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Abstract In a companion paper (Cromvik and Patriksson, On the Robustness of Global
Optima and Stationary Solutions to Stochastic Mathematical Programs with Equilibrium
Constraints, part 1: Theory, Journal of Optimization Theory and Applications, 2010, to
appear) the mathematical modeling framework SMPEC was studied; in particular, global
optima and stationary solutions to SMPECs were shown to be robust with respect to the
underlying probability distribution under certain assumptions. Further, the framework
and theory were elaborated to cover extensions of the upper-level objective: minimiza-
tion of the conditional value-at-risk (CVaR) and treatment of the multiobjective case. In
this paper, we consider two applications of these results: a classic traffic network design
problem, where travel costs are uncertain, and the optimization of a treatment plan in
intensity modulated radiation therapy, where the machine parameters and the position
of the organs are uncertain. Owing to the generality of SMPEC, we can model these
two very different applications within the same framework. Our findings illustrate the
large potential in utilizing the SMPEC formalism for modeling and analysis purposes; in
particular, information from scenarios in the lower-level problem may provide very useful
additional insights into a particular application.

Keywords: Stochastic mathematical program with equilibrium constraints, Solution sta-
bility and robustness, Traffic network design, Intensity modulated radiation therapy, Sam-
ple average approximation
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1 Introduction

The framework known as stochastic mathematical program with equilibrium constraints
(SMPEC) was introduced in [1] as an extension of the MPEC framework of hierarchical
optimization models, in order to incorporate the uncertainty of data that one often must
face in applications. Since then, it has found applications in many contexts, such as
economics (e.g., [2, 3]), engineering sciences (e.g., [4, 5]), and transportation science (e.g.,
[6]). The companion paper [7] provides new results on the robustness of solutions to this
class of problems. The objective of this paper is to illustrate the potential utilization of
these results through two applications. The first is within traffic network design, which is
a classic topic (see e.g. [6,8] and references therein). The second, however, appears to be
new: we present an SMPEC model for robust treatment planning in intensity modulated
radiation therapy (IMRT), where the machine parameters as well as the position of the
organs are uncertain. With this model, we are approaching a robust and in fact deliverable
treatment plan.

The remainder of the paper is organized as follows. In Section 2, we summarize briefly
the main results from [7]. In Section 3, we provide a small-scale application of the robust
design of a traffic network, based on the classic network of Braess. In Section 4, we provide
a numerical example of a treatment plan, which accounts for both position uncertainty
and the uncertainties in the radiation delivery from a treatment machine.

2 Robustness of Solutions to the SMPEC

Let f : R
n×R

m → R, y ∈ R
m, C ⊆ R

m be a polyhedron, let F (x, ·) : C → R
m be smooth,

and let NC : R
m

⇉ R
m be the standard normal cone mapping,

NC(y) :=

{

{

z ∈ R
m|zT(w − y) ≤ 0, w ∈ C

}

, if y ∈ C,

∅, otherwise.

Let (Ω, Θ, P) be a complete probability space and consider the problem

(SMPECΩ) min
(x,y(·))

Eω[f(x, y(ω), ω)] :=

∫

Ω

f(x, y(ω), ω) P (dω),

s.t. x ∈ X,

− F (x, y, ω) ∈ NC(y), P -a.s.,

where y : Ω → R
m is a random element of the probability space (Ω, Θ, P). We also

introduce S : R
n×Ω ⇉ R

m, which defines the set of solutions to the lower-level parametric
variational inequality problem,

S(x, ω) := { y ∈ R
m | −F (x, y, ω) ∈ NC(y) }.

We next summarize briefly the main technical content of [7].

3



2.1 Stability of Global Solutions and Stationary Points

Assumption A

(A1) The mapping S(x, ·) is measurable for any x.

(A2) The set X is closed and the mapping x 7→ S(x, ω) is closed for almost any ω ∈ Ω.

(A3) The function f is continuous in (x, y), measurable in ω, uniformly weakly coercive
with respect to x over the set X, and bounded from below by a (Θ, P)-integrable
function.

(A4) The set S(x0, ω) is nonempty for some x0 ∈ X and almost any ω ∈ Ω.

The existence of optimal solutions under Assumption A is established in [9].
Let {Pk} be a sequence of probability measures defined on B(Ω), and denote by

(SMPECΩ)k the problem defined by (SMPECΩ) with the measure P replaced by Pk.

Theorem 2.1 (Global Stability of Optimal Solutions) Let Assumption (A) hold, suppose
that the mapping F (x, ·, ω) is strictly monotone in y for each x ∈ X and ω ∈ Ω, and that
the sequence {Pk} of probability measures weakly converges to P . Also suppose that, for
each k, (xk, yk(·)) solves (SMPECΩ)k. Then, each limit point (there is at least one) of the
sequence {(xk, yk(·))} is an optimal solution to (SMPECΩ).

Assumptions B

(B1) The function f is Lipschitz continuous in (x, y).

(B2) The mapping F (·, ·, ω) is continuously differentiable and F (x, ·, ω) is uniformly
strongly monotone on C for each x ∈ X and ω ∈ Ω.

(B3) X = {x ∈ R
n | gi(x) ≤ 0, i = 1, ..., p} and each function gi is continuously

differentiable.

(B4) The Mangasarian–Fromovitz constraint qualification (MFCQ) holds for all x ∈ X.

If Assumptions (B1) and (B2) hold, then ( [10]) there exists a locally Lipschitz contin-
uous, single-valued solution map (x, ω) 7→ σ(x, ω) with

y = σ(x, ω), σ(x, ω) ∈ S(x, ω).

With this property, we can rewrite (SMPECΩ) as the one-level problem

(SNLPΩ) min
x

Eω[f(x, σ(x, ω), ω)] :=

∫

Ω

f(x, σ(x, ω), ω) P (dω),

s.t. x ∈ X,

and correspondingly (SNLPΩ)k is obtained from (SNLPΩ) by replacing P with Pk.

Theorem 2.2 (Stability of Stationary Solutions) Let Assumptions (A) and (B) hold, sup-
pose that the sequence {Pk} of probability measures weakly converges to P and is upper
bounded by a measurable function, and that for each k, (xk, yk(·)) is a Clarke station-
ary solution to (SNLPΩ)k. Then, each limit point (there is at least one) of the sequence
{(xk, yk(·))} is a weakly Clarke stationary solution to (SNLPΩ).
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2.2 Convergence of Sample Average Approximation Schemes

We use the reformulation of (SMPEC)Ω into (SNLPΩ), and consider the problem

(SNLP)N min
x

f̂N :=
1

N

N
∑

k=1

f(x, σ(x, ωk), ωk),

s.t. x ∈ X.

Assumption C

(C1) The set X is bounded and convex.

(C2) The function f(·, σ(·, ω), ω) is regular (i.e., f is directionally differentiable and the
directional derivative coincides with the Clarke directional derivative) at x for almost
any ω ∈ Ω.

Theorem 2.3 (Convergence of Optimal Solutions) Let Assumptions (A), (B1)–(B2), (C1)
hold. For each N , let (xN , yN(·)) be an optimal solution to (SNLP)N . Then, each limit
point (there is at least one) of the sequence {xN} is an optimal solution to (SNLPΩ).

Theorem 2.4 (Convergence of Stationary Solutions) Let Assumptions (A), (B), (C) hold.
For each N , let (xN , yN(·)) be a stationary solution to (SNLP)N . Then, each limit point
(there is at least one) of the sequence {xN} is a stationary solution to (SNLPΩ).

Since (SNLPΩ) is a reformulation of (SMPECΩ), the above theorems state that we
also have convergence to global optima and stationary solutions for the corresponding
discretized problem

(SMPEC)N min
x

f̂N :=
1

N

N
∑

k=1

f(x, yk, ωk),

s.t. x ∈ X,

− F (x, yk, ωk) ∈ NC(yk), k = 1, . . . , N.

2.3 Extensions to a Risk Objective Function and to Multiple

Objectives

We consider next the SMPEC where the expected value in the objective function is re-
placed by an expression for conditional value-at-risk (CVaR) at level β

(SRPEC)Ω) min
(x,y(·),γ)

γ +
1

1 − β

∫

Ω

[f(x, y(ω), ω)− γ]+ P (dω),

s.t. x ∈ X,

− F (x, y, ω) ∈ NC(y), P -a.s.,
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and analogously for the problem (SRPECΩ)k. In line with Theorem 2.1, we can establish
robustness of global optima; by reformulating SMPEC into one-level problems,

(SRNLPΩ) min
(x,γ)

γ +
1

1 − β

∫

Ω

[f(x, σ(x, ω), ω) − γ]+ P (dω),

s.t. x ∈ X,

we can also establish robustness of stationary solutions as in Theorem 2.2, and the con-
vergence of the SAA scheme as in Theorems 2.3 and 2.4; see [7] for details.

We next define the multiple objective version of the SMPEC, the SMOPEC, for q
objectives as that to

(SMOPECΩ) min
(x,y(·))

(Eω[f1(x, y(ω), ω)], . . . , Eω[fq(x, y(ω), ω)]) ,

s.t. x ∈ X,

− F (x, y, ω) ∈ NC(y), P-a.s.,

and correspondingly (SMOPECΩ)k is obtained by replacing P with Pk.

Theorem 2.5 (Stability of Weakly Pareto-Optimal Solutions to (SMOPECΩ)) Let Assump-
tion (A) hold, suppose that the mapping F (x, ·, ω) is strictly monotone for each x ∈ X and
ω ∈ Ω, that (SMOPECΩ) is a convex problem, and that the sequence {Pk} of probability
measures weakly converges to P . Also, suppose that, for each k, (xk, yk(·)) is a weakly
Pareto-optimal solution to (SMOPECΩ)k. Then, each limit point (there is at least one)
of the sequence {(xk, yk(·))} is a weakly Pareto-optimal solution to (SMOPECΩ).

To establish stability without a convexity assumption, we reformulate (SMOPECΩ) and
(SMOPECΩ)k as one-level problems by treating y as a function of x and ω, y = σ(x, ω).
This is possible if, in addition to the assumptions in Theorem 2.5, Assumptions (B1) and
(B2) hold. We denote the reformulations by (SMONLPΩ) and (SMONLPΩ)k, respectively,
where the first problem has the following appearance:

(SMONLPΩ) min
x

(Eω[f1(x, σ(x, ω), ω)], . . . , Eω[fq(x, σ(x, ω), ω)]),

s.t. x ∈ X.

Theorem 2.6 (Stability of Weakly Pareto-Stationary Solutions to (SMONLPΩ)) Let As-
sumptions (A), (B), (C2) hold, suppose that the sequence {Pk} of probability measures
weakly converges to P , and that, for each k, (xk, yk(·)) is a weakly Pareto-stationary so-
lution to (SMONLPΩ)k. Then, each limit point (there is at least one) of the sequence
{(xk, yk(·))} is a weakly Pareto-stationary solution to (SMONLPΩ).

3 First Application: Traffic Network Design

We consider a road traffic model. The network is represented by a strongly connected
graph G = (V, E), where V is the set of nodes and E is the set of directed links. For each
origin–destination (OD) pair (p, q) ∈ C with C ⊂ V×V, there is a transportation demand.
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Each route r ∈ Rpq joining the OD pair (p, q) has an associated flow hr and a travel cost
cr.

We assume that the design parameter x ∈ R
n influences the travel cost and the demand.

The travel cost function has the form c(x, ·) : R
|R|
+ → R

|R|, where |R| is the total number
of routes. The demand for each OD pair depends on the travel cost and the demand
function has the form d(x, ·) : R

|C| → R
|C|
+ .

Wardrop’s user equilibrium condition [11] states that, for each OD pair, the travel cost
for all routes utilized must be equal and minimal. Since the flow is nonnegative, this
condition can be formulated as a complementarity condition. Let πpq be the minimum
travel cost for the OD pair (p, q). The equilibrium condition is that

0 ≤ hr ⊥ cr(x, h) − πpq ≥ 0, r ∈ Rpq, (p, q) ∈ C, (1)

where a ⊥ b denotes the condition aTb = 0. Utilizing a route–OD pair incidence matrix
Γ ∈ R

|R|×|C|, we can express demand feasibility as follows:

ΓTh = d(x, π). (2)

Combining (1) and (2), we characterize the user equilibrium flows as a mixed complemen-
tarity problem (MCP),

0|R| ≤ h ⊥ c(x, h) − Γπ ≥ 0|R|, (3a)

ΓTh = d(x, π). (3b)

If we assume that the travel cost is positive, then (3) can instead be formulated as the
following nonlinear complementarity problem (NCP) ( [12, 13]):

0|R| ≤ h ⊥ c(x, h) − Γπ ≥ 0|R|,

0|C| ≤ π ⊥ ΓTh − d(x, π) ≥ 0|C|.

We can also provide a link flow representation of the user equilibrium condition. Let
v ∈ R

|E| be a vector of link flows and let tl(x, v) be the link travel cost for l ∈ E . If
we assume that the travel costs are additive and introduce a route–link incidence matrix
Λ ∈ {0, 1}|E|×|R|, the link travel cost is related to the route travel cost through the relation
c(x, h) = ΛTt(x, v). Also, to have flow conservation, we require that

v = Λh. (4)

The main objective in a network design problem is to influence the travel costs and the
demands such that some criterion is optimized. The design problem can be formulated as
an MPEC, where the traffic equilibrium is described by the system (3) of mixed comple-
mentarity constraints. An example of a network design problem is given by setting link
tolls through the design parameter x ∈ R

n, with n ≤ |E|, such that the total travel cost
f(x, v) :=

∑

l∈E tl(x, v)vl is minimized, and where, for a given design x, v is given by (3)
and (4).

The traffic equilibrium model is a static model. All quantities are assumed to be an
average over a time period, and as such they are subjected to uncertainties. The travel
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costs t(x, v, ω) and demands d(x, π, ω) are to some extent uncertain and can change de-
pending on external factors, such as the weather. Therefore, we can and should formulate
the network design problem as an SMPEC, which gives us a design which is the best
possible on average. This problem has been studied in Patriksson [6, 8]. Birbil et al. [14]
consider a similar model in which, however, the response variables are not stochastic, but
are solutions to a stochastic equilibrium problem.

For further references on traffic equilibrium models, see [13, 15, 16].
We present a small numerical example in the application of network design under user

equilibrium. The deterministic example is known as Braess’ paradox (see e.g. [15, page
75]). It demonstrates that adding an extra link to a network can cause an increase in
the total travel cost. In short, this is due to the fact that user equilibrium is a selfish
optimum and not a system optimum. Figures 1(a) and 1(b) show the network graph with
four and five links, which we will refer to as graph I and graph II, respectively.

We have one OD-pair (A, B) with a fixed demand of d = 6 units. The original network
has two paths, using the links (1, 4) and (3, 2), respectively; network II has three paths,
using the links (1, 4), (3, 2) and (3, 5, 4), respectively. The link travel costs are ti = 50+vi

for i = 1, 2, ti = 10vi for i = 3, 4, and t5 = 10+v5. Given theses costs, the user equilibrium
flows for network I are v = (3, 3, 3, 3)T, h = (3, 3)T. These flows give the equilibrium
travel cost π = 83. For network II, the user equilibrium flows are v = (2, 2, 4, 4, 2)T,
h = (2, 2, 2)T. These flows give the equilibrium travel cost π = 92. Note that adding a
link to network I yields an increase in the equilibrium travel cost.

The idea is to set tolls on network II such that we minimize the total travel cost
T (x, v) =

∑5
i=1 tivi. For the example above, we consider adding a toll x on the new link,

thus altering the travel cost to t5 = 10 + v5 + x, and consider the problem

min
(x,v,π,h)

T (x, v) + τx2,

s.t. x ∈ X,

(v, π, h) solves (3) and (4),

where X = {x ∈ R | 0 ≤ x ≤ 14} and τ > 0 is a penalty parameter against setting a too
high toll value. For a sufficiently small value of τ , the optimal solution is x∗ = 13 and the
optimal total travel cost is T (x∗, v∗) = 498. The optimal solution x∗ = 13 is the threshold
value for which there will be no flow on link 5, which in turn will give a lower total travel
cost.

Now, consider the case when the travel costs are stochastic. In particular, let us assume
that the travel costs on links 3 and 4 are

ti = 10vi + ωi−2, i = 3, 4, (5)

and that each component in ω is independent and drawn from a normal distribution with
mean 0 and variance 1, i.e., ω ∼ N (0, diag(1, 1)). We consider the following SMPEC
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model:
min

(x,v(·),π(·),h(·))
Eω[f(x, v(ω))] := Eω[T (x, v(ω))] + τx2,

s.t. x ∈ X,

0 ≤ h(ω) ⊥ ΛTt(x, v(ω)) − Γπ(ω) ≥ 0, P -a.s.,

ΓTh(ω) = d, P -a.s.,

v(ω) = Λh(ω), P -a.s.,

where Λ and Γ are the route–link incidence matrix and the route–OD pair incidence ma-
trix, respectively, for network II. The SMPEC is solved using the discretization scheme
SAA. Since the travel costs t(x, ·) are strongly monotone, the SMPEC satisfies Assump-
tions A–C, and this implies that the optimal solution is stable in the sense of Theorems 2.1
and 2.2 (see also [8]) and that SAA converges by Theorems 2.3 and 2.4.

Note that the number of variables and constraints scale linearly with the number of
scenarios, since we use a general nonlinear optimization solver. This means that, for 100
scenarios, the problem has 900 variables. So, even though the deterministic problem is of
small scale, the stochastic version is of large scale. By switching to an implicit function
v(x, ω) and using sensitivity analysis ( [17]), we may be able to solve larger problems.
The traffic model was implemented in MATLAB and solved using the solver SNOPT [18].

For a run with N = 400, the solver converged to the stationary solution x∗ = 14.
In Figure 2, we plot histograms of the objective values for stationary solutions to three
models: one with the expected value in the objective (x∗ = 14.0), one with CVaR at
β = 0.8 (x∗ = 11.6) and one with CVaR at β = 0.95 (x∗ = 10.6).

In order to illustrate the influence of the variance of the uncertain parameter on the
solution, we show in Figure 3 histograms of the equilibrium path travel cost for station-
ary solutions corresponding to four values of the variance of the stochastic variable. The
results are not surprising: a larger variance implies a larger spread in the response. (We
note in passing that Gwinner and Raciti [19] consider the stochastic traffic network equi-
librium model, i.e., the lower-level problem in the SMPEC model, and have developed a
procedure for the analytical computation of the mean equilibrium flows and their vari-
ance for the case when the travel costs are affine in the flow variables.) Having access to
histograms for responses, i.e., equilibrium solutions, is a feature of SMPEC which may be
valuable for getting specific insights into an application.

Regarding the solution of the discretized model, we have made the natural observation
that the solution time increases with the number of scenarios and that it also increases
with the variance of the stochastic variable. Obviously, these observations are based on a
single test case and should not be considered as general conclusions.

The design and implementation of a pricing scheme must be simple and transparent; it
must also address social welfare issues such as the welfare effect of tolls across population
groups. In [20–22], several equity measures are presented and evaluated in the context
of optimal network design. In the first two papers, these design models are built upon
stochastic (in fact, probit) traffic equilibrium models; such equilibrium solutions are still
deterministic functions of the data of the traffic network. The results of our accompanying
paper [7], as outlined in the previous section, are immediately transferable to such a
setting; see also the discussion sections in [6, 8].

Regardless of whether the traffic model is a deterministic or a stochastic equilibrium
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one, the theoretical results of our accompanying paper [7] may provide ideas for several
interesting developments. First, we may theoretically validate and numerically study SM-
PEC versions of network design problems where equity is included as an objective. In
the previous papers [20–22] equity measures are treated through upper-level constraints,
which however in general result in unstable optimal and stationary solutions. Our pro-
posal is to instead study a bicriterion version of the problem (see the early reference [23] on
multiobjective traffic network design), where the original toll efficiency objective is com-
plemented by an equity objective. Moreover, as network user responses in the SMPEC
model are stochastic, the equity objective is natural to include as a risk measure.

While link tolling is a decentralized pricing mechanism, signal timings are centralized
mechanisms for controlling traffic flows; optimizing signal controls subject to traffic equi-
librium constraints is nearly as old a scientific subject as is toll optimization; see e.g. the
reviews in [24, 25]. It is frequently recognized that the performance of signal timings is
unstable due to fluctuating traffic conditions, such as fluctuating demands (see e.g. [26]).
The above example serves to illustrate the potential in utilizing the SMPEC formalism in
this field.

4 Second Application: Optimization of a Treatment

Plan for Radiation Therapy

In radiation therapy, cancerous tumors are subjected to ionizing radiation. The objective
is to eradicate the tumor while sparing the surrounding tissue and organs at risk. We will
show that MPEC models can be utilized to find optimal radiation plans.

Radiation is delivered by a linear accelerator and, by using what is called multileaf
collimators, the radiation beam can be shaped such that different parts in the treatment
region receive different doses. This technique of shaping the beam is called intensity
modulated radiation therapy (IMRT). Since there are millions of ways of modulating the
intensity, the most suitable radiation dose is found by optimization. The ideal dose is still
often not attainable, so the objective is to find the best compromise achievable.

The linear accelerator can deliver radiation to the target from several angles by the use
of a gantry arm. For some cases, up to nine gantry angles are used to give a good target
coverage. The angles are usually considered fixed in the optimization problem.

We will describe two methods for parameterizing the multileaf collimator system. Both
methods may act as the lower-level problem in an (S)MPEC setting. The beam cross-
section is subdivided into small rectangular cells, known as beamlets, and the decision
variables are the intensities through each cell. In the first method, we assume that any
bounded, nonnegative, intensity profile is attainable by multileaf collimators as a total
over a treatment time. We also assume that the doses scale linearly with the intensities
and are additive.

In the other method, the leaf trajectories are parameterized; given a desired intensity,
the trajectories are found through an optimization problem.

Objective functions in IMRT are either physically or biologically based. In short, a
physically based function is a function of the dose alone. It can, for example, be the
quadratic deviation from a dose level sought or the maximum dose in a domain. A

10



biologically based function is associated with a specific organ and measures the biological
effect of a dose. The function is constructed using a set of biological parameters which
can depend on the organ type, its size, shape etc.

An example of a biologically based function is the normal tissue complication proba-
bility (NTCP) (see e.g. [27]):

NTCP = 1√
2π

∫ u

−∞
exp−t2/2 dt,

where

u =
GEUD(d) − D50

mD50
,

and D50 is the homogeneous dose corresponding to 50% risk of complication, m determines
the slope of the risk, d is the dose, and GEUD ( [28]) is the generalized equivalent uniform
dose,

GEUD(d) =

(

1
|J |
∑

j∈J

da
i

)1/a

,

where J is the set of voxels (discretized cells) in the organ. The parameter a influences
the volume effect of the dose: if a = 1, then the function measures the mean dose; for
higher values, the function value approaches the maximum dose. For example, the spinal
cord is sensitive to a maximum dose and the volume effect is low. On the other hand,
the parotid glands are organs that are sensitive to how much volume receives a certain
dose. Suitable values for a are typically fit from clinical data. The GEUD function may
be used as an objective function by itself. The function is attractive from several points
of view, not the least the fact that it is convex if a ≥ 1, which is the case for organs.

Radiation therapy is delivered in fractions over several weeks; although the patient is
fixated, there will be variations in position over the sessions. (This is called setup errors.)
Another uncertainty that affects how good a treatment plan is in practice is the patient
and organ motion which will vary during a treatment session. Combining the two, we
get a position uncertainty. Olafsson and Wright [29] and Chu et al. [30] assume that
the doses are stochastic and use probabilistic constraints to control the dose levels in the
target and in the organs at risk. Chan et al. [31] use a motion probability mass function
and assumes that the probability itself is uncertain. Using linear programming duality,
they can formulate the optimization problem as a large linear program. Baum et al. [32]
use coverage probabilities for the target and tumor as penalties in the objective functions
to derive a robust treatment. Unkelbach and Oelfke [33] discuss, from a mathematical and
a physics perspective, the difference between using coverage probabilities and stochastic
programming in IMRT optimization.

Biological uncertainty can also be incorporated in an SMPEC model through the ob-
jective function. An optimal solution then is the best from a population perspective.
Functions based on the biological effect have certain advantages over physically based
ones, but they rely on the accuracy of biological parameters which are fit from data in
medical studies. For example, the dose–volume effect for the bladder is uncertain (see
e.g. [34, 35]), which has an impact on the parameter a in the GEUD function.
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In K̊aver et al. [36] and Lian and Xing [37], stochastic programming is used for the
optimization of a treatment plan when there are uncertainties in the biological parameters.
In both papers, the expected value of the objective functions is minimized. K̊aver et al.
use the objective P+ ( [38]), which is a nonconvex objective function; Lian and Xing use
an objective function based on GEUD. Lian and Xing report that the result strongly
depends on the underlying probability distribution.

For more general information on IMRT, see e.g. [39–41].

4.1 Linear Lower-Level Problem

Let y ∈ R
m denote the dose in the voxels and let x ∈ X denote the intensities (beamlets)

in the beam. If the dose scales linearly and is additive, an attainable dose is given by the
equation

y = Kx, (6)

where the influence matrix K ∈ R
m×n is computed beforehand. To put this parameteri-

zation into the (S)MPEC framework, let x denote the decision variables and let y denote
the response variables. The equation (6) then represents the lower-level problem.

In connection with this setting, we consider a prostate case where the PTV (Planned
Target Volume) overlaps two critical structures: the rectum and the bladder (see Figure
4). We have four objectives, which are listed in Table 1. The PTV should receive a
uniform dose of dP = 70 Gy (J/kg). The rectum is considered as an organ with a serial
architecture, which means that it is sensitive to the maximum dose. The volume effect
parameter for this organ is set to ar = 8.3 according to Emami et al. [42]. The architecture
of the bladder is more uncertain, but it is set to ab = 2 [42].

In Table 1, the structure ’Unspecified’ refers to the normal tissue surrounding the
other structures. We enforce a maximum dose limit dN = 50 Gy on this structure. This is
quite common in clinical practice in order to avoid hot spots which can induce secondary
cancers.

The upper limits for the GEUD for the rectum gr and for the bladder gb were computed
from the treatment plan which was used in the clinic for this patient.

Since the structures overlap, the four objectives will be in conflict with each other; it is
our goal to find a good compromise. This is a multiple objective problem for which The-
orem 2.5 and 2.6 represent the stability results obtainable. We use a simple scalarization
of the objective functions.

Target coverage is enforced by minimizing a quadratic measure of the deviation. We
assume that the location of the tumor is uncertain and consider it to move like a rigid
object with a radial offset. We choose to ignore any fractionation effect and consider the
treatment to be given at a single session. This means that we assume that the total dose
D for the target after N fractions is D(ω) =

∑N
i=1 d(ωi); it is assumed to have its center

normally distributed with standard deviation 0.6 cm. Furthermore, let T (ω), B, R, N
denote the voxels in the PTV, the bladder, the rectum and the normal tissue, respectively.
For a vector v ∈ R

n and a set I = {i1, . . . , ik} with |I| ≤ n, we use the notation

vI = (vi1 , . . . , vik)
T and v+ = (max{0, v1}, . . . , max{0, vn})

T.

Also, we let e = (1, . . . , 1)T.
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Consider the following multiobjective problem, which is of the form (SMOPECΩ):

(SIMRTΩ) min
(x,d)

(Eω[Q1(d, ω)], Q2(d)),

s.t. xj ∈ Xj , j = 1, . . . , n,

d = Kx,

where Xj = [0, uj] are lower and upper bounds on the intensities and the objective
functions are defined as

Q1(d, ω) := 1
2|T (ω)|(dT (ω) − s0)

TS−1
0 (dT (ω) − s0),

Q2(d) := 1
gr

(

1
|R|
∑

j∈R
dar

j

)1/ar

+ 1
gb

(

1
|B|
∑

j∈B
dab

j

)1/ab

+ 1
2|N |(dN − r0)

T
+R−1

0 (dN − r0)+,

where
s0 = dPe, S0 = diag(s0), r0 = dNe, R0 = diag(r0).

Both Q1 and Q2 are convex functions; hence, (SIMRTΩ) is a convex problem. The function
Q1 measures the deviation from the target dose dP ; Q2 is based on the GEUD functions
for the rectum and the bladder, respectively, and a one-sided measure of the deviation
from the maximum dose in the unspecified tissue.

The uncertainty in (SIMRTΩ) enters only into the objective functions. The lower-level
problem is the trivial linear equation, d = Kx, and so the assumptions of Theorem 2.5
are fulfilled: weakly Pareto-optimal solutions are stable.

We use beams from 5 equidistant gantry angles to irradiate the tumor. The number
of voxels and variables in (SIMRTΩ) depends on the number of beams, the beamlet size
and the geometry and resolution of the patient region. For this case, we have 1, 526, 330
voxels and n = 336 variables. We let uj = 30 for j = 1, . . . , n. The IMRT model was
implemented in Fortran 90. The radiation treatment planning tool CERR [43] was used
to setup the problem, and LANCELOT B [44] was used as the optimization solver.

We compare three models: a conventional treatment where we use a static target with
a 1 cm extra margin (T (ω) in (SIMRTΩ) is replaced by a static set); a treatment with
(SIMRTΩ); and a treatment with (SIMRTΩ) but with conditional value-at-risk at level
β = 0.8 instead of the expected value. We compute only one solution on the Pareto
surface by setting the constraint Q1 ≤ 0; see Figure 5. Using an extra margin is the
most conservative choice as it will “guarantee“ that the tumor gets a sufficient dose,
although at the expense of extra radiation to the risk organs. The expected value is
the least conservative choice, as it constrains the tumor in a mean sense; the CVaR
objective is a compromise. The conventional treatment gives a 2.7% risk of rectal bleeding
(m = 0.15, D50 = 80 Gy [42]), while the expected value results in the risk being reduced
to 0.9%. If CVaR at level β = 0.8 is used, the risk is 1.1%.

The results show that, if there is a willingness to be less conservative in the choice
of target coverage, then there is a benefit in using stochastic models in terms of risk of
complications.
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4.2 Deliverable Treatment

The multileaf collimators (MLC) that shape the beam are organized as pairs. If we
consider the rectangular beam cross-section as a matrix, where each element represents a
discretized cell, then each leaf pair can block a “column”; see Figure 6 (note that, in the
figure, each leaf blocks one row). Let I = {1, . . . , m}, J = {1, . . . , n}, and let xij , j ∈ J ,
i ∈ I, be the desired intensity (decision variables) in beamlet (i, j). We assume that there
are n pairs of MLC leaves (Aj , Bj), j ∈ J . We assume that the leaves move from row 1
to row m.

Let aij and bij denote the cumulative beam-on time in monitor units of leaf Aj and
leaf Bj, respectively, at row i. Assuming that each leaf totally blocks the radiation, and
that it “jumps” instantaneously from row i to row i+1, the delivered intensity y satisfies
yij = aij − bij . The objective with leaf motion computation is to determine the beam-on
time a and b such that the desired intensity is obtained, in minimum total time (beam-on
time).

The leaves are constrained to not exceed a maximum speed, which implies that there
is a minimum time difference between the beam-on time for two consecutive rows. If we
assume that the distance between all rows are constant, we can set the minimum time
difference to ∆t.

We assume that each pair of leaves begin at row 1. In reality, leaf B could be positioned
at i > 1 if the intensities permit it. This would reduce the total time.

Since the beam must be on until the slowest leaf pair finishes, the leaves Aj are also
constrained to end at row m at the same time. This would avoid any extra radiation
through the unclosed leaves. The optimization problem to deliver an intensity x, in
minimum time, is formulated as:

(TLP) min
(t,a,b)

t,

s.t. ai+1j ≥ aij + ∆t, i = 1, . . . , m − 1,

bi+1j ≥ bij + ∆t, i = 1, . . . , m − 1,

am,j = t, j ∈ J,

xij = aij − bij , i ∈ I, j ∈ J,

aij ≥ 0, i ∈ I, j ∈ J,

bij ≥ 0, i ∈ I, j ∈ J.

This model was formulated by Convery and Rosebloom [45]. Spirou and Chui [46] present
an analytic expression for the optimal solution, which is derived from the fact that one
of the leaves in each pair must move at the maximum speed. Consider the pair j and
assume that aij and bij are known.

If xi+1j ≥ xij , then

{

bi+1j = bij + ∆t,
ai+1j = bi+1j + xi+1j ,

(7a)

If xi+1j < xij , then

{

ai+1j = aij + ∆t,
bi+1j = ai+1j − xi+1j .

(7b)
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In reality, there are phenomena which effect the delivered intensity y. One such is leaf
transmission, which is considered by Spirou and Chui [46]. Let τ be the leaf transmission
factor and let t∗ be the total beam-on time. Then the intensity delivered is

yij = τ [t∗ − (aij − bij)] + aij − bij , (8)

where t∗ − (aij − bij) is the total time cell (i, j) is blocked and there is a transmission.
From the analytic expressions (7), the total beam-on time is given by ( [46])

t∗ = max
j

(

n∆t + xmj +

m−1
∑

i=1

[xi+1j − xij ]+

)

.

We consider the linear optimization problem (TLP) as the lower-level problem in an
(S)MPEC framework. We let x denote the decision variables. If we let the total beam-
on time t denote the response variable (a and b are eliminated in (8) by the equation
xij = aij − bij), we see that, since it is Lipschitz continuous, it fulfills the requirements on
the lower-level problem for global and stationary stability, cf. Theorem 2.1 and 2.2. On
the other hand, if we let a and b denote the response variables, we note that they are not
Lipschitz continuous with respect to x as is shown in the analytic expressions. However,
in practice, if we consider a nonoptimal heuristic solution in the lower-level problem, we
can modify the analytic expressions with a ramp to make the responses A and B Lipschitz
continuous with respect to x, and this will give stability.

We now consider the same prostate case as in the previous subsection, with the ex-
ception that the dose to the tumor should be ±3%. We assume that the locations are
static, but the leaf trajectories A and B are stochastic. This is manifested in that, at
each position (i, j), there can be a delay in the beam-on time, which corresponds to the
fact that the leaves may unexpectedly move more slowly than anticipated. This is to
some extent observed in reality ( [47]). Consider the following stochastic multiobjective
problem:

(SDELΩ) min
(x,y(·),a(·),b(·),t(·))

(Eω[G1(d(ω))], Eω[G2(d(ω))]) ,

s.t. x ∈ X,

y(ω) = τ(t − (a − b))

+ (1 + c(ω))(a − b), P -a.s.,

d(ω) = Ky(ω), P -a.s.,

(a, b, t) solves (TLP) given x,

where c determines the speed lag and

G1(d(ω)) := 1
2|T |(dT − s0)

TS−1
0 (dT − s0),

G2(d(ω)) := 1
gr

(

1
|R|
∑

j∈R
dar

j

)1/ar

+ 1
gb

(

1
|B|
∑

j∈B
dab

j

)1/ab

+ 1
2|N |(dN − r0)

T
+R−1

0 (dN − r0)+.
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The function c is chosen such that, for each beam, 10% of the positions are affected. Let
k ∈ K denote the affected intensities, let ωk ∼ N (0.1, 0.1)∩R+ for k ∈ K, let ck = ωk for
k ∈ K, and let ck = 0 for k /∈ K. The multiobjective problem is discretized using SAA
with 20 samples and solved using the epsilon-constrained method ( [48]). The model was
implemented in Fortran 90 and LANCELOT B [44] was used as the optimization solver.
The lower-level problem was implemented as an implicit function.

Figure 7 shows the local Pareto front for solutions to SDELΩ. As a comparison, locally
optimal solutions x∗, corresponding to the deterministic plan (c ≡ 0), are evaluated in
SDELΩ. The results show that there is an unexpected leakage of radiation due to slower
moving leaves, and this in turn implies that the organs receive an additional dose. The
SMPEC model is to some extent able to cope with this situation and delivers on average
a better treatment plan compared to a deterministic model.

5 Summary, Conclusions and Future Research

This paper contributes with two rather different applications of robust SMPEC models.
First, we consider the case of robust network design under tolled user equilibrium flows.

This is a case where the lower-level problem is a variational inequality over a polyhedral
set, and where uncertainty may be present in both the demand and travel cost functions.
Our numerical example focuses on the latter, and we experiment with both the traditional
average and the CVaR objective. Robustness of stationary solutions follows, since we
assume the travel cost to be separable and affine with positive coefficients. In practice,
link costs normally are modeled as nonlinear. In order to establish the robustness of
stationary solutions and the convergence of Monte Carlo schemes, Assumption (B) must
be enforced (cf. Theorems 2.2 and 2.4), which implies a strong monotonicity assumption
on the travel cost; this may be a limiting factor in some applications. A particularly nice
feature of the present application is the availability of information from the responses
generated in the Monte Carlo scheme, as revealed in Figures 2 and 3. In applications
of toll optimization, where equity is an important issue, the CVaR objective provides
a very interesting performance measure, as it allows for the optimization of the worst
case situation. It would be interesting to further study applications of robust toll setting
problems under uncertainty in this setting, in particular in the multiclass, elastic demand
setting.

Second, we consider the optimization of a robust treatment plan in intensity modulated
radiation therapy. We consider two lower-level problems, each with its unique type of
uncertainty: one with a simple linear system of equations, where the position of the
tumor is uncertain, and one with a linear program where some of the machine parameters
are uncertain. In the first of these examples, both the expected value and the CVaR
objective are used to tackle the position uncertainty. The properties of the simple lower-
level problem imply that the problem is convex and also that globally optimal solutions
are robust. The numerical example shows that the risk of complications can be reduced
significantly if the conservative extra margin around the tumor is reduced and tumor
coverage is enforced with expected value or CVaR minimization.

The linear program in the lower-level problem represents the problem to find optimal
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leaf trajectories to block the beam such that a given intensity profile is (almost) attained
in minimum time. Compared to the other version with a linear lower-level problem, this
formulation is approaching what is called a deliverable treatment. This means that the
optimal solution can be used with much less postprocessing, which may otherwise worsen
the plan. We assume that the speed of the leaves are uncertain, which implies that
there will be unexpected leakages of radiation. Due to the presence of a linear lower-
level problem, the resulting SMPEC violates Assumption (B); to establish robustness, we
consider a heuristic solution to the lower-level problem. We consider the optimization of a
treatment plan as a multiobjective problem with two goals: tumor coverage and minimum
risk of complications. It was found that the uncertainty in general reduces the quality of
a plan due to the radiation leakage, but that the SMPEC model yields a better treatment
plan on average compared to a deterministic model.

We already utilize biological objective functions in our IMRT application, and they
are becoming increasingly important in practice. As a future research task, it would be
interesting to consider uncertainty also in the radiobiological parameters. Their inclusion
into the SMPEC model should be straightforward.

For the application of the SMPEC model to become more practical, special algorithms
need to developed.
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Structure Prescription
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Figure 2: Histograms (N = 400) for the objective values: one with expected value in the
objective, one with CVaR at β = 0.8, and one with CVaR at β = 0.95.
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objective (right figure).

28



Beam fluence profileMultileaf collimators

Figure 6: Snapshot of the motion of the multileaf collimators (left figure) for the fluence
(intensity) profile shown in the right figure for a cross-section of the beam.
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Figure 7: The figure shows three fronts: one is a local Pareto front for solutions x∗
s to

the stochastic model SDELΩ (Stoch.); one is a local Pareto front for solutions x∗
d to the

corresponding deterministic model, i.e., with c ≡ 0 (Det.); and one is the deterministic
solutions x∗

d evaluated in SDELΩ (Det. with exp.).
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