra�c control policy which gives rise to link ¯ow capacity constraints.
Ferrari (1995) presents an example in which a capacity constraint incorporates ¯ow from two
con¯icting tra�c streams through a junction.]
The naturalÐbut so far little studiedÐapproach for describing and capturing such tra�c ¯ow

restrictions is to introduce side constraints. Under the presumption that the tra�c ¯ow restriction
to be modelled have well-de®ned physical meanings, the resulting side constraints will possess
immediate interpretations, and it may thus be relatively easy for the tra�c engineer to identify a
suitable set of side constraints (that is, their functional forms and the proper values of their
parameters), as compared to the task of making proper estimates of the values of the parameters
in travel cost functions. [For example, in the situation described by Hearn (1980), a proper
re®nement of an assignment model may simply be the introduction of the link capacity con-
straints corresponding to the engineer's anticipation of reasonable levels of tra�c ¯ow.]
The introduction of asymmetric travel cost functions and side constraints constitutes two

principally di�erent strategies for re®ning or extending the basic tra�c equilibrium model, and
they can be used separately or in conjunction.

1.3. Background

Network optimization models with side constraints arise naturally and frequently in many
areas of applications, such as, for example, transportation and distribution management, task
assignment and scheduling, and project planning. Further, non-network optimization models
may occasionally be reformulated into side constrained network models (e.g. through the intro-
duction of auxiliary variables) or be identi®ed as being side constrained network models, possibly
also with extra, non-network, variables (in this context, one sometimes use the term embedded
networks). Furthermore, many optimization models can be regarded to be network models to
which a set of complicating side constraints has been added (e.g. the travelling salesman pro-
blem). In general, side constraints in network models describe limitations on the availability of
scarce resources (e.g. transportation or production capacities, storage limitations, investment
capital available, etc.) which are shared by several activities (link ¯ows), or restrictions of a logi-
cal or technological nature (e.g. consistency between successive time periods, or conversions
between di�erent types of ¯ow commodities in a production process). Selected references on side
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constrained network models are Weigel and Cremeans (1972), Shepardson and Marsten (1980),
and Choi et al. (1988); see also Section 16.5 of Ahuja et al. (1993).
Worth noting is that side constraints in network models are sometimes hard, that is they need

to be ful®lled exactly (e.g. de®nitional and technological constraints), and they are sometimes
soft, that is they may in practice be slightly violated (e.g. some types of resource constraints); the
distinction between hard and soft side constraints is relevant also in our application.
Although the use of side constraints seems to be a quite natural and practical means for re®n-

ing a tra�c assignment model, this approach has received very little attention. A main reason is
that, as a result of the addition of the side constraints, the Cartesian product structure of
the feasible set of the basic model is lost, thus obtaining a computationally more demanding
model. Further, the solutions to the resulting models can no longer be given characterizations as
Wardrop equilibria in the classical sense.
However, the special case of link capacity side constrained tra�c assignment models has been

studied rather thoroughly. Link capacities have been introduced as a means for modelling con-
gestion e�ects [see Charnes and Cooper, 1961, and Jorgensen, 1963, for early examples of this]
and then represent the so-called saturation link ¯ows. When a link is saturated, congestion e�ects
result in queueing and any excess ¯ow will accumulate in the queue; in an equilibrium state, the
saturated links may therefore carry stationary queues (e.g. Smith, 1987). Link capacities also arise
naturally when links are signal-controlled (e.g. Smith, 1987; Yang and Yagar, 1994).
For the link capacitated model, it is known that solutions can be characterized as Wardrop

equilibria in terms of well-de®ned generalized route (or, link) travel costs (Jorgensen, 1963; Hearn,
1980; Inouye, 1987); a similar characterization has recently been made for the route capacitated
model (see Maugeri, 1994). Further, the Lagrange multipliers for the capacity constraints can be
given interesting interpretations. First, they are the link tolls that the travellers are willing to pay
for being allowed to use the links (Jorgensen, 1963), and, second, they may be interpreted as the
delays in steady-state link queues (Payne and Thompson, 1975, and Miller et al., 1975); the link
queueing interpretation also provides a queue equilibrium characterization of solutions to the
model (Payne and Thompson, 1975; Miller et al., 1975). In Larsson and Patriksson (1995), we
review these theoretical results for the capacitated model and show that it can be e�ciently dealt
with computationally. We will in this work generalize the theoretical ®ndings for the capacitated
model to the general side constrained model.

1.4. Other uses of side constraints

There may of course be other reasons for considering the use of side constraints in assignment
models, besides the one discussed above, and we here give three other examples. First, side con-
straints may be used as a practical means for improving the quality of an available (but maybe
not well calibrated) assignment model by directly incorporating into the model additional infor-
mation about the actual real-world tra�c situation. The side constraints may then for example
describe the requirement that observed ¯ows on some links or observed travel times in some ori-
gin±destination pairs should be reproduced (at least approximately) in the calculated solution.
Second, side constraints arise quite naturally in time-sliced tra�c assignment as a means to cap-
ture dynamic e�ects, that is, to describe the coupling between the assignment problems in suc-
cessive time-slices. (Whether these constraints are to be considered as side constraints depends on
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the modelling and solution strategies employed; one may describe such a problem such that
the constraints correspond to node balancing constraints in the de®nition of an expanded,
multi-copy, network, whence they would not be considered as side constraints, or they may be
considered as coupling side constraints in a system which is otherwise decoupled over the time
periods. This freedom-of-choice in viewing a set of side constraints may of course also be present
in other applications.) Third, as shall be shown, side constraints may be used for calculating
proper link tolls to be imposed on the travellers in order to limit some volumes of tra�c to levels
that are acceptable. In this case, a side constraint may for example model the maximal volume of
tra�c which can be allowed to enter the central area of a city; the solution of the side constrained
model will then provide the toll which need to be introduced in order to reach this goal without
imposing any centralized tra�c control.
The examples of di�erent types of side constraints discussed so far show that they may di�er

signi®cantly with respect to their purposes and properties. However, we distinguish two princi-
pally di�erent types of side constraints in tra�c assignment models: prescriptive (hard) and
descriptive (soft). [Cf. the distinction between physical and environmental capacity constraints
made by Ferrari (1995).]
The prescriptive side constraints, which are imposed upon the users of the tra�c system and

typically arise from tra�c management and control policies (e.g. speed limit regulations and
tra�c signals with ®xed cycle times), are known exactly and can (or, may) never be violated. A
simple special case of prescriptive constraints are link capacities which are used to model satura-
tion ¯ows in a queueing network. Among the prescriptive side constraints we also include those
constructed with the purpose of calculating tolls to be imposed on the travellers in order to reach
some tra�c management goal (cf. the discussion above).
Traditionally, side constraints are used in decision models, and are as such prescriptive (cf. the

discussion made in Section 1.3). In contrast, transportation planning models, such as those of
tra�c equilibrium, are founded on behavioural principles. The validity of using prescriptive side
constraints in tra�c models therefore rests on the assumption that their e�ects are transferable to
the perception of travel costs among the trip-makers, for example as queueing delays or link tolls.
As shall be shown, prescriptive constraints may be binding at a steady-state ¯ow and cause sta-
tionary link queues to appear (cf. Section 3).
Descriptive side constraints may be introduced as a means to re®ne the model by including

additional (maybe approximate) tra�c ¯ow restrictions into the model (e.g. joint capacities in
roundabouts), as a (rough) means for modelling congestion e�ects, or in order to incorporate into
the model some a priori knowledge of the equilibrium tra�c ¯ow (e.g. observed ¯ows on some
links). An interesting usage of descriptive side constraints is in the derivation of an adjusted,
tentative travel cost function which more correctly re¯ects the travel cost perception and/or
provides a more reasonable output from an equilibrium model [cf. the discussion made by Hearn
(1980); see Theorem 2.2. Clearly, because of the nature of the descriptive constraints they do
not need to become satis®ed exactly, and this fact may also be exploited in solution procedures
(cf. Section 5).
As in all applications of mathematical modelling of real-life situations, it is necessary to bear in

mind that some caution is of course needed also when side constraints are utilized. For example,
side constraints constructed for some certain purpose and for some given conditions in a tra�c
system may very well be invalid if the prevailing presumptions, such as the tra�c conditions (e.g.

T. Larsson, M. Patriksson / Transportation Research Part B 33 (1999) 233±264 239



the proportions of di�erent classes of vehicles) change; however, this is also the case for other
model components (e.g. the travel cost functions).

1.5. Scope

Our main goal is to make a thorough theoretical analysis of the side constrained model, in
order to reach insight into the properties of this modelling methodology and provide a solid basis
for its exploitation, rather than to contribute to the practical aspects of the use of side constraints
in tra�c models (even though we brie¯y discuss some di�erent usages). We focus on equilibrium
characterizations of solutions to side constrained models, and on the relationship between the
introduction of side constraints and changes in the travel cost functions. Further, we suggest a
very natural solution strategy for side constrained models and discuss various interpretations of
the theory developed and the solution strategy suggested.
We consider a general convexly side constrained extension of the basic equilibrium assignment

model [TAP] and investigate its optimality conditions, which may be interpreted as a general-
ization of Wardrop's equilibrium principle (1) in the sense that an equilibrium holds in terms of
generalized travel costs. The queue equilibrium result of Miller et al. (1975) for link capacitated
problems is extended to the case of general convex side constraints, and we thereby obtain a
characterization of solutions to the side constrained tra�c assignment problem as Wardrop
equilibria in terms of travel costs and link queueing delays, that is, in terms of the natural costs to
be minimized by the individual travellers in a network with queueing; this result asserts that
solutions to side constrained tra�c equilibrium assignment models comply with the basic
assumption of rational traveller behaviour. It is also shown that if the values of the Lagrange
multipliers for the side constraints are at hand, then one may alternatively and equivalently solve
an ordinary tra�c equilibrium assignment problem with well-de®ned adjusted travel cost func-
tions. Any convergent algorithm for ®nding these multiplier values may be viewed as a systematic
way of calibrating the proper travel cost functions, as opposed to the heuristic tampering descri-
bed in the example of Hearn (1980).
All the results presented hold also when the travel cost functions are non-separable (under a

strict monotonicity assumption) and, further, most of them can be extended to the model [VIP]
subject to side constraints [some of those results are given in Larsson and Patriksson (1994)]. In
order to monitor the fundamental results in a plain context, we have chosen to here study the side
constrained extension of the basic model [TAP]. We brie¯y mention more complex models that
have natural side constrained extensions in Section 6.

2. A side constrained assignment model

For the sake of simplicity of the presentation, we presume that the side constraints involve
the link ¯ows only. This presumption is also quite natural since it is usually only the link
¯ows that can be observed and, for example, a�ected through control actions. Further, only
inequality side constraints are considered. However, neither of these two restrictions cause any
serious loss of generality, and all the results that are derived can easily be generalized to the cases
of a�ne equality side constraints and side constraints that involve also commodity link or route
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¯ows, however only under additional assumptions on the tra�c model (cf. the discussion made
in Section 6).
We thus suppose that the supplementary tra�c ¯ow restrictions introduced in order to extend

or improve the equilibrium assignment model [TAP] are described by the side constraints

gk f� �40; 8k 2 K;
where the functions gk : R

jAj
� 7!R; k 2 K, are convex and continuously di�erentiable. The index set

K may include, for example, subsets of the indices of the sets of links, nodes, or OD pairs. The
vector with components gk �� �, k 2 K, is denoted g �� �.
The side constrained tra�c equilibrium problem is then given by

[TAP-SC]

minimize T f� � :�
X
a2A

�fa
0

ta�s�ds; �3a�

subject toX
r2Rpq

hpqr � dpq; 8 p; q� � 2 C; �3b�

hpqr50; 8r 2 Rpq; 8 p; q� � 2 C; �3c�

X
p;q� �2C

X
r2Rpq

�pqrahpqr � fa; 8a 2 A; �3d�

gk f� �40; 8k 2 K: �3e�
We presume that the feasible set of [TAP-SC] is non-empty. In case some function gk is non-

linear, we also presume that a constraint quali®cation (e.g. Bazaraa et al., 1993, Chapter 5) holds.
The convexity of the problem then ensures that the optimal solutions are characterized by the
®rst-order optimality conditions for [TAP-SC]; the optimal link ¯ow solution and the set of
optimal route ¯ow solutions is denoted f � and H �, respectively. (The link ¯ow solution is
uniquely determined, even though there are, in general, alternative optimal route ¯ow solutions.)
The Lagrange multipliers associated with the constraints (3b) and (3e), respectively, are denoted
by � 2 RjCj and � 2 RjKj.

2.1. Generalized Wardrop equilibrium

In our analysis of [TAP-SC], we begin by showing that its solutions are Wardrop equilibrium
¯ows in terms of well-de®ned generalized route travel costs.

De®nition 2.1 (Generalized route travel cost). Let (h�, f�) be a solution to the problem [TAP-SC]
and let �� be a vector of Lagrange multipliers for the side constraints (3e). Then, the generalized
route travel costs are de®ned as
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�cpqr � cpqr h
�� � �

X
k2K

��k
X
a2A

�pqra
@gk f �� �
@fa

 !
; 8r 2 Rpq; 8 p; q� � 2 C: �4�

We next state our ®rst main result.

Theorem 2.1 (Solutions to [TAP-SC] are generalized Wardrop equilibria). Suppose that (h*, f *)
solves the problem [TAP-SC] and that the vectors �� and �� are Lagrange multipliers for the con-
straints (3b) and (3e), respectively. Let generalized route travel costs be given by the expression
(4). Then,

hpqr� > 0) cpqr � ��pq; 8r 2 Rpq; �5a�
hpqr� > 0) cpqr5��pq; 8r 2 Rpq; �5b�

holds for all OD pairs p; q� � 2 C.

Proof. Since a constraint quali®cation is assumed to hold for [TAP-SC], the ®rst-order neces-
sary optimality conditions

hpqr cpqr ÿ �pq
ÿ � � 0; 8r 2 Rpq; 8 p; q� � 2 C; �6a�

cpqr ÿ �pq50; 8r 2 Rpq; 8 p; q� � 2 C; �6b�
X
r2Rpq

hpqr � dpq; 8 p; q� � 2 C; �6c�

hpqr50; 8r 2 Rpq; 8 p; q� � 2 C; �6d�
X
p;q� �2C

X
r2Rpq

�pqrahpqr � fa; 8a 2 A; �6e�

�kgk f� � � 0; 8k 2 K; �6f�

gk f� �40; 8k 2 K; �6g�

�k50; 8k 2 K; �6h�
are satis®ed by the solution (h�, f �) and the multipliers �� and ��. Then, for any OD pair
p; q� � 2 C, the condition (6b), together with (6a) and (6c), implies that the multiplier value ��pq is
the minimal generalized route travel cost �cpqr, and, further, condition (6a) implies that these costs
are equal for all routes utilized in the OD pair. Hence, the optimality conditions (6a) and (6b)
imply the generalized Wardrop conditions (5), and the theorem is proved.&

The converse conclusion is invalid since the complementarity conditions for the side constraints
are not necessarily satis®ed whenever the Wardrop-type conditions of the theorem hold; however,
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a partial converse (i.e. the conclusion that the converse result is true under an additional
hypothesis) will be established in the next section.
The interpretation of the solution to (5) as a Wardrop equilibrium rests, as noted previously,

on the presumption that the e�ects of the side constraints may be transferred to the trip-makers'
perception of the travel costs, for example as delays in queues.
The Lagrange multiplier values �� and �� are the shadow prices for the travel demand

constraints (3b) and the side constraints (3e), respectively, that is, the sensitivities of the objective
of [TAP-SC] with respect to the right-hand sides of these constraints. [As stated in Theorem 2.1,
the multiplier value ��pq provides the minimal generalized equilibrium route travel cost in OD
pair p; q� � 2 C; this relation is the reason for using the same notation as in the Wardrop condi-
tions (1).] In some applications, for example, in tra�c management through link tolls, it may
actually be the multiplier values �� that are primarily sought for, rather than the equilibrium link
¯ows (see end of section). In Section 3 we consider a queueing network and establish a close
relationship between the values of the Lagrange multipliers � and the link queueing delays.
Expressing the route travel costs as

cpqr :�
X
a2A

�pqrata fa� �; 8r 2 Rpq; 8 p; q� � 2 C;

we obtain from (4) that the generalized route travel costs may be stated as

cpqr :�
X
a2A

�pqra ta f �a
ÿ ��X

k2K
��k
@gk f �� �
@fa

 !
; 8r 2 Rpq; 8 p; q� � 2 C;

and we arrive at the following natural de®nition.

De®nition 2.2 (Generalized link travel costs). Let f � be the link ¯ow solution to the problem
[TAP-SC] and let �� be a vector of Lagrange multipliers for the side constraints (3e). Then, the
generalized link travel costs are de®ned as

ta f�� � :� ta f�a
ÿ ��X

k2K
��k
@gk f�� �
@fa

; 8a 2 A: �7�

The reader should note that without further assumptions on the properties of the side con-
straints, neither the values of their multipliers nor, as a consequence, the generalized equilibrium
link and route travel costs (7) and (4), respectively, are necessarily uniquely determined. [The
statement made on p. 439, rows 11±13 in Larsson and Patriksson (1995), was poorly formulated,
since it may lead the reader to believe that the values of the multipliers �pq are unique in the link
capacitated model.] Larsson and Patriksson (1998b) provide a characterization [based on the
conditions (6)] of the set of multipliers � as a polyhedral set, and a simple example with link
capacity side constraints showing that the set is not a singleton in general, and in fact is likely to
be unbounded (at least in the link capacitated case). (A solution method for [TAP-SC] will in
general produce one such vector; see Section 5.)
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This non-uniqueness property has immediate consequences for the applications of side constraints
that we consider in this paper. First, it implies that in the case where prescriptive side constraints are
used to model some tra�c control policy, the resulting link queueing delays are not unique; second,
in the case where side constraints are used to model some tra�c management goals, there is a free-
dom-of-choice in the link tolls that should be introduced in order to reach these goals.
Introducing the Lagrangean function with respect to the side constraints (3e),

L f; �� � :� T f� � � �Tg f� �;

that is, the objective which is obtained if these constraints are taken into account only implicitly
through a Lagrangean penalization (or, dualization) with multipliers �, it is seen that the vector
of generalized equilibrium link travel costs may be expressed as

t f�� � :� 5fL f�; ��� � � t f�� � � 5g f�� �T��: �8�
The generalized equilibrium link and route travel costs (7) and (4), respectively, are thus com-
posed by actual costs and penalty costs, where the latter include in a Lagrangean fashion the
impact of the side constraints on the equilibrium problem. This composition of the generalized
equilibrium travel costs is a consequence of the equivalence between [TAP-SC] and the equili-
brium assignment problem obtained when dualizing the side constraints with penalties that are
Lagrange multipliers; this is our second main result.

Theorem 2.2 (An equivalent equilibrium assignment problem). Let �� be a vector of Lagrange
multipliers for the side constraints (3e). Then, the equilibrium assignment model with the (sym-
metric) link travel cost mapping

�t �� � :� t �� � � 5g �� �T��; �9�

has the same solution set as [TAP-SC].

Proof The strict convexity of T and the discussion following Theorem 6.5.1 of Bazaraa et al.
(1993) yield that f� is the unique link ¯ow solution to the dualized problem

minimize
f2F

L f; ��� :� T f� � � ��� �Tg f� �:ÿ
Since the link travel cost mapping of the dualized problem is 5L��; ��� :� t �� � � 5g �� �T��, the
result follows. &

Hence, if a vector of Lagrange multipliers for the side constraints were somehow known, then
[TAP-SC] could be solved as a standard equilibrium assignment problem. [A corresponding result
can be shown to hold in the case of a non-integrable link travel cost mapping, see Larsson and
Patriksson (1994), Theorem 4.1.] Note that this equivalence result implies that the link travel cost
mapping (9) is a precise description of the in¯uence of prescriptive tra�c ¯ow restrictions on the
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travel cost perception of the users of the tra�c network, and therefore on their route-choice
behaviour. (This conclusion highlights the fact that the model [TAP-SC] also rests on the steady-
state assumption which underlies the Wardrop conditions.)
The result of Theorem 2.2 can be used to construct travel cost functions that bring the equili-

brium solution more into par with a tra�c engineer's anticipation of reasonable levels of ¯ow (cf.
Hearn, 1980); further, it facilitates the construction of improved travel cost functions, based on
(1) some tentative cost function which however does not agree with the trip-makers' travel cost
perception (since, for example, the calculated travel times or link ¯ows do not correspond to
measured ones), and (2) some descriptive side constraints that incorporate additional knowledge
about the tra�c conditions. This strategy seems appealing since it should be easy for the engineer
to formulate side constraints that will adjust the calculated tra�c ¯ow towards a more reasonable
one, as compared to the task of predicting how a heuristic adjustment of the tentative travel time
functions will a�ect the equilibrium ¯ow pattern.
The reader may note that the equivalence result of Theorem 2.2 holds also if the link travel cost

mapping (9) is simpli®ed into the mapping t �� � � 5g f�� �T��, that is, if the penalty costs which
shall enforce the ful®lment of the side constraints are chosen to be ®xed instead of ¯ow-depen-
dent. [If, for example, the side constraints (3e) describe tra�c management goals, then 5g f�� �T��
is, in fact, a vector of ®xed link tolls that could be imposed upon the travellers in order to reach
these goals. More on this application is found in Larsson and Patriksson (1997, 1998a and 1998b)
and in Section 5.3.]

2.2. Stability results

We will next analyze the side constrained equilibrium assignment model with respect to a (dual)
stability property. This property is closely related to the steady-state assumption, that is, that the
model describes a steady-state situation which is reached after a transient phase in which the
travellers successively adjust their route-choices. We de®ne a solution to [TAP-SC] as being stable
if the set of shortest routes (with respect to the generalized travel costs) is unique [compare with
the similar regularity condition of Nagurney and Zhang (1996), p. 213, for the user equilibrium
case], that is, if it is independent of the choice of values of the Lagrange multipliers � among
those which satisfy the conditions (6). The importance of this property lies in the fact that it
ensures that the collection of shortest routes in a steady-state is independent of the initial condi-
tions and history of the disequilibrium phase. (If the solution is not stable, then di�erent initial
conditions and ¯ow histories can lead to steady-states corresponding to di�erent values of the
multipliers and di�erent sets of shortest routes.)
We ®rst make the obvious observation that stability of a solution to [TAP-SC] is ensured if the

generalized equilibrium route travel costs (4) are unique, which, in turn, holds if the generalized link
travel costs (7) are unique, or if the values of the multipliers of the side constraints are uniquely
determined. (Note that the uniqueness of the generalized link travel costs does not, in general, imply
the uniqueness of the values of the Lagrange multipliers.) The analysis of the stability property
thus leads to the study of uniqueness properties of the generalized travel costs and the multipliers
of the side constraints. (These uniqueness properties are of interest for other reasons as well. For
example, if the side constraints are link capacities which arise from tra�c signals at the links'
exits, then unique values of the multipliers correspond to unique and stable link queueing delays.)
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We ®rst state a result which is immediate from the generalized Wardrop conditions (5); it
provides however a nice intuitive basis for the next result to be presented.

Theorem 2.3. (Always used routes are shortest for all multiplier values). Suppose that a route car-
ries a positive ¯ow in every route ¯ow solution to [TAP-SC]. Then, it is a shortest route with respect to
the generalized route costs for any vector of Lagrange multipliers for the side constraints (3e).

Note that this result does not imply that the shortest route costs, that is, the values of the
multipliers �pq; p; q� � 2 C, are independent of the values of the multipliers for the side constraints.
We shall next establish the uniqueness of the set of shortest routes at a solution to [TAP-SC].

Here, for a vector � of Lagrange multipliers for the side constraints (3e), we let

cpqr �� � :�
X
a2A

�pqra ta f�a
ÿ ��X

k2K
�k
@gk f�� �
@fa

 !
; 8r 2 Rpq; 8 p; q� � 2 C:

Theorem 2.4. (Uniqueness of the sets of generalized equilibrium shortest routes). Consider the fol-
lowing statements.
(a) For any p; q� � 2 C and any r 2 Rpq, either hpqr > 0 or hpqr � 0 holds for all h 2 H�.
(b) For any route ¯ow solution h 2 H� and any vectors � and � of Lagrange multipliers for the

constraints (3b) and (3e), respectively, strict complementarity holds in the Wardrop conditions (5),
that is

hpqr > 0) cpqr �� � � �pq; 8r 2 Rpq; �10a�

hpqr � 0) cpqr �� � > �pq; 8r 2 Rpq; �10b�

holds for all OD pairs p; q� � 2 C.
(c) For any p; q� � 2 C and any r 2 Rpq, either

cpqr �� � > min
s2Rpq

cpqs �� �

or

cpqr �� � � min
s2Rpq

cpqs �� �

holds for all vectors � of Lagrange multipliers for the side constraints (3e).
(d) The generalized equilibrium shortest routes are the same for every h 2 H� and every vector �

of Lagrange multipliers for the side constraints (3e).
Then, the following relations hold:

a� � ( b� �() c� �() d� � �11�
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Proof.
(b))(a). Let h1 and h2 be in H�. Take an arbitrary OD pair p; q� � 2 C and a route r 2 Rpq.

Suppose that h1pqr > 0 while h2pqr � 0. Then (10) yields a contradiction, since shortest route costs
cpqr �� � are independent of the route ¯ow solution chosen.
(b)()(c). The conditions (10) are simply the Wardrop conditions (5) plus (c).
(c)()(d). The condition (d) is simply a restatement of the condition (c).&

Since some routes are likely to consist of single links, and, moreover, the uniqueness of the
generalized equilibrium link travel costs (7) implies unique generalized equilibrium route costs, we
shall next consider the uniqueness of the link costs. We ®rst give a su�cient condition for the
uniqueness of the link travel costs (7) to be equivalent to the uniqueness of the values of the
multipliers �. Of interest here are the side constraints that are active at the unique link ¯ow
solution to [TAP-SC], that is, the set de®ned as

K f�� � :� k 2 K j gk f�� � � 0
� 	

:

The proof of the result is elementary and therefore omitted.

Theorem 2.5 (Simultaneous uniqueness of t f �� � and ��) If the vectors
5gk f �� �; k 2 K f �� �;

are linearly independent, then the generalized equilibrium link travel costs (7) are uniquely deter-
mined if and only if the Lagrange multipliers � have unique values.

This result may, for example, be invoked for any link capacity side constrained tra�c equili-
brium assignment problems, since the linear independence assumption always holds for such a
problem. [The reader should note that the result does not imply that the multipliers for capacity
constraints are unique, since both the generalized equilibrium travel costs and the Lagrange
multiplier vector may be non-unique; indeed, Larsson and Patriksson (1998b) provide a counter-
example to this occasionally stated claim.]
We ®nally give a su�cient condition for the Lagrange multipliers � to have unique values, in

which case the generalized equilibrium link and route travel costs will also be uniquely deter-
mined. Here, given a route ¯ow solution h� 2 H�; ÿ� denotes the route±OD pair incidence
matrix for the routes with a positive ¯ow in h� (the vector of which is denoted by h�). The net-
work thus constructed is, by the positivity of the demand vector d, strongly connected, and
therefore the matrix ÿ� has full row rank. A consequence of this is that the orthogonal projection
onto the null space of ÿ� is well-de®ned. (The null space of ÿ� is the set of demand-feasible route
¯ow adjustments from h� using the routes in h� only.)

Theorem 2.6 (Uniqueness of generalized equilibrium travel costs) Suppose that f� solves
[TAP-SC], and that for some route ¯ow solution h� 2 H� the orthogonal projections of the vectors

5h�gk f�� �; k 2 K f�� �;
onto the null space of ÿ� are linearly independent. Then, the values of the multipliers � for the side
constraints are unique and the generalized equilibrium link and route travel costs (4) and (7),
respectively, are uniquely determined.
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Proof. Let c� h�� � be the vector of travel costs cpqr h
�� � for the routes with positive ¯ow in h�,

and let � be a vector of multipliers for the side constraints.
By the generalized Wardrop condition (5a) there is a vector �� 2 RjCj such that

c� h�� � � 5h�g f�� �T� � ÿT
��
�:

De®ne the projection matrix

P :� Iÿ ÿT
� ÿ�ÿT

�
ÿ �ÿ1

ÿ�;

where I is the identity matrix of order equal to the number of routes with positive ¯ow in the
solution h�. (The inverse of the matrix ÿ�ÿT

� exists since ÿ� has full row rank.)
Multiplying the above system of equations with the projection matrix yields

P5h� g f�� �T� � ÿPc� h�� �:

Using that, according to the condition (6f),

�k � 0; k 62 K f�� �;

we obtain the equation systemX
k2K f�� �

P5h� gk f�� ��k � ÿPc� h�� �: �12�

By assumption, the vectors

P5h� gk f�� �; k 2 K f�� �;

are linearly independent; the vector � of multipliers considered is therefore the unique solution
to (12).
It is then an immediate conclusion that the generalized equilibrium travel costs are uniquely

determined.&

2.3. Wardrop-type principles

According to Theorem 2.1, solutions to [TAP-SC] satisfy the Wardrop conditions in terms of
generalized travel costs, but they will, in general, not satisfy any similar conditions in terms of
actual travel costs. One can therefore, in general, not relate the actual travel costs of the unused
routes to those of the used ones; for example, the least costly route in an OD pair may be unused
because its generalized cost is too high. This de®ciency is due to the fact that the problem [TAP-
SC] does, in contrast to [TAP], in general, not possess a Cartesian product structure.
Wardrop-type principles in terms of actual travel costs may however be established if the

following assumption is ful®lled at the solution to [TAP-SC]:
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Assumption 2.1 (Nondecreasing side constraint functions). At the ¯ow f 2 F,

@gk f� �
@fa

50; 8a 2 A; 8k 2 K:

If this assumption holds for any ¯ow f 2 F, then an increase in the ¯ow on one or more links can
never result in any side constraint being more strictly satis®ed. Conversely, this assumption holds
whenever, for example, the side constraints are general capacity restrictions, that is, when they state
upper bounds on volumes of tra�c ¯ow on certain links or routes, or in an area of the tra�c system.
Further, we use the notions of links and routes that are unsaturated with respect to the side

constraints.

De®nition 2.3 (Unsaturated link and route). A link a 2 A is said to be unsaturated at the ¯ow
f 2 F if for all k 2 K,

@gk f� �
@fa

> 0) gk f� � < 0:

A route r 2 Rpq; p; q� � 2 C, is said to be unsaturated at the ¯ow f 2 F if all the links a 2 A on route
r are unsaturated.

A route is clearly saturated at the ¯ow f 2 F if @gk f� �
@fa

> 0 holds for some link a on the route and
some k 2 K such that gk f� � � 0.

Theorem 2.7. (Wardrop-type principles). Suppose that h�; f�� � solves the problem [TAP-SC] and
that Assumption 2.1 holds at f�. Then, the following conclusions hold for any OD pair p; q� � 2 C.
(a) The routes utilized in the OD pair have equal and minimal generalized route costs.
(b) Assume, with no loss of generality, that the ®rst ` routes are utilized in the OD pair and that m

of these are unsaturated. Then, the routes may be ordered so that

cpq1 � ::: � cpqm5cpq;m�15:::5cpq`:

(c) For any pair of routes r; s 2 Rpq,

route r is unsaturated
cpqs > cpqr

�
) h�pqs � 0: �13�

(d) For any pair of routes r; s 2 Rpq,

route r is utilized
cpqs > cpqr

�
) route s is saturated:

Proof.
(a) Immediate from Theorem 2.1.
(b) Follows directly from (a), Assumption 2.1, and the condition (6h).
(c) Noting that
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cpqs � cpqs > cpqr � cpqr5�pq;

where the ®rst inequality is derived from Assumption 2.1 and the condition (6h), the equality
follows from the fact that route r is unsaturated, and the last inequality is given by the condition
(6a), it then follows from the condition (6a) that h�pqs � 0.
(d) We ®rst observe that

cpqs5�pq � cpqr5cpqr > cpqs;

where the ®rst inequality is given by condition (6b), the equality follows from the fact that route r
is utilized, and the second inequality is derived from Assumption 2.1 and the condition (6h).
From the expression (4), Assumption 2.1, and conditions (6h) and (6f), it then follows that route s
must contain at least one saturated link, and that it is therefore saturated.&

If the implication in either of the results (c) and (d) was not ful®lled for some pair of routes,
then some traveller would choose to shift to a less costly and unsaturated alternative route; hence,
these results are quite natural. As touched upon above, the OD routes that are unused in a solu-
tion to [TAP-SC] are not necessarily more costly (in actual travel cost) than those used in the OD
pair; this is implied by the result (d) since a route may be saturated at zero ¯ow. [Incidentally,
such an example can be used to prove that the missing implication in (11) [(a))(b)] is invalid.]
Maugeri (1994) uses the implication (13) as the de®nition of a generalized user equilibrium

solution for an assignment problem with route ¯ow capacity side constraints. He also draws the
conclusion of the result (d), by relating the travel cost of route s to that of the most costly route
among those used in the OD pair (which does not cause any loss of generality), and making the
additional assumption that route s is utilized (i.e. the conclusion is somewhat less general than
our result). Note that the results of Theorem 2.7 hold also in the case of non-separable, and
possibly asymmetric, travel cost functions (Larsson and Patriksson, 1994, Theorem 2.10).
The ®rst and second results of Theorem 2.7 generalize those stated in Larsson and Patriksson

(1995) for the link ¯ow capacity side constrained assignment model, that is, for the case

K :� A; ga f� � :� fa ÿ ua; ua 2 0;�1� �; 8a 2 A:

Clearly, in capacitated tra�c assignment problems, the constraint functions ga are nondecreasing
(cf. Assumption 2.1), an unsaturated link has a ¯ow which is strictly less than its capacity, and an
unsaturated route contains no saturated links (cf. De®nition 2.3).
Further, in this case the generalized link travel cost (7) reduces to the simple expression

ta f�a
ÿ � � ta f�a

ÿ �� ��a; 8a 2 A; �14�
which has been given nice interpretations. To cite Jorgensen (1963), the Lagrange multiplier
values ��a, a 2 A, ``measure the time gained by users of routes ®lled to capacity compared to the
fastest route still available.'' Hence, they are also the link tolls that drivers on saturated routes are
willing to pay for being allowed to continue to use routes that are faster than the non-saturated
ones. Beckmann and Golob (1974) make a similar observation for a link capacitated system optimum
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assignment model, in which case the multipliers have the interpretation of the link tolls that produce a
system optimum when the individual travellers minimize their respective generalized travel costs.
Such interpretations may of course also be given to the Lagrangean penalty cost terms of the

generalized link and route travel costs (7) and (4), respectively; another interpretation is given in
the next section.

3. Equilibrium link queueing delays

In the special case of [TAP-SC] where the side constraints are prescriptive link ¯ow capacities
(caused by, for example, tra�c signals with ®xed cycle times at the links' exits), the generalized
link travel cost (7) simpli®es into the cost (14), and a steady-state link ¯ow can be considered to
be in two distinct regimes. In the ®rst part of the link (which includes its entrance), one observes a
moving tra�c stream; in the second part of the link (which includes its exit), one observes a
steady-state queue whenever the link is saturated. (The length of the queue is assumed to be small
compared to that of the entire link, so that the travel time in the moving stream can be considered
to be una�ected by the presence of the queue.) It is then natural to interpret the value ta f�a

ÿ �
as

being the travel time of the moving tra�c stream and the value of the Lagrange multiplier term in
(14) as the waiting time in the queue at the link's exit, that is, the link queueing delay.
Payne and Thompson (1975) (see also Smith, 1987) use the notion of queue equilibrium to

establish a complete equilibrium characterization of solutions to the capacitated problem for the
special case of link travel times being constant regardless of the link ¯ows; their result is extended
to the case of non-constant link travel times by Miller et al. (1975) (see also Inouye, 1987). In
these results, a feasible link ¯ow solution f to a capacitated tra�c assignment problem together
with a vector q 2 R

jAj
� of link queueing delays is de®ned to be a queue equilibrium if the links

unsaturated at f carry no queues. [Recall that the vector of queueing delays corresponds to
Lagrange multipliers for the link capacity constraints and notice that the de®nition of queue
equilibrium is merely a restatement of the complementarity condition (6f) for the special case of
capacity side constraints.] The equilibrium characterization of solutions to the capacitated pro-
blem may then in our context be stated as follows.

Theorem 3.1 (Equilibrium characterization of solutions to the capacitated model). Let f be a fea-
sible link ¯ow solution to the capacitated model. It is then an optimal link ¯ow if and only if there is
a vector � of non-negative Lagrange multipliers for the capacity constraints such that f is a Wardrop
equilibrium with respect to the generalized link travel costs (14) and (f,�) is a queue equilibrium.

Hence, in this case, the values of the Lagrange multipliers for the capacity constraints may be
interpreted as equilibrium link queueing delays, and, further, a steady-state solution has a char-
acterization as a Wardrop equilibrium ¯ow in terms of the sum of travel times and steady-state
queueing delays on saturated links. This generalized travel cost is, of course, the natural one to be
minimized by the individual travellers in a capacitated network with queueing. (In case the tra�c
¯ow is not in a steady-state, the link ¯ows are unstable, the generalized route travel costs and the
route ¯ows vary, and the queue at each link's exit is building up if the link is over-saturated and
dissolves if it is de-saturating.)
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Next, we shall establish a complete equilibrium characterization of solutions to [TAP-SC], that
is, we shall generalize the result of Theorem 3.1 to the case of general side constraints. Moreover,
the equilibrium link queueing delay formula derived for the general side constrained model turns
out to include the equilibrium link queueing delay for the capacitated model as a simple special
case. Our development is based on natural generalizations of the link queue and queue equili-
brium concepts introduced above.
When a side constraint involves several link ¯ows, it may cause a queue which, in general, is

physically distributed on all the links that are a�ected by the restriction. Hence, each of the tra�c
¯ow restrictions may give rise to a distributed queue. [One example of such a constraint is given by
Ferrari (1995), in which two tra�c streams interfere during the same signal phase.]

De®nition 3.1 (Distributed queue equilibrium). Let f be a feasible link ¯ow solution to [TAP-SC] and
let r 2 R

jKj
� be a vector of delays in distributed queues. Then, (f; r) is said to be a distributed queue

equilibrium if the tra�c ¯ow restrictions which are unsaturated at f have no distributed queues.

This de®nition is equivalent to the complementarity condition (6f), and an immediate implica-
tion is the following characterization of solutions to [TAP-SC] which corresponds to the equili-
brium characterization of solutions to the capacitated model. This is our third main result and
includes the partial converse to the result of Theorem 2.1.

Theorem 3.2 (Equilibrium characterization of solutions [TAP-SC]. Let f be a feasible link ¯ow solu-
tion to [TAP-SC]. It is then an optimal link ¯ow if and only if there is a vector � of non-negative
Lagrange multipliers for the side constraints (3e) such that f is aWardrop equilibriumwith respect to the
generalized link travel costs (7) and (f;�) where � is given by (17), is a distributed queue equilibrium.

The interpretation of this result is analogous to that of Theorem 3.1.
In the next theorem it is established that a solution to [TAP-SC] is also a generalized Wardrop

equilibrium and a link queue equilibrium to a capacitated assignment model; in this model, each
link capacity can be viewed as the aggregate e�ect of all side constraints on the link's capability of
carrying ¯ow, and, further, each link queue is composed by contributions from distributed
queues.

Theorem 3.3 (Solutions to [TAP-SC] are link queue equilibria). Suppose that f � is the optimal link
¯ow solution to [TAP-SC] and that Assumption 2.1 holds at f �. Further, let �� be a vector of
Lagrange multipliers for the side constraints (3e), and let

q�a :�
X
k2K

�k
@gk f�� �
@fa

; 8a 2 A: �15�

Then, f� is a Wardrop equilibrium with respect to the generalized link travel costs

ta f�a
ÿ �

:� ta f�a
ÿ �� q�a; 8a 2 A; �16�
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and (f �; q�) is a queue equilibrium with the respect to the link capacity constraints

fa4ua; 8a 2 A;
where

ua
:� f �a; if qa > 0;
5f �a; if qa � 0:

�

Proof. By Theorem 2.1 and the expression (7), it follows that f � is a Wardrop equilibrium with
respect to the generalized link travel costs (16).
To establish that (f �; q�) is a link queue equilibrium, we ®rst note that q�a50 for all a 2 A since

the Lagrange multipliers are non-negative and Assumption 2.1 holds at f�. Next, suppose a link
a 2 A is unsaturated at f �. We then obtain from De®nition 2.3 that

��k
@gk f�� �
@fa

> 0) ��kgk f �� � < 0; 8k 2 K:

But the complementarity condition (6f) states that the conclusion of this implication is not true,
so that the hypothesis is not true either, and it follows that q�a40. Hence, q�a � 0 must hold.
The result then follows from Theorem 3.1.&

By combining the above result with that of Theorem 3.2, we have established that distributed
queue equilibria for [TAP-SC] are also link queue equilibria for a capacitated model. Further,
the equilibrium link queueing delays q� are then the Lagrange multipliers for the link capa-
city constraints. According to Theorem 3.3, the Lagrangean term of the generalized link
travel cost (7) may thus be interpreted as an equilibrium link queueing delay caused by the tra�c
¯ow restrictions which are described by the side constraints (6e). The generalized route cost (4) is
then the sum of actual travel costs and link queueing delays along the route, and the Lagrange
multiplier value ��pq is the minimal value of these sums over the routes in the OD pair (p; q).
Notice also that the equilibrium link queueing delay formula (15) states that the queue on a

certain link may be decomposed into contributions from queueing e�ects arising from several side
constraints. The formula (15) thus provides an equilibrium link queue representation result. (If the
multipliers � may take alternative values, then the link queue representation is not necessarily
unique. In that case, the composition of the link queues that is actually obtained is a consequence
of the process which leads to the distributed queue equilibrium.) Further, since the terms of the
formula (15) express the physical distributions of queues originating from the saturated tra�c ¯ow
restrictions among the links, it directly follows that the delays in the distributed queues are given by

��k :� ��k
X
a2A

@gk f�� �
@fa

; 8k 2 K: �17�

Furthermore, interpreting each of the partial derivatives in the expression (15) as a measure of the
contribution of the ¯ow on link a to the saturation of the kth side constraint, in the sense that it is
a force towards violating the constraint, the expression states that the distribution of the queue is
proportional to these forces.
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As a consequence of Theorem 3.2, there is an equivalence between solutions to [TAP-SC] and the
link ¯ow pattern in the tra�c network, provided that the latter is aWardrop equilibriumwith respect
to generalized travel costs and a distributed queue equilibrium. It is therefore of interest to establish
conditions under which these equilibria will arise; speci®cally, we need to make assumptions on the
travellers' behaviour and on the nature of the tra�c ¯ow restrictions described by the side con-
straints. Clearly, a Wardrop equilibrium with respect to the generalized travel costs may be guaran-
teed through the traditional assumption that the travellers have a rational route-choice behaviour.
Further, we shall in the next section give conditions on the nature of the tra�c ¯ow restrictions
described by the side constraints which imply that a distributed queue equilibrium arises in the tra�c
network. These conditions involve the link distribution and dynamical behaviour of the queues.

4. Queue dynamics

We now introduce assumptions about the physical nature of the tra�c ¯ow restrictions which
are modelled by the side constraints, and show that stationary states then are distributed queue
equilibria. First, we assume that each tra�c ¯ow restriction may cause a queue which is dis-
tributed among the links as stated below.

Assumption 4.1 (Delays in distributed queues). There exist parameters 
k50, k 2 K, such that,
for any ¯ow f 2 F and any tra�c ¯ow restriction k 2 K, the portion of the distributed queue
which is physically located on a link a 2 A has queueing delay 
k

@gk f� �
@fa

.

Second, we assume that the tra�c ¯ow restrictions under consideration are prescriptive
(hard) and can never be violated in a stationary state, and that each distributed queue appears
only when the corresponding tra�c ¯ow restriction is non-redundant. Further, if the tra�c ¯ow is
in a disequilibrium state and the travellers successively adjust their route-choices with respect to the
(varying) generalized travel costs (i.e. actual travel costs and delays in distributed queues), then, at
any moment, the distributed queue arising from a tra�c ¯ow restriction will be building up or
dissolving depending on whether or not the restriction is violated.

Assumption 4.2 (Distributed queue dynamics).
(a) (Stationary queueing delays) If a tra�c ¯ow restriction is saturated at some ¯ow f 2 F, that

is, gk f� � � 0 for some k 2 K, then the queueing delay of the distributed queue is in a stationary
state, that is, the parameter 
k has a constant value.
(b) (Unlimited non-stationary queueing delays) If a tra�c ¯ow restriction is violated at some ¯ow

f 2 F, that is, gk f� � > 0 for some k 2 K, then the queueing delay of the distributed queue is non-sta-
tionary and will eventually become arbitrarily large, that is, the parameter value 
k tends to in®nity.
(c) (Vanishing non-stationary queueing delays) If a tra�c ¯ow restriction is unsaturated at

some ¯ow f 2 F, that is, gk f� � < 0 for some k 2 K, then the queueing delay of the distributed
queue is non-stationary and will eventually vanish, that is, the parameter value 
k tends to zero.

In the sequel it will be shown that the parameters 
k; k 2 K, play the role of Lagrange multi-
pliers. The following lemma is then needed.
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Lemma 4.1. Suppose that for some f 2 F and k 2 K; gk f
ÿ �

> 0 holds, and that Assumption 2.1

holds at f. Then, there is an a 2 A such that fa > 0 and
@gk �f� �
@fa

> 0.

Proof. If the conclusion is not true, then, since f50, 5gk f
ÿ �T

f � 0. From the convexity of the
function gk it then follows that, for any ¯ow f 2 F,

gk f
ÿ �

5gk f
ÿ ��5gk f

ÿ �T
fÿ f
ÿ � � gk f� � � 5gk f� �Tf5gk f

ÿ �
> 0;

since f50, which contradicts that [TAP-SC] has a feasible solution.&

The following theorem is our fourth main result.

Theorem 4.1 (Stationary ¯ows solve [TAP-SC]. Let f 2 F, and suppose that Assumption 2.1 holds at f.
If, in addition, it is a stationary ¯owwith respect to the link travel costs ta fa� �, a 2 A, and the link queueing
delays, then, under Assumptions 4.1 and 4.2, it is also an optimal link ¯ow solution to [TAP-SC].

Proof. To establish the conclusion, we will show that f and �k :� 
k, k 2 K, satisfy the su�cient
optimality conditions (6).
(Feasibility in side constraints) Suppose that gk f� � > 0 for some k 2 K. Then, according to

Lemma 4.1, there is an a 2 A such that fa > 0 and @gk f� �
@fa

> 0. From Assumptions 4.1 and 4.2 it
follows that the queueing delay on link a tends to in®nity, which contradicts that fa > 0 in a sta-
tionary ¯ow. Hence, gk f� �40 for all k 2 K, that is, condition (6g) is satis®ed.
(Complementarity) If gk f� � < 0 for some k 2 K, then, according to Assumption 4.2, the value

of the parameter 
k tends to zero, so that condition (6f) becomes satis®ed in a stationary state.
(Optimality) Clearly, the remaining su�cient optimality conditions are also ful®lled, and the

result follows.&

Hence, under Assumptions 2.1, 4.1, and 4.2, any stationary ¯ow in the transportation network is
also an optimal solution to [TAP-SC], and we have thus established that the set of optimal solu-
tions to [TAP-SC] then coincides with the steady-state ¯ows in the transportation network.
We conclude this section with the observation that the characterization of solutions to [TAP-

SC] as being Wardrop equilibria (with respect to generalized travel costs) and distributed queue
equilibria suggests that the utilization of side constraints in a tra�c equilibrium assignment
model is consistent with the assumption of rational traveller behaviour. We also note that the
equilibrium characterizations of solutions to [TAP-SC] established in this work have immediate
counterparts for more general models, such as, for example, models with non-separable travel
costs, for which the corresponding results are found in Larsson and Patriksson (1994).

5. Solving the side constrained model

Whenever side constraints are introduced into a tra�c assignment model, the traditional solu-
tion methods, such as the Frank±Wolfe algorithm and its relatives, either become inapplicable or
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their e�ciency is seriously degraded. In particular, the linear programming subproblem of the Frank±
Wolfe type algorithms does no more separate into a number of shortest route calculations; for exam-
ple, in the simple special case of link capacity side constraints the subproblem becomes a linear multi-
commodity network ¯ow problem, which is prohibitively expensive to solve repeatedly. In addition,
the existing program packages do not possess the ability to take side constraints into account.

5.1. A price-directive solution strategy

When considering possible solution principles for the side constrained model, it is most natural
to aim at exploiting the e�cient solution methods and program packages that are available for
the basic model. This immediately leads us to a classical approach for handling complicating
constraints: the pricing strategy (e.g. Lasdon, 1970, Chapter 8).
We associate with the side constraints (3e) non-negative prices �k, k 2 K, for violating them.

Given certain values of these prices, the side constraints are priced-out, that is, handled implicitly
by being included in the objective function only. The priced-out problem,

[TAP(�)]

minimize
f2F

L f; �� � :� T f� � � �Tg f� �;

is an equilibrium assignment problem with the link travel cost mapping

5L �;�� � :� t �� � � 5g �� �T�;

that is, with the generalized link travel cost functions

ta fa� � �
X
k2K

�k
@gk f� �
@fa

; 8a 2 A;

which, in general, are non-separable though. The priced-out problem is solvable with most stan-
dard methods for the basic model, and the resulting link ¯ow, denoted f �� �, is unique, since the
objective L �;�� � is strictly convex with respect to the link ¯ows.
The solution to the priced-out problem may be characterized as the solution to a side con-

strained assignment problem where the right-hand sides of the original side constraints are mod-
i®ed through certain perturbations; this result follows immediately from Everett's Theorem (e.g.
Lasdon, 1970, Theorem 8.3).

Theorem 5.1 (An Everett-type result). For any price vector � 2 R
jKj
� , the solution f �� � to the

priced-out problem [TAB(b)] solves the side constrained tra�c equilibrium assignment problem

[TAP-SC(�)]

minimize T f� �;

256 T. Larsson, M. Patriksson / Transportation Research Part B 33 (1999) 233±264



subject toX
r2Rpq

hpqr � dpq; 8 p; q� � 2 C;

hpqr50; 8r 2 Rpq; 8 p; q� � 2 C;

X
p;q� �2C

X
r2Rpq

�pqrahpqr � fa; 8a 2 A;

gk f� �4gk �� �; 8k 2 K;
where

gk �� � :�
gk f �� �� �; if �k > 0;
max 0; gk f �� �� �� 	

; if �k � 0:

�

This result is useful in case the side constraints are descriptive (soft) and thus not need to be
ful®lled exactly (see below). Further, if the side constraints state tra�c management goals which
are to be achieved through the introduction of link tolls, then the solution of [TAP(�)] may be seen
as a simulation of the e�ect of a tentative toll schedule on the tra�c ¯ow, and the result of Theorem
5.1 provides a means for evaluating the toll schedule with respect to the goals formulated.
The reader may note that the equivalence result stated in Theorem 2.2 is a special case of the

conclusion in Theorem 5.1; as the price vector tends to a vector of Lagrange multipliers, the
solution f �� � will, because of the strict convexity of T, tend continuously to the link ¯ow f �, so
that the right-hand sides gk �� � of the side constraints of the problem [TAP-SC(�)] tend con-
tinuously to zero, and the problem [TAP-SC(�)] tends to [TAP-SC].
In order to ®nd correct values of the prices (i.e. Lagrange multipliers) one may solve the

Lagrangean dual problem

[TAP-SCD]

maximize
�50

L �� �;

where � is now interpreted as a vector of dual variables and the Lagrangean dual objective
function is given by

L �� � :� minimum
f2F

L f; �� �:

Lagrangean dual problems are typically solved using simple iterative search methods for (essen-
tially) unconstrained optimization. Within a dual solution procedure for [TAP-SCD], the result of
Theorem 5.1 may be utilized for monitoring the progress of the procedure with respect to the aim
of ®nding a solution to [TAP-SC]. This result also facilitates the ®nite termination of the
dual algorithm when the solution is near-feasible with respect to the side constraints. Clearly,
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near-feasible solutions are often satisfactory considering the uncertainties in the input data; near-
feasibility is, of course, also satisfactory when the side constraints are soft.
Larsson and Patriksson (1995) develop and evaluate an augmented Lagrangean dualization (i.e.

nonlinear pricing) technique for the link capacity side constrained equilibrium model. They
establish the e�ciency of this technique for ®nding the correct values of the multipliers � and for
solving the capacitated model, and also conclude that this dualization scheme is in both these
respects more e�cient than the traditional Lagrangean dualization. For certain instances of this
augmented Lagrangean scheme, and under additional technical assumptions, the sequence of
dual iterates generated can be shown to converge (at least linearly) although the set of dual
solutions is not a singleton in general; further, under some additional assumptions, the limit point
of the iterates is the dual solution which has the least Euclidean norm.

5.2. Interpretations of the solution strategy

Using the result of Theorem 2.2 for constructing improved travel cost functions, we note that
the application of an iterative solution procedure to the dual problem [TAP-SCD] then can be
given the nice interpretation of an automatized process of adjusting the travel cost functions
towards the correct ones, which are reached in the limit.
With reference to the equilibrium characterizations of solutions to [TAP-SC] stated in Section

3, the Lagrangean dual problem [TAP-SCD] has the interesting interpretation of being the pro-
blem of ®nding a distributed queue equilibrium (and also a link queue equilibrium), under the
implicit assumption that the tra�c ¯ow pattern is a Wardrop equilibrium with respect to actual
travel costs and link queueing delays. The evaluation of the dual objective value L �� � (where � is
given and possibly non-optimal) then amounts to ®nding a Wardrop equilibrium with respect to
the generalized link travel costs

ta fa� � � qa f� �; 8a 2 A;

with the ¯ow-dependent link queueing delays

qa f� � :�
X
k2K

�k
@gk f� �
@fa

; 8a 2 A

[cf. the expressions (16) and (15)]. Further, a non-negative price vector solves the dual problem if
and only if the resulting distributed queues [whose delays are of the form (17) and are calculated
for the given � and at the generalized Wardrop equilibrium ¯ow] are at an equilibrium in accor-
dance with De®nition 3.1; moreover, the resulting link queues (i.e. those given by the expression
above and calculated at the generalized Wardrop equilibrium ¯ow) are then at an equilibrium in
the sense of Theorem 3.3.

5.3. Price-directive tra�c management through link tolls

We conclude this section by discussing the derivation of price-directive tra�c management schemes
through the solution of the side constrained equilibrium problem. The concept of price-directive
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decentralized planning is well known within the ®elds of economics and operations research (see,
for example, Dirickx and Jennergren, 1979), and is closely related to that of Lagrangean duality.
Often, it aims at coordinating decisions in a system with decentralized decision-making by the
means of prices (typically, on scarce resources) so that an optimal policy for the system as a whole
is obtained. [See, for example, Bernstein and Smith (1994) for an overview of the use of pricing in
network equilibria, and the references cited therein for more details.]
We consider a situation in which the managers of a tra�c system wish to reach certain goals

with respect to the performance of the system. The goals may, for example, involve travel times
on certain links or routes (for example, in order to provide small travel times in certain OD
pairs), or volumes of tra�c ¯ow on certain links or routes, or into a central area of the tra�c
system (for example, in order to avoid congestion or high concentrations of exhaust fumes or
levels of noise in sensitive areas). Further, the tool to be used for reaching these goals is the
introduction of link tolls, which divert the travellers' route-choices from the natural, travel-time
minimizing, ones.
The levels of aspiration of the goals are formulated as (one or more) side constraints, and the

solution of the side constrained assignment problem is a means for calculating the proper link
tolls [that is, the Lagrangean penalty cost terms of the generalized link travel costs (7)], which,
when imposed upon the individual travellers, change the route-choice behaviour so that the tra�c
management goals are reached, without the need to resort to a more direct or centralized tra�c
control.
The proper link tolls can alternatively be determined through the solution of the dual problem

[TAP-SCD] (which can be thought of as the problem of ®nding the tolls which make the side
constraints satis®ed and optimally utilized). Moreover, the solution of the dual problem using an
iterative search procedure may be interpreted as a mathematical simulation of a real-life process in
which a tra�c engineer attempts to enforce some tra�c management goals by introducing link
tolls and modifying them until the travellers' behavioural response is the intended one. (This
strategy for ®nding suitable link tolls can certainly not be implemented in the real-life tra�c system.)
In the context of price-directive tra�c management it may also be of interest to exploit the fact

that the link tolls which lead to the ful®lment of the management goals are not necessarily
uniquely determined, and that there may therefore be an option to choose a link toll schedule
(among the proper ones) that optimizes some secondary criterion (e.g. the one which minimizes
the total toll revenues). These considerations are a subject for ongoing research; see Larsson and
Patriksson (1997, 1998a, 1998b) for results obtained so far.

6. Extensions

Most of the results presented in this paper have immediate generalizations to a side constrained
non-separable and asymmetric tra�c equilibrium model, that is, a side constrained extension to
[VIP]; these results are reported in Larsson and Patriksson (1994).
The model [TAP-SC] may be extended to incorporate elastic demands; in this case, in contrast

to the ®xed demand model considered here, the multiplier vector � for the side constraints is
(essentially) unique, due to the fact that the demand and link ¯ow solution is unique and the
demand function is sensitive to the value of the generalized travel cost. For characterizations of
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the solutions to this model and its application in the context of price-directive tra�c management
through link tolls, we refer to Larsson and Patriksson (1998b).
We next describe in brief possible extensions of the model to more general side constraints, and

the consequences of the extensions for the assumptions needed in the underlying equilibrium
model and on the toll scheme. Suppose that some management goals are described in terms of the
individual commodity ¯ows. Such side constraints could, for example, describe a desired dis-
tribution of ¯ow among di�erent modes of transport, and may be used to distinguish between,
and di�erentiate the tolls imposed upon, di�erent classes of users of the network. For example,
we may consider restrictions of the form gk fpq

� �ÿ �
40, where fpq denotes the vector of link ¯ows in

commodity (p; q) and [fpq] is the concatenated vector of all the commodity link ¯ow vectors. If we
are interested in obtaining ¯ows satisfying these restrictions through the use of tolls, then the tolls
would obviously have to be di�erentiated between the individual commodities, that is, a link toll
that is uniform over all the commodity ¯ows on a link would be inadequate. This is quite evident
from the equilibrium characterizations of such an extension of the side constrained tra�c equili-
brium model [TAP-SC], in which the generalized link travel cost ta f �� �;a 2 A, in (7) is replaced by

tapq f �� � :� ta f�a
ÿ ��X

k2K
�k
@gk f�pq

h i� �
@fapq

; a 2 A; p; q� � 2 C; �18�

clearly, the toll, given by the second term of (18), is in general di�erent for the di�erent com-
modities on the same link, and can therefore in general not be represented by a uniform toll.
Having concluded that it is necessary to levy individual tolls for the di�erent commodities, we

next turn to the question of whether such a toll will achieve the tra�c management goals. Solving
the side constrained tra�c equilibrium model [TAP-SC] with the above commodity-speci®c side
constraints, we obtain a unique link ¯ow solution, and a consistent commodity ¯ow that satis®es
these constraints. From the use of a dual scheme for the solution of [TAP-SC], we may also
automatically generate a vector of multipliers for the side constraints, and thus a toll vector,
equal to the second term of (18). This commodity-speci®c, ®xed link toll will, however, not
necessarily in¯uence the ¯ow to satisfy the side constraints, even though they will produce the
unique link ¯ow solution. The reason for this seemingly counter-intuitive result is that while the
link ¯ow solution to [TAP-SC] (likewise the optimal Lagrange subproblem [TAP-SC(��)]) is
unique, its decomposition into commodity ¯ows is not, under the given assumptions; among the
commodity link ¯ows that are consistent with the optimal total link ¯ows, there are some that do
not satisfy all the side constraints, and some that do but are non-optimal in [TAP-SC]. In the
context of price-directive, decentralized planning, this property is known as the non-coordinability
phenomenon (cf. Dirickx and Jennergren, 1979, Chapter 2). In technical terms, the reason is that
while the objective function T of [TAP-SC] (likewise the objective L �;��� � of [TAP-SC(��)]) is
strictly convex in the total link ¯ows, it is non-strictly convex in the individual commodity link
¯ows. It thus becomes clear that if commodity-speci®c goals are to be achieved, not only do we
need to consider individual commodity link tolls, but the equilibrium model must have the
property that the commodity ¯ow is uniquely determined. (This property holds, for example,
when the model includes individual link travel cost functions tapq for the di�erent commodities
which are also strictly increasing in the respective ¯ow variables fapq.)
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We may generalize the above discussion to consider even more general side constraints of the
form gk h� �40, in which the goals are described in terms of the individual route ¯ows. In this case,
the generalized equilibrium route travel costs given in De®nition 2.1 are extended to

cpqr :� cpqr h
�� � �

X
k2K

��k
@gk h�� �
@hpqr

; r 2 Rpq; p; q� � 2 C �19�

We conclude that in this case, the tolls would have to be imposed upon the travellers on the basis
of their speci®c route-choices, and the underlying equilibrium model must have the property that
the route ¯ow is uniquely determined. We remark that in order for such a result to be established,
the travel cost functions must have the property that the travel cost on a route cannot be calcu-
lated as the sum of the travel costs on the links de®ning the route, that is, travel costs must be
non-additive, since otherwise individual route ¯ows cannot be distinguished with respect to their
individual costs; clearly, any travel cost functions that are based on total link ¯ows, such as the
ones utilized in the models [TAP] and [TAP-SC], violate this condition, and thus will not produce
unique equilibrium route ¯ow solutions.
There is a class of equilibrium models which do produce such solutions, the class of stochastic

user equilibrium models (e.g. She�, 1985). In such models, the perception of the least travel cost is
assumed to vary among the trip-makers according to some (known) probability distribution, and
the distributions most often considered lead to unique stochastic user equilibrium route ¯ows.
(Stochastic user equilibrium models most often utilize the same, link-¯ow based, travel cost
functions as in the deterministic model [TAP], but when viewing the corresponding deterministic
equivalent models, one can not identify such travel cost functions.) We remark that most of the
results presented in this paper are transferable from the deterministic case considered to the fra-
mework of stochastic user equilibrium models.
We conclude this discussion with the remark that if we wish to achieve tra�c management

goals stated at a given level of ¯ow disaggregation (into commodity link ¯ows or route ¯ows),
then the tolls must be levied at a ¯ow disaggregation level that is at least as high as that at which
the goals were formulated, and the equilibrium model used as a basis for the derivation of these
tolls most produce unique equilibrium ¯ow solutions at the same level of disaggregation.
We ®nally remark that it is possible to combine the descriptive and prescriptive modelling

approaches into a single model, for example to describe a tra�c management model for a tra�c
network with queueing (e.g. Yang and Lam, 1996; Yang and Bell, 1997 and Larsson and Patri-
ksson, 1998b).

7. Conclusions and further research

It is our belief that it should in many tra�c assignment contexts, and for di�erent purposes, be
bene®cial to utilize side constraints for re®ning a model, especially since the side constraints may
in many situations be relatively easy to derive and calibrate. The results presented in this paper
provide a theoretical justi®cation for the utilization of side constraints as a means for re®ning
tra�c equilibrium assignment models, as well as a solid basis and a strong motivation for a con-
tinued, theoretical and practical, exploration of this modelling strategy; a particularly strong
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motive for a continued study of this strategy is the observation that the inclusion of side constraints
in an equilibrium assignment model is equivalent to a well-de®ned adjustment of the travel cost
functions. The use of side constraints to derive price-directive tra�c management schemes is also
an interesting topic for further study.
It would also be of interest to further study the relationship between side constraints that arise

as a result of tra�c control and the policies employed in the control. An example of this is a side
constraint which describes the maximal tra�c ¯ow through a junction with vehicle-responsive
signals, in which case it is of interest to establish the existence of a control policy which is con-
sistent with the equilibrium link queues which can be calculated from the expression for the side
constraint; such a result can probably be based on the work by Smith (1987).
To facilitate the practical utilization of side constraints for re®ning assignment models and the

real-life exploitation of this modelling strategy, e�ective and e�cient computational tools for the
solution of the resulting models need to be developed and incorporated in assignment packages.
Such tools can probably be based on the application of an augmented Lagrangean solution
principle, which was in Larsson and Patriksson (1995) successfully applied to the link capacitated
model. The results obtained in that study suggest that also other classes of side constrained tra�c
assignment models can be e�ciently dealt with computationally, although the side constraints
destroy the Cartesian product structure of the traditional assignment models. Further, the aug-
mented Lagrangean solution principle does not impose any signi®cant limitations on the design
of the model since it can handle both nonlinear and non-separable side constraints.
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