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Weprovide a new mathematical model for strategic traffic management, formulated and
analyzed as a mathematical program with equilibrium constraints (MPEC). The model

includes two types of control (upper-level) variables, which may be used to describe such
traffic management actions as traffic signal setting, network design, and congestion pricing.
The lower-level problem of the MPEC describes a traffic equilibrium model in the sense of
Wardrop, in which the control variables enter as parameters in the travel costs. We consider
a (small) variety of model settings, including fixed or elastic demands, the possible presence
of side constraints in the traffic equilibrium system, and representations of traffic flows and
management actions in both link-route and link-node space.
For this model, we also propose and analyze a descent algorithm. The algorithm utilizes a

new reformulation of the MPEC into a constrained, locally Lipschitz minimization problem in
the product space of controls and traffic flows. The reformulation is based on the Minty (1967)
parameterization of the graph of the normal cone operator for the traffic flow polyhedron.
Two immediate advantages of making use of this reformulation are that the resulting descent
algorithm can be operated and established to be convergent without requiring that the travel
cost mapping is monotone, and without having to ever solve the lower-level equilibrium
problem. We provide example realizations of the algorithm, establish their convergence, and
interpret their workings in terms of the traffic network.

1. Introduction
The need for measures to reduce congestion in the
metropolitan traffic areas is becoming more serious as
citizens cluster in cities with the immediate side effect
of an increase in traffic demand. A functioning society
depends on the mobility provided by the transporta-
tion network to enable its members to participate in
essential activities such as production, consumption,
communication, and recreation. It is however nec-
essary for society also to introduce congestion-relief
measures for the quality of life, the environment, and
the safety of the citizens not to deteriorate.
Any well-founded traffic model recognizes the indi-

vidual network user’s right to decide when, where,
and how to travel. The criteria by which the user

makes these choices are selfish, and are therefore on
the aggregate level not entirely in par with society’s
goals of an efficient and safe utilization of the traf-
fic network. A classical example of this conflict is
that the typical traveller can be expected to choose
a route between his/her origin and destination such
that the combined travel time and cost is minimal
given the network conditions when the travel is made;
the aggregate effect of these decisions is a network
flow that does not minimize the total system costs.
We may model this conflict in the traffic system as

a noncooperative Stackelberg game, in which a traf-
fic manager, represented as the leader, takes some
action, such as a change in the infrastructure or in
the traffic signal plans, so as to achieve some overall
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management goal with respect to the distribution of
the traffic in the network and some measure of net-
work performance. The travellers are then modelled
as the followers; they react to the actions of the man-
ager by modifying their behavior, for example, by
adjusting their route choices, travel modes, or time of
day to travel. If the manager’s actions are adequate,
then the travellers’ response is the desired one. Com-
mon means for achieving such a change in the traffic
flows are to invest in traffic network capacity, to intro-
duce or adjust traffic controls such as traffic lights, to
introduce tolls on some links, or to supply the trav-
ellers with information about alternative routes. The
common point in all these traffic management models
is that the main control variable is the users’ travel
costs (or, rather, travel cost adjustments), even though
they may be influenced indirectly through the actions
implemented.
Taking as the starting point a general Stackelberg

model of the decision problem, we provide several
examples of possible management goals and corre-
sponding model instances. Measures that one can
model through this strategy are variations in traffic
signal plans, alterations of the network infrastructure,
also referred to as network design, and the introduc-
tion and setting of tolls in the network. We begin how-
ever with a short discussion on the equilibrium model
that represents the behavior of the network users
given a network infrastructure. We stress already at
this stage that we shall be concerned only with the
case of static equilibrium conditions, thus ignoring in
this work possible time-dependent (dynamic) effects.

2. Wardrop Equilibrium
Let � = �� ��� be a transportation network, where
� and � are the sets of nodes and directed links
(arcs), respectively. For certain ordered pairs of nodes,
�p� q� ∈�, where node p is an origin, node q is a des-
tination, and � is a subset of � ×� , there are positive
travel demands dpq (which initially shall be assumed
fixed) giving rise to a link traffic flow pattern. We
assume that the network is strongly connected, that
is, that at least one route joins each origin-destination
(OD) pair.
Wardrop’s user equilibrium principle (1952) states

that for every OD pair �p� q� ∈ �, the travel costs of

the routes utilized are equal and minimal. We denote
by �pq the set of simple (loop-free) routes for OD pair
�p� q�, by hpqr the flow on route r ∈�pq , and by c̄pqr 
=
c̄pqr �h� the travel cost on the route given the vector
h ∈ ���� of route flows, where ��� denotes the total
number of routes in the network; with this notation,
an equilibrium flow is defined by the conditions

hpqr > 0 �⇒ c̄pqr = �pq� r ∈�pq� �p� q� ∈�� (1a)

hpqr = 0 �⇒ c̄pqr ≥ �pq� r ∈�pq� �p� q� ∈�� (1b)

where the value of �pq 
= �pq�h� is the minimal (i.e.,
equilibrium) route cost in OD pair �p� q�. By the non-
negativity of the route flows, the system (1) can more
compactly be written as the complementarity system

0≤ hpqr ⊥ �c̄pqr −�pq�≥ 0� r ∈�pq� �p� q� ∈��

(2)

where a⊥ b, for two arbitrary vectors a� b ∈�n, means
that aTb = 0. The Wardrop conditions state that an
equilibrium state is reached precisely when no trav-
eller can decrease his/her travel cost by unilaterally
shifting to another route.
To cast the Wardrop conditions as a variational

inequality problem, we need to decide in which space
we wish to represent the flows and the flow feasibility
requirements. A general form is obtained by describ-
ing the set of feasible, aggregate, link flows as the
solution in f ∈���� to the linear system

f = Vv� (3a)

Wv = d� (3b)

v ≥ 0� (3c)

where v is the (disaggregated) vector of the com-
modity flows, V is an incidence matrix that describes
the aggregation of these flows into a correspond-
ing link flow f , and W is an incidence matrix that
describes the feasibility requirements with respect to
the demand, d, in the commodity flow space.
The most common representation of the Wardrop

conditions as a variational inequality problem is in
terms of the route flow variables hpqr . We obtain this
formulation by identifying v = h, d ∈����

++ as the vec-
tor of each OD pair’s demand, and W = �T, where
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� ∈����×��� is the route-OD pair incidence matrix (i.e.,
the element �rk is one if route r joins OD pair k =
�p� q� ∈�, and zero otherwise). In a disaggregated ver-
sion of the Wardrop conditions, we consider only uti-
lizing the part (3b)–(3c) of the system (3) above, thus
describing the (bounded polyhedral) set

H 
= {
h ∈����

+
∣∣�Th= d

}
of demand-feasible route flows. The condition (1) is
equivalent to h satisfying

−c̄�h� ∈ NH�h�� �VIP-H�

where c̄ 
����
+ �→����

++ is the vector of route travel cost
functions, and NS�s� denotes the normal cone to a
nonempty, closed and convex set S ⊆�n at s ∈�n, that
is, the set

NS�s� 
=
{
�z ∈�n � zT�y− s�≤ 0� ∀y ∈ S � s ∈ S�

�� s � S!

To see this equivalence directly, we utilize the nota-
tion � to rewrite (2) as follows:

0≤ h⊥ �c̄�h�−���≥ 0! (4)

Together with the feasibility requirement that �Th =
d must hold, the system (4) describes the optimality
conditions for h, solving the linear program to mini-
mize c̄�h�Ty over y ∈H ; this is precisely [VIP-H ].
We remark here that the existence of several groups

of users or modes of transport is easily modelled
within the above framework, by simply creating a
copy of the network for each user group and mode,
and relating their travel costs, if needed, through the
vector c̄.
In the case where the travel cost of a route is the

sum of the travel costs on the links defining it (i.e.,
the route costs are additive), then the above Wardrop
conditions can be described in terms of link flows.
We then further identify V = " in (3a), where " ∈
�0�1 ���×��� is the link-route incidence matrix (i.e., the
element #ar equals one if route r utilizes link a, and
zero otherwise), and thus the (bounded polyhedral)
set of demand-feasible link flows

F̂ 
= {
f ∈����∣∣ ∃h ∈H with f ="h

}
!

Then, the problem [VIP-H ] can be equivalently writ-
ten as

−t̄�f � ∈ NF̂ �f �� �VIP-F̂ �

where t̄ 
 ����
+ �→ ����

++ is the vector of link travel cost
functions. (The link and route costs are related by
c̄�h�="T t̄�f �, for any pair �h� f � ∈H × F̂ .)
The set of feasible link flows can also be described

by the OD-specific link flows that satisfy the demand
for transportation and flow conservation constraints
for all the nodes of the network; this is the sec-
ond most popular representation of feasible flows.
In the system (3), we then identify W as a block-
diagonal matrix with ��� blocks Wk, with Wk =A, A ∈
�−1�0�1 �� �×��� being the node-link incidence matrix
of the network. Further, d is a (��� · ���)-vector, with
��� vectors dk, each being a vector of OD-specific
demands, stacked on top of each other. (The elements
of dk sum to zero.) We also identify v as the (��� · ���)-
vector of commodity link flows fak. Hence, (3b) corre-
sponds to the commodity-specific flow conservation
constraints

Afk = dk� k ∈�!

Finally, V is the block-diagonal (���× ���)-matrix that
describes the aggregation of the commodity link flows
fk into f . Summarizing, then, the system (3) describes
the (unbounded polyhedral) set of demand-feasible
link flows

F 
 =
{
f ∈����

∣∣∣∣ ∃fk ∈����
+ � k ∈��

with f = ∑
k∈�

fk and Afk = dk

}
!

In the present setting, of course, k is identified with
an OD pair �p� q� ∈�, and, further, each vector dk has
precisely two nonzeros. We may, however, consider
k to denote a less disaggregated flow, such as flows
from different origins, or different vehicle types, etc.
The two representations that we have chosen here are
in that sense at the two extremes in terms of level
of aggregation. We also note that in more generality,
we may consider different networks, that is, different
matrices Ak, for each commodity k, or type k of traffic.
This will necessarily also lead to a proper modifica-
tion of the matrix V above.
Note that F̂ ⊂ F holds because the latter contains

cyclic flows, but due to the positivity assumption on t̄,
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no equilibrium flow will utilize any cyclic flow, so this
alternative representation is, in that sense, equivalent.
In the following, we shall always consider the ver-
sion [VIP-F ] whenever considering a link flow-based
equilibrium system.
More general considerations, such as the possible

presence of side constraints in the equilibrium system,
or that the demand at equilibrium depends on the
cost of the trip, is relegated to §7.

3. A General Stackelberg Model
3.1. The Mathematical Model
This section introduces a general Stackelberg model
for the society’s traffic management problem. We
introduce two vectors, ' and (, of parameters denot-
ing the actions taken by the traffic manager.
The parameter ' is assumed to enter the travel cost

function, leading to the parameterized (and presumed
continuous) function t�'� f � (in the case of the equi-
librium model [VIP-F ]), or c�'�h� (in the case of the
equilibrium model [VIP-H ]). Further, ' is constrained
to a polyhedral set, which we denote by P ⊂ �p and
which may be determined by political, practical, envi-
ronmental, and economical constraints, and possibly
other considerations as well. (The assumption that P
is polyhedral is not essential to the results presented,
but simplifies some parts of the algorithm.)
The parameter ( enters the travel cost function as

an additive term. So, given actions �'�(�, the travel
cost mapping takes the form f �→ t�'� f �+( (respec-
tively, h �→ c�'�h�+(). We allow for no explicit con-
straints on ( because we wish for an equilibrium to
always exist whatever the choice of ' ∈ P. However,
one could always include smooth penalties for any
constraints one wishes to impose on ( into the objec-
tive function *, to be discussed next.
Among the possible actions, the manager optimizes

a function, *, defined over P×����×���� (respectively,
P×���� ×����), of the actions and traffic flows. This
function may include some further measures of net-
work performance as well as measures of the cost
and/or benefits associated with a given action. We
shall presume throughout that this function is contin-
uously differentiable on P×����×���� but remark that
in principle piecewise differentiability would suffice.

Taking [VIP-F ] as the underlying equilibrium
model, the general problem then is to

[MPEC-F ]

minimize *�'�(�f � (5a)

subject to ' ∈ P� (5b)

− t�'� f �−( ∈ NF �f �! (5c)

For further reference, we shall denote the set f of
solutions to (5c) by S�'�(�. If the lower-level prob-
lem (5c) has unique solutions f , then the problem
[MPEC-F ] is well defined, but in situations where
there is more than one equilibrium solution, it is
not clear how to interpret the minimization operation
in [MPEC-F ] because the value of *�'�(�f � is then
impossible to predict. We next turn to explain our
proposal to resolve this issue.

3.2. Sensitivity Analysis and Well Posedness
Under Lower-Level Nonuniqueness

In the case where the cost mapping f �→ t�'� f �+( is
positive and strictly monotone on F , the solution, f , to
(5c) is uniquely determined by �'�(�, that is, S�'�(�

is a singleton set. We may, in the situation that this is
true for every �'�(� ∈ P×����, think of the problem
[MPEC-F ] as that to find the minimum of the function
�'�(� �→ *�'�(�f �'�(�� over P×����, where f �'�(�

denotes the unique solution to (5c). This implicit func-
tion is continuous on P×����.
For the development of efficient algorithms for

finding a minimum of the function �'�(� �→
*�'�(�f �'�(�� over P ×���� it is detrimental that it
has stronger differentiability properties. Much is, of
course, known about the sensitivity and stability of
solutions to perturbed variational problems (see, for
example, the monographs in Luo et al. 1996, Rockafel-
lar and Wets 1998, Outrata et al. 1998, and Bonnans
and Shapiro 2000), and specialized analyses have been
conducted also for the case at hand. It is important
to note that in traffic equilibrium models the presence
of variables at different levels of aggregation (total
link flows together with commodity link flows or
route flows) means that some of the traditional tech-
niques in sensitivity analysis, such as the strong reg-
ularity results by Robinson (1980), are applicable only
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by viewing the problem in terms of the aggregated
variables (total link flows). In the sensitivity analy-
sis of traffic equilibria, this possibility has most often
been overlooked, and much (unnecessary) effort has
been spent on the choice of an appropriate disag-
gregated flow (cf. Tobin and Friesz 1988, Qiu and
Magnanti 1989, Yen 1995, Cho et al. 2000). The fact
that the sensitivity analysis is independent of any
such choice was first demonstrated in Patriksson and
Rockafellar (2002) for the case of elastic demands.
Patriksson (2002) provides a rather complete analy-
sis of the sensitivity of traffic equilibria and improves
and extends the analyses made in Tobin and Friesz
(1988), Qiu and Magnanti (1989), Yen (1995), Outrata
(1997), Cho et al. (2000), and Patriksson and Rock-
afellar (2002), including characterizations of the differ-
entiability, and the generation of subgradients of the
mapping S at a reference point �'r�(r�. An overview
of the sensitivity analysis of the problem at hand fol-
lows.
Assume that the parameterization is rich enough

so that the rank of the Jacobian matrix +'t�'
r� f r � is

full (that is, p). (This condition can always be fulfilled
through the introduction of dummy parameters.) We
introduce the sensitivity problem as that of, given a
perturbation �,'�,(�, finding a solution to the varia-
tional inequality

DS��'r�(r� � f r��,'�,(�


= {
,f ∈����∣∣− r�,'�,(�,f � ∈ NK�,f �

}
� (6)

where

r�,'�,(�,f � 
= +'t�'
r� f r �,'+,(++f t�'

r� f r �,f

(7)

is the problem mapping, and where its feasible set is
the critical cone,

K 
= TF �f
r �∩ �t�'r� f r �+(r�⊥� (8)

where TF �f
r � is the tangent cone to F at f r . Further,

for any vector z ∈ �n, z⊥ 
= �y ∈ �n � zTy = 0 is the
orthogonal subspace associated with the vector z. The
problem (6) amounts to solving an affine variational

inequality defined such that we retain first-order opti-
mality and feasibility in the original model. (In Qiu
and Magnanti 1989, Patriksson and Rockafellar 2002,
and Patriksson 2002 it is shown that these types of
problems are special affine traffic equilibrium prob-
lems over variations of the original traffic network.)
The first result states that the mapping S is strongly
regular in the sense of Robinson (1980 and 1985), that
is, single-valued and locally Lipschitz continuous, at
�'r�(r�, if, and only if, the solution ,f to the sensitiv-
ity problem (6) is unique for each choice of perturba-
tion. Moreover, when this condition is satisfied, this
unique value is the directional derivative of the equi-
librium link flow solution at �'r�(r� in the direction
of �,'�,(�, and the mapping S is B-differentiable (in
the sense of Robinson 1985), and, equivalently, semi-
differentiable (in the sense of Rockafellar and Wets
1998). This property is important, in that it is exactly
what is needed to apply a Newton-type algorithm
for the problem to minimize �'�(� �→ *�'�(�f �'�(��
over P×����, a subject which has yet not found appli-
cation in the context of traffic management. (See fur-
ther the references Pang and Qi 1993, Qi 1993, and
Qi and Sun 1993, for more information about Newton
methods for semi-smooth functions.) It is also enough
to be able to devise bundle subgradient algorithms
for the problem; see the further research section and
Patriksson (2002) for further details on that subject.
A sufficient, but not necessary, condition for strong

regularity is that the partial Jacobian +f t�'
r� f r � satis-

fies the condition that

sT+f t�'
r� f r �s > 0� s ∈ K−K� (9)

that is, a positive definiteness condition on the crit-
ical subspace associated with the problem (5c) at
�'r�(r� f r �. This type of condition has been utilized
in Qiu and Magnanti (1989), Yen (1995), and Outrata
(1997).
The mapping S is moreover differentiable at �'r�(r�

if, and only if, for every choice of perturbation vector
�,'�,(� it holds that if a route r or a link for a specific
commodity is such that its flow in every equilibrium
solution is zero, then it remains zero in every solution
to the sensitivity problem. This result in Patriksson
(2002) improves on those previously stated in Tobin
and Friesz (1988), Cho et al. (2000), which assume
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that there is a strictly complementary equilibrium link
flow. Not only is it shown in Patriksson (2002) that the
strict complementarity condition is stronger than nec-
essary, but that the computational formula in Tobin
and Friesz (1988), Cho et al. (2000) may fail to produce
a gradient value even if one exists, or even provide a
value when no gradient exists. Patriksson (2002) also
supplies a calculus formula for a subgradient of S
at �'r�(r� in the absence of a gradient; the problem
solved to obtain a subgradient is similar to that of
calculating a directional derivative in each coordinate
direction, but it contains only equality constraints.
In all events, the technical conditions stated above

amount to some form of positive definiteness of the
Jacobian of the travel cost function, which is natu-
rally implied by some strict (or, strong) monotonic-
ity assumption with respect to t�'� ·� on F for every
' ∈ P. The assumption that the equilibrium solution
is unique (which it will boil down to of course) is,
however, often too strong to be accepted easily. We
mention two such cases. If we wish to consider the
underlying traffic equilibrium model [VIP-H ] in our
development of traffic management instruments, we
must note that the equilibrium solution h is likely
to never be uniquely determined by �'�(� even if
f is because a link flow is not uniquely decompos-
able into route flows in general. (A counterexample is
however the stochastic user equilibrium (SUE) model
of Fisk (1980), in whose solution the route flows are
unique; a necessary condition for this to hold is that
the route costs are not additive. See Davis (1994) for
an application of the SUE model in bilevel network
design and Patriksson (2002) for a characterization
of the gradient of the equilibrium link flow as an
asymptotic result of SUE sensitivity analysis.) Further,
if we model cost interactions between links, partic-
ularly for links joining the same intersection, it has
been demonstrated (e.g., Heydecker 1983) that the
appropriate travel cost mapping t will not even be
monotone, whence the equilibrium link flow solution
determined by the Wardrop conditions will not nec-
essarily be unique either. (The same is true for mul-
ticlass user traffic equilibrium models; see Toint and
Wynter 1996.) In our continued development, we will
presume that the cost mappings t and c are continu-
ously differentiable on their respective domains F and
H , but we make no assumption about their monotonicity.

The effect of a nonuniqueness in the lower-level
problem is of course that the value of * becomes
unpredictable (and may also in some cases imply the
nonexistence of optimal solutions to the bilevel prob-
lem altogether; see, e.g., Bard and Fulk 1982). We
therefore need a finer rule for choosing one element
in the set of solutions, S�'�(�, to the equilibrium sys-
tem (5c). (In the literature of Stackelberg games, this
set is known as the rational reaction, or response,
set.) There are several approaches to this problem
(see, e.g., Lordin and Morgan 1992 and 1996, Dempe
and Schmidt 1996, Dempe 2000). The two most com-
mon ones are usually referred to as the optimistic or,
strong or cooperative) approach and the pessimistic
(or, weak or noncooperative) approach. The optimistic
approach is to assume that the followers (travellers)
in the game establish (or, choose) one equilibrium
that minimizes *�'�(� ·� over the set S�'�(�, thereby
assuming a kind of cooperation on the part of the fol-
lowers. The resulting objective value for [MPEC-F ] is
then

*̂�'�(� 
= min
f∈S�'�(�

*�'�(�f ��

whenever the minimum is attained. The pessimistic
approach is precisely the opposite assumption, lead-
ing to a kind of worst-case optimal solution wherein
the damage resulting from an unwelcome choice
of the followers is minimized. A third alternative
(Dempe 1997) is to introduce a perturbation of the
optimistic solution to better try to reflect the behav-
ior of the followers. Finally, a completely different
way out (Dempe and Schmidt 1996, Dempe 2000) is
to introduce a strictly or strongly monotone regular-
izing term in the lower-level cost mapping, making
the lower-level solution uniquely determined, and the
associated positive scaling factor is forced to zero to
approach the original equilibrium problem.
The Minty parameterization of the equilibrium sys-

tem (5c) provided in the next section leads to a one-
level optimization problem, which we will show is
equivalent to [MPEC-F ] (in the sense that they have
the same set of locally optimal solutions), provided
that we take the optimistic approach but not necessar-
ily otherwise. In that section, we will also complete the
discussion on the possible nonuniqueness of lower-
level solutions with some remarks on its consequences
for decentralized traffic control through link tolls.
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3.3. Instances
We next illustrate the scope of the Stackelberg model
[MPEC-F ]. (An overview of bilevel optimization mod-
els in the field of transportation is found in Migdalas
1995.)

Example 1 (Network Design). A familiar form of
the equilibrium network design problem (LeBlanc and
Abdulaal 1979, Marcotte 1986) is an instance of
[MPEC-F ]. Let 'a denote an investment in network
capacity on link a; the effect of an investment is that
of a reduced travel time; its form is often taken to
be ta�'� f � 
= t̄a�fa/'a�. An investment 'a is associ-
ated with an investment cost, 1a�'a�. The goal is to
minimize the total travel time, at a user equilibrium
flow (that is, *�'�f � 
=∑

a∈� ca�'� f �fa) while satisfy-
ing budget constraints on the investments made, ' ∈
P 
= �' ∈����

+ � 2≤ '≤ u4 1�'�≤ b4
∑

a∈� 'a ≤ U  .
The parameters 'a may also be associated with the

lowering of capacity of a link, such as when a lane
is narrowed to allow for the construction of a bicycle
lane. The lowering of capacity on certain links then
acts as an influence on the travellers to choose other
routes, other modes, etc. If the lower-level model (5c)
is a multimodel model that allows for the demand d

to differentiate between different modes of transport,
then [MPEC-F ] may be used, for example, to model
an influence on the travellers to utilize public trans-
port or the bicycle alternative through inducing an
additional delay for cars.

Example 2 (Signal Control). A problem of a
form similar to the equilibrium network design prob-
lem is the signal setting problem. The solution of this
problem aims at finding a set of signal control param-
eter values that, under user equilibrium conditions,
optimizes some measure of the performance of the
network, such as the total queueing delay, but without
altering the traffic infrastructure. In this case, the vari-
ables ' are the signal control parameters, for example
the portion of green times allocated to the signal con-
trols, and the parameterized travel cost mapping f �→
t�'� f � measures the sum of travel times and delays
at intersections. (See Cantarella and Sforza 1986, and
Smith and Van Vuren 1993, and references therein for
examples of traffic control policies and mathematical
models.) In this case, the set P is the unit simplex.

We note that the generality of the model allows for
the introduction of queueing delays for private vehi-
cles only to favour public transport.

Example 3 (Toll Optimization). The actions dis-
cussed in the above examples lead indirectly to an
adjustment in the travellers’ cost perception, through
the increase or decrease in queueing delays, for exam-
ple. It is also possible to associate the parameters
with monetary expenses (although properly mea-
sured in time equivalents), such as link or route tolls.
In such cases, we could let t�(�f � 
= t̄�f �+(. Lars-
son and Patriksson (1998) discuss several alterna-
tive interpretations and uses of such a model, for
example to induce mode changes through changes
in ticket prices, and indirect derivations of ( so
as to satisfy some flow-side constraints in equilib-
rium. As an example, let * denote the total travel
costs, and let the equilibrium problem be [VIP-F ].
The well-known marginal cost pricing solution (e.g.,
Dafermos and Sparrow 1971) is one optimal solution
to this problem. (See Larsson and Patriksson 1998 and
Bergendorff et al. 1996, for discussions about alterna-
tive pricing solutions.) In the case where the under-
lying traffic model is an elastic demand model (cf.
the model [EVIP-Hd] of §7.1), the optimal solution
is the zero flow. We then note that toll optimization
under constraints can be modelled through the frame-
work of this paper by letting t�'� f � 
= t̄�f �+' and by
adding penalties to avoid a nonzero (.

4. A Reformulation Based
on a Minty Parameterization

4.1. The Minty Parameterization
We will consider a reformulation of the problem
[MPEC-F ] into an equivalent (one-level) optimization
problem in the space �'� f �. The conversion is based
on the Minty (1967) parameterization of the graph of
the normal cone operator NF .
That f solves (5c) is equivalent to the existence of

a vector v ∈ NF �f � such that v =−�t�'� f �+(�. Recall
the definition of the graph of NF :

graph NF = � �v� f � � v ∈ NF �f �  !
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Because NF is maximal monotone, it has a Minty
parameterization, that is,

�v� f � ∈ graphNF ⇐⇒∃f̂ ∈����

with
f = ProjF �f̂ � and v = �I −ProjF ��f̂ �= f̂ −f �

where ProjF is the Euclidean projection operator for
the convex set F . (This identity is in fact a very simple
form of the Minty parameterization that utilizes the
relation v ∈ NF �f �⇐⇒ ProjF �f +v�= f .)
We will utilize the Minty parameterization as fol-

lows. The condition (5c) may be viewed as the exis-
tence of a vector f̂ ∈ ���� such that −t�'�ProjF �f̂ ��−
(= f̂ −ProjF �f̂ �, in other words,

(= ProjF �f̂ �− f̂ − t�'�ProjF �f̂ ��! (10)

We define the mapping 7 
 �p×���� �→���� by

7�'� f̂ �= ProjF �f̂ �− f̂ − t�'�ProjF �f̂ ��! (11)

(This is a mapping that induces ProjF �f̂ � to become a
traffic equilibrium by adjusting the value of (.) Thus,
we recast the problem [MPEC-F ] as the problem to

[P-F ]

minimize 8�'� f̂ � 
= *
(
'�7�'� f̂ ��ProjF �f̂ �

)
� (12a)

subject to ' ∈ P� (12b)

f̂ ∈����! (12c)

The corresponding parameterization of the normal
cone operator NH leads to a problem, [P-H ], based on
the equilibrium system [VIP-H ]. We remark that the
vector f̂ does not correspond to a network flow in
general, whereas its projection onto F , ProjF �f̂ �, cer-
tainly does.

4.2. Properties of the Equivalent Problem
We next turn to look at the equivalence between the
two problems [MPEC-F ] and [P-F ] and the basic prop-
erties of the latter.
First, consider any feasible triple �'̄� (̄� f̄ � in [MPEC-

F ], that is, a triple that satisfies (5c), *̂�'̄� (̄� =
*�'̄� (̄� f̄ �, and is such that '̄∈P. Let f̂ 
=f̄−t�'̄� f̄ �− (̄.

From the Minty parameterization, it follows immedi-
ately that f̄ = ProjF �f̂ � holds, and so from (11)

8�'̄� f̂ �= *�'̄� (̄� f̄ �= *̂�'̄� (̄�!

We conclude that every feasible solution to [MPEC-
F ] corresponds to a feasible solution to [P-F ] with the
same objective function value.
Second, consider any feasible pair �'̄� f̂ � in [P-F ],

that is, one with '̄ ∈ P, and let the pair �(̄� f̄ � be given
by (̄ 
= 7�'̄� f̂ � and f̄ 
= ProjF �f̂ �. Then, again from
the Minty parameterization, the triple �'̄� (̄� f̄ � satis-
fies (5c), and so

*̂�'̄� (̄�≤ *�'̄� (̄� f̄ �=8�'̄� f̂ �

holds, where the inequality follows from the fact that
the equilibrium flow f̄ is not determined through
any optimization over the set S�'̄� (̄�. (Equality holds
however if S�'̄� (̄� is a singleton set.) Because, for
some values of the parameters �'̄� (̄�, the two mod-
els may have different objective values, the two mod-
els are not equivalent in that sense. The optimistic
approach is inherent in the setup of the problem [P-F ],
so embracing this approach in [MPEC-F ] becomes
necessary to achieve an equivalence at locally optimal
solutions. We establish below that local minimizers of
8 do constitute local minimizers for *̂.

Proposition 4 (The Locally Optimal Solutions
to [MPEC-F ] and [P-F ] Coincide). The sets of con-
strained, locally optimal solutions to [MPEC-F ] and [P-F ]
are the same.

Proof. We establish that locally optimal solutions
�'∗� f̂ ∗� to the problem [P-F ] translate to locally
optimal solutions �'∗�(∗� f ∗� to [MPEC-F ]. The con-
verse follows immediately from the correspondence
between feasible solutions of [MPEC-F ] and [P-F ]
established above.
Consider a locally optimal solution �'∗� f̂ ∗� to the

problem [P-F ], and let the triple �'∗�(∗� f ∗� be given
by (∗ 
= 7�'∗� f̂ ∗� and f ∗ 
= ProjF �f̂

∗�. Arguing by
contradiction, we assume that there exists a triple
�'̃� (̃� f̃ �, arbitrarily close to �'∗�(∗� f ∗�, and satisfy-
ing '̃ ∈ P, (5c) and *�'̃� (̃� f̃ � < *�'∗�(∗� f ∗�.
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Let f̄ 
= f̃ − t�'̃� f̃ �− (̃ (which likewise can be made
arbitrarily close to f̂ ∗). Through the Minty parameter-
ization, we then obtain that

8�'̃� f̄ � 
 = *�'̃�7�'̃� f̄ ��ProjF �f̄ ��

= *�'̃� (̃� f̃ � < *�'∗�(∗� f ∗�

= 8�'∗� f̂ ∗�!

We have therefore reached a contradiction to the local
optimality of �'∗� f̂ ∗� in [P-F ]. This completes the
proof. �

This result has the interesting consequence that
when we have a locally optimal solution at hand,
�'∗� f̂ ∗�, to the problem [P-F ], a vector �'∗�(∗� f ∗� that
locally minimizes *̂ is (rather immediately) available.
A final note on the nonuniqueness issue in association
with the optimistic approach is the following: If we
do not work under the assumption of an optimistic
condition, then the optimal value *̂�'∗�(∗� may not
be achieved when the control �'∗�(∗� is implemented
because the equilibrium solution f ∗ actually reached
by the travellers then may be such that *�'∗�(∗� f ∗� >
*̂�'∗�(∗�.
The existence of optimal solutions to [MPEC-F ]

(and, simultaneously, to [P-F ]) follows from stan-
dard existence results for nonlinear programs. We first
recall an abstract result; the corollary then translates
it into our problem setting. The abstract (cooperative)
MPEC problem is given as follows:

[MPEC]
minimize :�x�y� (13a)

subject to �x�y� ∈�� (13b)

y ∈ S�x�� (13c)

where : 
 �n ×�m �→ �∪ �� , � ⊆ �n ×�m, and S 


�n �→ 2�m .
We recall that a function : 
 �p �→�∪ �� is proper

if :�x� > −� for every x ∈ dom:, and finite for at
least one x. Let

lev= : 
= �x ∈�p � :�x�≤ = 

denote the lower level set of : for the level =. We then
say that : is weakly coercive (or, level-bounded) if lev= :

is bounded for every = ∈ �. (This property is equiv-
alent to lim�x�→� :�x�=�.) Next, let the function ,X

denote the indicator function for X ⊆�p, that is, ,X�x�

equals zero if x ∈ X, and � otherwise. We then say
that the function : is inf-compact relative to the set X if
:+,X is lsc, proper, and weakly coercive. The below
result extends the famous Weierstrass Theorem and
has been established, for example, in Zhang (1994,
Proposition 2.3).

Proposition 5 (Existence of Optimal Solutions
to [MPEC]). Let

graph S 
= ��x�y� ∈�n×�m � y ∈ S�x� 

denote the graph of the mapping S. Suppose that the objec-
tive function : is inf-compact relative to the feasible set
�∩ graph S. Then, there exist globally optimal solutions
to the problem [MPEC].

Corollary 6 (Existence of Optimal Solutions
to [MPEC-F ]). Let � 
= P×���� ×���� and

graph S 
 = � �'�(�f � ∈�p×���� ×���� �
− t�'� f �−( ∈ NF �f �  ! (14)

Suppose that the function * 
 P×����×���� is weakly coer-
cive relative to the feasible set �∩ graph S. Then, there
exist globally optimal solutions to the problem [MPEC-F ].

Proof. Because F is polyhedral and t is continuous
on �p×����

+ , graph S is closed. Further, because NF �f �

is nonempty for every f ∈ F , it is clear that for every
pair �'� f � ∈ P × F , we can choose a vector ( such
that �'�(�f � ∈ graph S. Because P was assumed to be
polyhedral, we may conclude that the feasible set �∩
graph S is closed as well as nonempty.
The function * is in C1 on � and is hence both lsc

and proper on the set �∩graph S. The property that
remains to be ascertained to be able to invoke Propo-
sition 5 is the weak coercivity of * on �∩graph S, but
this follows by the assumption. �

The weak coercivity assumption is rather natural.
First, it is natural to assume that the controls ' are
confined to a bounded set P. (It is in particular true
for Examples 1 and 2 in §3.3.) Second, it is also rea-
sonable that the function * is such that infinitely
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large (positive or negative) tolls (, or flows in infinite
cycles, are discouraged in the minimization (as dis-
cussed in Example 3 in the same section). We remark
that in the case of the problem [MPEC-H ], the bound-
edness of H implies that * is always weakly coercive
in the flow space.
The problem [P-F ] is obviously both nonsmooth

and nonconvex. Because * and t are smooth and the
mapping ProjF is piecewise affine (e.g., Rockafellar
and Wets 1998, Proposition 12.30), [P-F ] however is a
problem of minimizing the piecewise smooth and, in
particular, locally Lipschitz continuous and subdiffer-
entially regular (Rockafellar and Wets 1998, Definition
7.25), hence semidifferentiable (or, B-differentiable)
function 7 over the polyhedral set �, for which
descent methods can be devised. We shall study such
a method in the next section.

5. A Descent Algorithm for the
Traffic Management Model

5.1. Introduction
The algorithm to be developed starting in this sec-
tion produces a stationary point for the problem [P-F ],
which in this context is a feasible point �'∗� f̂ ∗� such
that

8′�'∗� f̂ ∗4,'�,f̂ �≥ 0� ,' ∈ TP�'
∗�� ,f̂ ∈�����

where TP denotes the tangent cone mapping for the
set P.
Previous solution methods for traffic management

models have mostly been heuristic (see, e.g., Migdalas
1995, Ferrari 1997, Larsson and Patriksson 1998). In
some cases (e.g., Friesz et al. 1990, Yang and Lam
1996) a heuristic type of sensitivity analysis is applied
to the solution f �'�(� to (5c) to find profitable
search directions for the implicit objective function
�'�(� �→ *�'�(�f �'�(��. Such a strategy—known as
the implicit approach—as well as most of the other
heuristics that have been proposed in the literature
force one to solve for an equilibrium in each iteration,
which is numerically challenging. It further presumes
that the equilibrium link flow solution is uniquely
determined, that is, that the link cost function t�'� ·�
is (at least) strictly monotone.

Other complications that may arise, and which in
some cases have been ignored in the construction
of descent algorithms based on the calculation of
“gradients,” stem from the fact that the equilibrium
commodity flow (that is, commodity link flow or route
flow) is not unique (cf. the discussion in §3.2) but,
more importantly, does not necessarily satisfy the con-
ditions for differentiability, especially not those based
on satisfying the Wardrop conditions (1) with strict
complementarity (that is, with “>” in (1b)); the cal-
culus rules for the “directional derivatives” or “gra-
dients” most often used include a procedure for the
selection of a proper representative commodity flow
in trying to achieve this. See Tobin and Friesz (1988),
Qiu and Magnanti (1989), Outrata (1997) and Cho
et al. (2000) for some such attempts, all of which
require a positive definiteness property of the Jaco-
bian of t�'� ·� at the equilibrium.
In contrast, our scheme for calculating descent

directions for 8 relies not on the solution of traffic
equilibrium problems but rather on the (simpler) solu-
tion of strictly convex quadratic network flow prob-
lems (in fact, projections onto either flow polyhedra
or subsets of their circulation flow subspaces), and
no monotonicity requirements are made on the travel
cost function.
We note that the reformulation of a variational

inequality problem into a system of nonsmooth equa-
tions through the application of the projection opera-
tion has been utilized in sensitivity analyses of para-
metric nonlinear programs, in variational inequality
problems (e.g., Robinson 1992, Luo et al. 1996, Pang
and Ralph 1996 and references therein), and in algo-
rithms for the solution of variational inequality prob-
lems (e.g., Ferris and Ralph 1995), but as far as we
are aware the Minty parameterization has not previ-
ously been used directly to devise an algorithm for an
MPEC problem.
In the next subsection, we investigate how to com-

pute the directional derivative of 8 for the case where
the underlying equilibrium problem is [VIP-F ] or
[VIP-H ]. The main effort is to solve a strictly con-
vex quadratic flow circulation problem over a subnet-
work. Then, we consider the generation of a descent
direction for 8 based, essentially, in the minimiza-
tion of a quadratic regularization of this derivative
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over all feasible directions and discuss how its com-
putation can be performed. The main complication
here is that the directional derivative is only piecewise
linear as a function of the search direction, and the
search direction problem is in fact a linear comple-
mentarity (LCP) constrained strictly convex quadratic
optimization problem. (In the case that an iteration
point is differentiable, however, it reduces to a system
of equations.) In the following section, we formalize
the algorithm and establish its convergence to a sta-
tionary point of [P-F ] and [P-H ] under some addi-
tional, technical assumptions. The algorithm and its
convergence conditions are adapted from Pang et al.
(1991) (see also Luo et al. 1996, §§4.2 and 6.3). (Of
course, other approaches are also possible to apply;
we refer to the MPEC text books Luo et al. 1996,
Bard 1998, and Outrata et al. 1998 for examples and
references to other algorithms and to the last sec-
tion for a brief discussion on one such example.) All
along, we discuss simultaneously how to perform
computations and how to meet the technical condi-
tions in practice, thus leading to a realization of the
algorithm.

5.2. Computation of Directional Derivatives

5.2.1. The Case of [P-F ]. To compute the direc-
tional derivative of 8 at �'� f̂ � in the direction of
�,'�,f̂ �, we need to analyze the derivative of the pro-
jection operator ProjF . In terms of f 
= ProjF �f̂ �, define
the set

,F 
= �,f ∈ TF �f � � ,f ⊥ �f − f̂ � !

This set is a subset of the flow circulation subspace
for the multicommodity network, wherein some arcs
are restricted in sign or direction for certain com-
modities. (Formulas for computing the cones TF �f �

and NF �f � are discussed in detail in Patriksson 2002
and Patriksson and Rockafellar 2002 and will be used
henceforth.)
According to Rockafellar and Wets (1998, Corollary

13.43), we have

Proj′F �f̂ 4 ,f̂ �= Proj,F �,f̂ �! (15)

The directional derivative of 8 at �'� f̂ � in the direc-
tion of �,'�,f̂ � is then

8′�'� f̂ 4,'�,f̂ �

= lim
t↓0

1
t
�8�'+ t,'� f̂ + t,f̂ �−8�'� f̂ �� (16a)

= +'*�'�(�f �T,'++(*�'�(�f �T,(

++f*�'�(�f �TProj,F �,f̂ �� (16b)

where ( is given by the formula (10), and where

,( = +'7�'� f̂ �,'++f̂7�'� f̂ �,f̂ (16c)

= −+'t�'�f �,'+Proj,F �,f̂ �

−,f̂ −+f t�'�f �Proj,F �,f̂ �! (16d)

We note that the calculation of 8′�'� f̂ 4,'�,f̂ � sepa-
rates into simple calculations for each component of
,' and that it is linear in this vector. The calculation
of Proj,F �,f̂ � is analyzed next.
Clearly, Proj,F �,f̂ � constitutes a strictly convex

quadratic programming problem over a subset of the
circulation subspace of the flow polytope. In detail,
then, the following problem provides Proj,F �,f̂ �:

minimize
z∈����

1
2�z−,f̂�2� (17a)

subject to
Azpq = 0� �p� q� ∈�� (17b)∑

�p�q�∈�
zpq −z= 0� (17c)

zapq ≥ 0� a ∈ �0
pq� �p� q� ∈�� (17d)

zapq = 0� a ∈ �>
pq� �p� q� ∈�� with fa != f̂a� (17e)

where, for each �p� q� ∈ �, �
p
pq is the vector of multi-

pliers for the constraints Afpq = dpq in the definition
of ProjF �f̂ �, and �0

pq 
= �a= �i� j� ∈� � fapq = 0 and fa−
f̂a = �

p
pqj −�

p
pqi , and �>

pq 
= �a= �i� j� ∈� � fapq = 0 and
fa− f̂a > �

p
pqj −�

p
pqi denote the set of links where the

commodity flow is zero while, respectively, it lies on
a shortest route, and it does not. (Note that f̂ , f , fpq ,
�p� q� ∈ �, and ,f̂ are all given ���-vectors and that
the choice of disaggregate flow solution �fpq��p�q�∈� is
immaterial to the definition of the feasible set of the
problem (17) in terms of z, as established in Patriks-
son 2002 and Patriksson and Rockafellar 2002.)
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5.2.2. The Case of [P-H ]. In the case where [VIP-
H ] is the underlying traffic equilibrium model, we
are instead interested in the calculation of Proj,H�,ĥ�,
where ,H 
= �,h ∈ TH�h� � ,h ⊥ �h− ĥ� . This projec-
tion separates over the different commodities �p� q� ∈
� to projection problems of the form Proj,Hpq

�,ĥpq�

for the respective commodity flow polyhedron Hpq . To
be precise, Proj,Hpq

�,ĥpq� is the unique solution to the
problem to

minimize
zpq∈���pq �

1
2�zpq −,ĥpq�2� (18a)

subject to ∑
r∈�pq

zpqr = 0� (18b)

zpqr ≥ 0� r ∈�0
pq� (18c)

zpqr = 0� r ∈�>
pq with hpqr != ĥpqr � (18d)

where �
p
pq is the Lagrange multiplier for the constraint∑

r∈�pq
hpqr = dpq in the definition of ProjHpq

�ĥpq�, and

�0
pq 
= �r ∈ �pq � hpqr = 0 and hpqr − ĥpqr = �

p
pq and

�>
pq 
= �r ∈�pq � hpqr = 0 and hpqr − ĥpqr > �

p
pq denote

the set of routes where the flow is zero while, respec-
tively, it is a shortest route, and it is not. (Note that
ĥpq , hpq and ,ĥpq all are given ��pq�-vectors.)
As we are not really focusing on merely calculating

Proj,F �,f̂ � (or, Proj,H�,ĥ�) for one fixed value of ,f̂

(or, ,ĥ), we will not discuss their numerical compu-
tation by network optimization techniques, but refer
to Qiu and Magnanti (1989), Patriksson (2002), and
Patriksson and Rockafellar (2002) for numerical exam-
ples of related sensitivity problems.
We finally remark that Proj,F (Proj,H ) is piecewise

linear in ,f̂ (,ĥ) (see also Rockafellar and Wets 1998,
Proposition 12.30).

5.3. Computation of Descent Directions

5.3.1. The Case of [P-F ]. To construct descent
directions for 8, we consider applying the tech-
niques of Pang et al. for the constrained minimiza-
tion of locally Lipschitz continuous functions. In our
notation, given an iteration point �'C� f̂ C �, the search
direction is found by solving the problem to

minimize 8′�'C� f̂ C4 ,'�,f̂ �

+ �,'�,f̂ �TBC�,'�,f̂ �� (19a)

subject to 'C +,' ∈ P� (19b)

,f̂ ∈����� (19c)

where BC is a symmetric and positive definite matrix
in ��p+����×�p+����. (Here, (19b) could be replaced with
,' ∈ TP�'

C�.) As we shall see, the problem (19) can
be interpreted as an LCP constrained quadratic opti-
mization problem corresponding to the minimization
of a quadratically regularized linear approximation of
the original problem [P-F ].
As has already been established, the computation

of 8′�'� f̂ 4,'�,f̂ � separates into independent prob-
lems for ,' and ,f̂ and is furthermore linear and
piecewise linear, respectively, in the respective argu-
ments. From the standpoint of computational effi-
ciency, this suggests choosing the matrix BC such that
it is block-diagonal. On the other hand, the quality of
the search direction suggests choosing the matrix so
that a quasi-Newton-type method is produced, which
would require it to contain second-order informa-
tion about the function * about the point �'C� f̂ C �.
Until this conflict has been resolved by perform-
ing numerical tests, we henceforth assume that BC

is block-diagonal, as discussed above. The problem
(19) then separates into one problem for ,' that is
strictly convex, quadratic, and linearly constrained
and whose solution is straightforward in compari-
son with that of the part in ,f̂ , and shall not be
discussed further. The other separate problem is of
the form

minimize
,f̂

�=1� C �T Proj,F �,f̂ �+ �=2� C �T,f̂ +,f̂ TBC

f̂
,f̂ �

(20)

where =i�C are constant vectors in ����, i = 1�2.
The difficulty of the problem (20) originates from

the complementarity conditions arising from the
inequalities (17d) that enter into the calculation of
Proj,F �,f̂ �. To analyze this problem further, we study
the characterization of the projection in (17), that is,
the system

Azpq = 0� �p� q� ∈�� (21a)∑
�p� q�∈�

zpq −z= 0� (21b)
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zapq −,f̂apq + �AT�pq�a+va = 0�

a ∈ �� �p� q� ∈�� with fapq > 0� (21c)

0≤ �zapq −,f̂apq + �AT�pq�a+va�⊥ zapq ≥ 0�

a ∈ �0
pq� �p� q� ∈�� (21d)

za = 0� a ∈ �>
pq� �p� q� ∈�� with fa != f̂a� (21e)

where �pq and v are the Lagrange multipliers for the
constraints (17b) and (17c), respectively.
Replacing the vector Proj,F �,f̂ � with the (unique)

vector z, which solves this system, we obtain
from (20) the LCP constrained quadratic program to

minimize
z�,f̂

�=1� C �Tz+ �=2� C �T,f̂ +,f̂ TBC

f̂
,f̂ � (22a)

subject to �21�� (22b)∑
a∈�

,f̂pq −,f̂ = 0! (22c)

5.3.2. The Case of [P-H ]. One main difference
between the computations of descent directions for
the two problems [P-F ] and [P-H ], is that in the latter
the computations can be made to separate into com-
putations for each commodity, by choosing the matrix
BC to have a corresponding further block-diagonal
structure with respect to �. If this choice has been
made, then the problem in ,ĥ separates into ��� prob-
lems of the form

minimize
,ĥpq

(
=1� C

pq

)T Proj,Hpq
�,ĥpq�+

(
=2� C

pq

)T
,ĥpq

+,ĥTpqB
C
pq,ĥpq� (23)

where =i�C
pq are constant vectors in ���pq �� i = 1�2. To

analyze this problem further, we develop the opti-
mality conditions for the projection problem (18). The
projection operation is characterized by a vector zpq

satisfying the conditions∑
r∈�pq

zpqr = 0� (24a)

zpqr −,ĥpqr +#pq = 0� r ∈�pq with hC
pqr > 0� (24b)

0≤ zpqr −,ĥpqr +#pq ⊥ zpqr ≥ 0� r ∈�0
pq� (24c)

zpqr = 0� r ∈�>
pq with hC

pqr != ĥC
pqr � (24d)

where #pq denotes the Lagrange multiplier for (18b).
Replacing the vector Proj,Hpq

�,ĥpq� with the (unique)
vector zpq , which solves this system, we obtain from
(23) the LCP constrained quadratic program to

minimize
zpq�,ĥpq

(
=1�C

pq

)T
zpq+

(
=2�C

pq

)T
,ĥpq +,ĥTpqB

C
pq,ĥpq� (25a)

subject to �24�! (25b)

As (22), this is a nonconvex problem, but it is still
possible to solve it efficiently given the realization of
the algorithm. The reason why this problem is diffi-
cult lies in the presence of the complementarity con-
straints (24c). The number of such constraints is equal
to the number of routes in the OD pair �p� q� for
which the flow in hC

pq is degenerate, that is, belong
to the set �0

pq . (This also tells us that when the pro-
jected flow is differentiable, that is, when the vari-
ables associated with the set �0

pq can essentially be
removed, then the descent direction is found through
the solution of a system of nonlinear equations. The
same is the case with the sets �0

pq for the problem [P-
F ].) First, we note that in the course of the algorithm,
not all the routes in �pq will be known. We will be
using a technique that has proved successful when
solving traffic equilibrium problems (see, e.g., Larsson
and Patriksson 1992, Patriksson 1994), wherein prof-
itable routes in �pq (that is, those for which h∗pqr > 0
can be expected to hold) are generated algorithmi-
cally, through the solution of shortest route problems
given temporarily fixed link costs. By also occasion-
ally dropping previously generated routes that have
received a zero flow during several consecutive itera-
tions, the number of known routes that will give rise
to the complementarity conditions (24c) will there-
fore be expected to be very low. Nevertheless, when
such routes are present, we propose to deal with the
situation when solving the problem (25) through a
complete enumeration of the cases where the values
of the corresponding variables zpqr are zero or not.
(The approach of enumerating the complementarity
conditions in the LCP system was proposed in Pang
et al. 1991.) Each of these restrictions of the problem
(25) is a strictly convex, linearly constrained quadratic
program.
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In the event that BC does not separate over com-
modities, the corresponding problem in z will be
stated over the entire set of known routes and over
all the restrictions (24), but will still be a quite man-
ageable problem to solve, because the constraints are
separable over the commodities.
We note, finally, that numerical tolerances may need

to be introduced in the systems (21) and (24) to deter-
mine when a route is considered to be used (24b) and
when two scalars are considered to be equal (21e) and
(24b)–(24d).

6. The Algorithm
and Its Convergence

6.1. Descent Properties
Before stating the algorithm, we establish a technical
lemma that motivates the use of the search direction
finding problem (19), as well as the step length rule
proposed. We state it, as well as the complete algo-
rithm, for the case of the equilibrium problem being
[VIP-F ], but remark that the derivation for the case of
[VIP-H ] is analogous.

Lemma 7 (Descent Property). Let �'� f̂ � be feasible
in [P-F ]. Let the matrix B be symmetric and positive defi-
nite. Then, the problem (19) has a globally optimal solution
with a nonpositive optimal value. This value is moreover
zero if and only if �,'�,f̂ �= �0�0� is the only global solu-
tion, which in turn is true if and only if �'� f̂ � is stationary
in [P-F ].

If �,'�,f̂ � is nonzero, then for any D ∈ �0�1� there
exists a scalar 2̄ > 0 such that for every 2 ∈ �0� 2̄�,

8�'+2,'� f̂ +2,f̂ �−8�'� f̂ �

≤−D

2
2�,'�,f̂ �TB�,'�,f̂ � (26)

holds.

Proof. As has been established previously, the
function 8 is locally Lipschitz continuous on P×����.
So, for all �,'�,f̂ � with '+,' ∈ P,

�8′�'� f̂ 4,'�,f̂ �� ≤M8��,'�,f̂ �� (27)

holds (cf. Luo et al. 1996, Proposition 4.2.2.b), where
M8 > 0 is the modulus of Lipschitz continuity

at �'� f̂ �. Further, because B is positive definite, there
exists an m > 0 such that

8′�'� f̂ 4,'�,f̂ �+ 1
2
�,'�,f̂ �TB�,'�,f̂ �

≥−M8��,'�,f̂ ��+ m

2
��,'�,f̂ ��2!

Hence, if ��,'�,f̂ �� tends to infinity, then so does the
objective of (19), which thus is weakly coercive. The
feasible set of (19) being closed as well as nonempty,
the problem therefore has a globally optimal solution.
Because the objective value is zero at zero, it must
further have a nonpositive optimal value.
Assume next that �,'�,f̂ � is nonzero. Then,

8′�'� f̂ 4,'�,f̂ � <−1
2
�,'�,f̂ �TB�,'�,f̂ �! (28)

Suppose that a positive 2̄, such that (26) is satisfied,
does not exist. Then there must be a sequence �++ ⊃
�2s → 0 such that for each s,

8�'+2s,'� f̂ +2s,f̂ �−8�'� f̂ �

>−D

2
2s�,'�,f̂ �TB�,'�,f̂ �!

Dividing the inequality by 2s and letting s →� then
yields that

8′�'� f̂ 4,'�,f̂ �≥−D

2
�,'�,f̂ �TB�,'�,f̂ �!

But this contradicts (28), as D < 1.
It remains to establish that �,'�,f̂ �= �0�0� is equiv-

alent to �'� f̂ � being stationary. Assume first that
�,'�,f̂ �= �0�0�. Then, for all �,'̄�,f̄ � and # > 0 with
'+#,'̄ ∈ P,

0≤8′�'� f̂ 4#,'̄�#,f̄ �+#2�,'̄�,f̄ �TB�,'̄�,f̄ �!

Dividing the inequality by # and letting it tend to
zero then establishes that �'� f̂ � indeed is station-
ary. Conversely, if �'� f̂ � != �0�0�, then the inequality
(28) shows that 8′�'� f̂ 4,'�,f̂ � < 0, which contradicts
stationarity. �

6.2. The Algorithm
We are now ready to state the algorithm; it is given
in Table 1.
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Table 1 A Descent Algorithm

0. (Initialization): Choose an initial point ��0� f̂ 0� ∈ P ×����, let �� � ∈
�0�1� be given, and let 	 
= 0.

1. (Search direction generation): Let B	 be a positive definite, symmetric
matrix. Let ���	 � �f̂ 	 � be a solution to (19). If the optimal value of (19) is
zero, then terminate with ��	 � f̂ 	 � being a stationary point in [P-F ]. Otherwise,
continue.

2. (Armijo line search): Let i	 be the smallest nonnegative integer i such
that

���	 +�i��	 � f̂ 	 +�i�f̂ 	 �−���	 � f̂ 	 �

≤− �

2
�i ���	 � �f̂ 	 �TB	 ���	 � �f̂ 	 �� (29)

The step length is �	 = �i	 . Let ��	+1� f̂ 	+1� 
= ��	 � f̂ 	 �+�	 ���
	 � �f̂ 	 �.

3. (Termination criterion and iteration): If ��	 � f̂ 	 � is acceptable → Stop.
Otherwise, go to Step 1 with 	 
= 	 +1.

We remark that the Armijo line search is only one
among a large variety of step length rules that may be
employed in the scheme of Table 1. For example, the
algorithm of Pang et al. (1991) employs a nonmonotone
line search, first analyzed in Grippo et al. (1991), whose
mechanism allows for unit steps to often be taken to
speed up convergence.

6.3. Convergence Conditions
When establishing the convergence of the algorithm,
we must first introduce of all an assumption on the
choice of the matrices BC such that they are bounded
and uniformly positive definite:

∃m�M > 0 
 m�d�2 ≤ dTBCd ≤M�d�2� d ∈�p+���!
(30)

The property of weak coercivity of *, which was
introduced in Corollary 6, ensures that the sequence
��'C� f̂ C � is bounded. However, we note that the
often-used condition for �'0� f̂ 0� ∈ P×����,

the set
{
�'� f̂ � ∈ P×���� �8�'� f̂ �≤8�'0� f̂ 0�

}
is bounded, (31)

is implied by weak coercivity and is enough to guar-
antee both the existence of a globally optimal solu-
tion to the problem [P-F ] and the boundedness of the
sequence ��'C� f̂ C � .
Finally, when using the analysis of Pang et al. (1991)

we need to assume that the function 8 is differentiable at

the limit point. This is a restrictive assumption in gen-
eral, and we will now explain how we try to enforce
it through our realization of the algorithm.

6.3.1. The Case of [P-F ]. We first observe that
a nondifferentiability of 8 at a limit point �'�� f̂��
would be caused by a nondifferentiability of the pro-
jection operation ProjF at f̂�. Although ProjF is, as
remarked before, piecewise linear, it may have kinks
where the active constraints change. The condition
that 8 is differentiable at �'�� f̂�� is equivalent to the
condition that the variables ,fapq associated with the
set �0 would be zero in the characterization (21) for
any choice of perturbations in �'�(�, and therefore
also zero in the solution to the direction-finding prob-
lem (22). This condition is satisfied in particular if

f� is strictly complementary with respect
to the cost f�− f̂�! (32)

Although it is a restrictive assumption, given f�,
the condition (32) can be checked, by solving an
entropy maximization problem over the vectors fpq ;
cf. Akamatsu (1997), Patriksson (2002).

6.3.2. The Case of [P-H ]. In the case of the prob-
lem [P-H ], differentiability of 8 at a limit point
�'�� ĥ�� is equivalent to the condition that the vari-
ables associated with the set �0

pq essentially can be
removed because the corresponding values ,hpqr in
the sensitivity problem (24) would be zero for any
choice of �,'�,(�, and therefore also in the optimal
solution to (25). This condition is satisfied in particu-
lar if

h� is strictly complementary with respect
to the cost h�− ĥ�! (33)

In this case, then, the concern is which routes r in
the sets �pq , �p� q� ∈ �, will have a positive flow at
h� 
= ProjH�ĥ��, and whether we will be able to iden-
tify them finitely. We propose to deal with the situ-
ation as follows. As remarked before, not all routes
will ever be known. Instead, we will solve the short-
est route problems at regular intervals with link costs
based on the current variable values and include the
shortest routes in the set of variables. This way, only
subsets �̂C

pq ⊂�pq of the routes will be known at any
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given iteration C . In the course of the algorithm, some
of these routes will also receive a zero flow. Such
routes will be identified and removed from the corre-
sponding sets �̂C

pq . (There is neither a guarantee that
a generated route will always retain a positive flow,
nor that a discarded route will not be regenerated.) If
we keep only routes in the subsets �̂C

pq having pos-
itive flow, then we will actually be visiting differen-
tiable points of the corresponding restrictions of the
problem [P-F ] to the subsets �̂C

pq . For these restric-
tions, our algorithm will act as a scaled gradient pro-
jection algorithm. Interestingly, it is known that the
active constraints at the limit point of a projection
algorithm used to minimize a differentiable function
over a polyhedral set will be identified after a finite
number of iterations (e.g., the surveys in Patriksson
(1998) and Bertsekas (1999)). The following assump-
tion that we make is therefore not so far-fetched: We
assume that the route generation and deletion process
is such that after a finite number of iterations, the sub-
sets �̂C

pq stay constant and no route in these subsets
has a zero flow at h�. (This way, we are guaranteed
to obtain a stationary point to the restriction of the
original problem [P-H ] to the sets of routes that are
retained in the limit.) In other words,

∃ C̄ 
 �̂C
pq = �̂pq ⊂�pq� C ≥ C̄� and

h�pqr > 0� r ∈ �̂pq� �p� q� ∈�! (34)

6.4. Convergence Theorem
We now state and prove the main result of this paper.

Theorem 8 (Convergence of the Algorithm).
Consider the problem [P-F ]. Suppose that the assumptions
(30) and (31) hold. Let ��'C� f̂ C � be the sequence of
iterates produced by the algorithm of Table 1. Then, the
sequence ��'C� f̂ C � is bounded. Let �'�� f̂�� denote any of
its accumulation points. If f̂� satisfies (32), then �'�� f̂��
is a stationary point for the problem [P-F ]. Further, if
the sequence �2C of step lengths is bounded away from
zero, then each limit point of the sequence ��'C� f̂ C � is
stationary in [P-F ] even without the assumption (32).

Proof. The sequence ��'C� f̂ C � satisfies

8�'C+1�f̂ C+1� ≤ 8�'C�f̂ C �− D

2
2C�,'

C�,f̂ C �TBC�,'C�,f̂ C �

< 8�'C�f̂ C ��

so the sequence �8�'C� f̂ C � is strictly decreasing. By
the assumption (31), 8 is lower bounded on P×����,
whence �8�'C� f̂ C � converges. Then, by the above
inequality, also �2C�,'

C�,f̂ C �TBC�,'C�,f̂ C � → 0 holds.
That the sequence ��'C� f̂ C � is bounded also follows
from the assumption (31).
Let ��,'C�,f̂ C � be the sequence of solutions to (19)

generated by the algorithm. We next establish that this
sequence is bounded. By the assumption (30), for each
C we have that

�8′�'C� f̂ C4 ,'C�,f̂ C �� ≥ 1
2
�,'C�,f̂ C �TBC�,'C�,f̂ C �

≥ m

2
��,'C�,f̂ C ��2!

Moreover, �8′�'C� f̂ C4 ,'C�,f̂ C �� ≤ M8��,'C�,f̂ C ��
holds by (27), so ��,'C�,f̂ C �� ≤ 2M8

m
. This implies

that both the sequences ��,'C�,f̂ C � and �8′�'C� f̂ C ;
,'C�,f̂ C � are bounded.
We next turn to a subsequence � for which we

assume that �'C� f̂ C  C∈� → �'�� f̂��, �,'C�,f̂ C C∈� →
�,'��,f̂��, and �BC C∈� → B�. By the assumption (30),
B� is symmetric and positive definite. We may further
assume that �8′�'C� f̂ C4 ,'C�,f̂ C � C∈� has a limit.
Suppose now that the sequence �2C of step lengths

does not tend to zero, that is, lim infC→� 2C > 0. It then
immediately follows that ��,'C�,f̂ C �TBC�,'C�,f̂ C � →
0, whence �,'��,f̂�� = �0�0� must hold by the pos-
itive definiteness of B�. Now, because �,'C�,f̂ C � is
optimal in (19),

8′�'C� f̂ C4 ,'C�,f̂ C �+ 1
2
�,'C�,f̂ C �TBC�,'C�,f̂ C �

≤8′�'C� f̂ C4 ,'�,f̂ �+ 1
2
�,'�,f̂ �TBC�,'�,f̂ �

holds for all �,'�,f̂ � for which 'C + ,' ∈ P. Taking
limits on both sides of the inequality, we first note that
��,'C�,f̂ C � C∈� → �0�0�, so the left-hand side tends to
zero. Further,

lim sup
C∈�

8′�'C� f̂ C4 ,'�,f̂ �≤8′�'�� f̂�4,'�,f̂ ��

so we find that

0≤8′�'�� f̂�4,'�,f̂ �+ 1
2
�,'�,f̂ �TB��,'�,f̂ �
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holds for all �,'�,f̂ � for which 'C +,' ∈ P. As in the
proof of Lemma 7, we may conclude that �'�� f̂�� is
stationary.
Assume now instead that lim infC→� 2C = 0. Then it

must be that

8�'C + �2C/��,'C� f̂ C + �2C/��,f̂ C �−8�'C� f̂ C �

>−D

2
�2C/���,'C�,f̂ C �TBC�,'C�,f̂ C �

holds for all sufficiently large C . Dividing the inequal-
ity by 2C/� and taking the limit on both sides in �
yields

8′�'�� f̂�4,'��,f̂��≥−D

2
�,'��,f̂��TB��,'��,f̂��!

(35)

On the other hand, from (28) it follows that

lim
C∈�

8′�'C�f̂ C4,'C�,f̂ C �≤−1
2
�,'��,f̂��TB��,'��,f̂��!

(36)

By the assumption (32), 8 is differentiable at �'�� f̂��.
Together with the fact that D < 1 holds, the combi-
nation of the inequalities (35) and (36) implies that
�,'��,f̂�� = �0�0� must hold. We conclude that also
under this circumstance, �'�� f̂�� is stationary in
[P-F ]. �

For the case of the problem [P-H ], the only differ-
ence in the analysis is that the two assumptions (30)
and (31) need to be translated into route flow space,
and (32) needs to be replaced by (33). Further, if we
replace the assumption (33) with (34), then ĥ� will be
of a dimension corresponding to the number of routes
kept after iteration C̄ , and it will then be stationary
for the restriction of the problem [P-H ] to that corre-
sponding subset of routes.

6.5. Comparison with Previous Work
Some comments on the convergence result are in
order. Most sensitivity-based heuristics for solving
bilevel optimization problems in transportation plan-
ning (e.g., Friesz et al. 1990) assume that the implicit
function [in our case, �'�(� �→ *�'�(�f �'�(��] is dif-
ferentiable everywhere. In contrast, the method of

Pang et al. (1991) applied to the minimization of this
function assumes its differentiability only at the limit
point. The assumptions that we make in our conver-
gence result (a strictly complementary limit point) is
slightly stronger than necessary, but checking for dif-
ferentiability is not trivial. (Further characterizations
that may be computationally viable to check are given
in Patriksson 2002.) Note also that our objective func-
tion is 8, which does not involve the lower-level equi-
librium problem, and ultimately does not require, in
contrast to the other developments mentioned above,
that the travel cost function is strictly or strongly
monotone. Further, also in the implicit approach one
uses LCP constrained quadratic programs to search
for improving directions (see, e.g., Pang et al. 1991,
Luo et al. 1996, Outrata et al. 1998).
The main differences between the two approaches

seem therefore to be (1) the present one does not
require the numerical calculation of Wardrop equi-
libria in each iteration and (2) the strict (or, strong)
monotonicity requirements have been eliminated.
These improvements, seemingly, have something
more than a theoretical value because they show that
numerical approaches can be devised for a larger class
of bilevel problems in traffic management and con-
trol, and the calculations can, also seemingly, be made
simpler at the same time. The price to be paid for
these improvements is the introduction of the differ-
entiability assumptions (32) and (33) for the projection
operation at the limit point, which we however hope
to be able to relax.

7. Extensions and Further Research
We discuss in brief two extensions of the traffic
equilibrium models [VIP-F ] and [VIP-H ] in the con-
text of the traffic management models [MPEC-F ] and
[MPEC-H ].

7.1. Elastic Demands
Consider an extension of the model [VIP-H ] in which
the demand is not fixed, but it is given by a function
of the cheapest-route costs. Specifically, we assume
that the demands are given by functions gpq 
 ���� �→
�+ that are nonnegative, upper bounded, and contin-
uous on ���� for each �p� q� ∈�.
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The elastic demand extension of [VIP-H ] then is

−�c̄�h�−����Th−g���� ∈ N
�
���
+

�h�×N
�
���
+

���!

[EVIP-H ]

Under the additional assumption that −g is strictly
monotone on ����, −g is also maximal Rockafellar and
Wets (1998, Example 12.7), and the problem can fur-
ther be written as

�−c̄�h��g−1�d�� ∈ NHd
�h�d�� [EVIP-Hd]

where

Hd 
= {
�h�d� ∈����+��� � ∃h ∈����

+ with �Th= d
}
!

For overviews of these models, see Nagurney
(1993) and Patriksson (1994).
The corresponding extension of [MPEC-H ] becomes

[MPEC-Hd]
minimize *�'�(�h�d� (37a)

subject to ' ∈ P� (37b)

�−c�'�h�−(�g−1�d�� ∈ NHd
�h�d�! (37c)

The analogous Minty parameterization that leads to
[P-F ] here leads to the problem to

[P-Hd]
minimize 8�'�ĥ�d̂� 
=*�'�7�'�ĥ�d̂��

G �ĥ�d̂��� (38a)

subject to '∈P� (38b)

ĥ∈����� (38c)

d̂∈����� (38d)

where

7�'�ĥ�d̂� 
=ProjhHd
�ĥ�d̂�−ĥ−c

(
'�ProjhHd

�ĥ�d̂�
)
� (38e)

G�ĥ�d̂�� 
= d̂−g−1(ProjdHd
�ĥ�d̂�

)
� (38f)

and �ProjhHd
�ProjdHd

� = ProjHd
is the representation of

the projection operator in the two components h

and d. We remark that this problem has properties
similar to [P-H ], and the algorithm given extends
readily to [P-Hd].

7.2. Queueing Models
The presence of signal controls in the network are
sometimes modelled by means of capacity constraints.
In such a circumstance, we would introduce in the
equilibrium model a set of side constraints of the form

sH�h�≤ 0� H ∈	� (39)

where 	 is a finite index set (for example, formed
by subsets of � , �, �, and �) and sH 
����

+ �→�, H ∈	
is continuously differentiable on ����

+ . The flows that
satisfy (39) form a closed set in ����, which we denote
by G.
Note that the constraints are given in terms of

route flows without any loss of generality, because a
constraint on the total link flows, can be written as
sH�"h�≤ 0 for example.

Example 9 (Capacity Constraints and Signal
Control). The most immediate example of a set of
flow restrictions is that of upper bounds on some
links’ flows. In the framework of (39), such constraints
are described by letting 	 
= #� and

sa�fa� 
= fa−ua� a ∈ #�� (40)

where #� ⊆ � and ua ≥ 0 are the upper bound on
the flow on link a. In the context of traffic signals,
the constant ua may be regarded as the upper bound
on the traffic that can pass link a during the green-
time period. See Miller et al. (1975), Smith and Van
Vuren (1993), Ferrari (1997), and Larsson and Patriks-
son (1994, 1995, and 1999).
When viewing the traffic management problem

as a hierarchical problem, in the example discussed
above, the side constraints are part of the equilib-
rium problem and are therefore lower-level constraints.
For example, the equilibrium problem [VIP-H ] is then
extended to include the additional side constraints
(39), creating the inclusion

−c̄�h� ∈ NH∩G�h�! [SCVIP-H ]

The corresponding changes in [P-H ] and in the
algorithm lie only in the additional constraints’
appearance in the projection formulae, where H is
everywhere to be replaced by H ∩ G. (A similar
effect is obtained if pure link-flow-side constraints are
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added to the model [VIP-F ].) A main additional com-
plication that this extension causes is a more com-
plex construction of descent directions, as the set G
influences the form that the projection Proj,�F∩G��,f̂ �

(respectively, Proj,�H∩G��,ĥ�) takes. Given that the
form of G allows descent directions to still be calcu-
lated (for example, the formula (15) also applies to the
set F ∩G as long as G is polyhedral), the algorithm
would work as it now stands, and the only issue
remaining to be made on its convergence would be
on the differentiability of the operator ProjF∩G (respec-
tively, ProjH∩G) at the limit point, which again would
rely on the form of G.
However, side constraints of the form (39) can also

be imposed upon the travellers by means of some
decentralized control measure, such as a tax. In such
a case, the side constraints would not be part of the
equilibrium problem but instead would be a set of
constraints on the equilibrium flows (perhaps also
as joint constraints with the control variables) and
as such would be placed as upper-level constraints.
The presence of lower-level variables in upper-level
constraints could however in general complicate the
problem immensely because the feasible set becomes
much more complex (see, e.g., Luo et al. 1996). There-
fore, in the MPEC models [MPEC-F ] and [MPEC-H ],
such side constraints would be assumed to be repre-
sented as smooth penalties in the upper-level objec-
tive function *.

7.3. Further Research
Interesting further research topics fall into several cat-
egories, some of which go far beyond the present
application. Most urgent is perhaps the (already men-
tioned) reduction of the assumption of differentia-
bility of the projection operator at the limit point
of the sequence of iterates produced by the algo-
rithm. The problem [P-F ] constructed by the use of
the Minty parameterization can of course be solved
by other algorithms, some of which may very well
produce stationary points to the problem [MPEC-F ]
under milder conditions. For example, bundle algo-
rithms can be devised along the lines described in
Schramm and Zowe (1992), Kiwiel (1996), Outrata
et al. (1998), and Mäkelä et al. (1999) for the mini-
mization of locally Lipschitzian and upper semidiffer-
entiable functions—the latter condition of which, for

a locally Lipschitzian function : 
 �p �→ �, requires
in addition that for any x�d ∈ �p and sequences
�gt and �2t with gt ∈ J:�x+ 2td� and �2t ↓ 0 that
lim supt→� �gt�Td≥ lim inft→� �:�x+2td�−:�x��/2t , cf.
Bihain (1984)—based on the generation of arbitrary
subgradients of the function 8 (see Outrata and
Zowe 1995, Dempe and Vogel 1997, and Outrata
et al. 1998 for their computations). Bundle algo-
rithms can certainly be expected to be viable for the
present problem, although upper semidifferentiability
does not hold everywhere; in any case, global upper
semidifferentiability is, perhaps arguably, milder than
differentiability at the limit point. We note that
the subgradient formula given in Patriksson (2002)
amounts to solving a sequence of affine traffic equilib-
rium models, thus avoiding, at least partly, the com-
binatorial nature of the present algorithm.
From a wider perspective, the Minty parameteriza-

tion is likely to also be beneficial for the solution of
other MPEC problems, where the type of parameteri-
zation utilized in the problem [MPEC-F ] makes sense,
as well as for special cases of MPEC, such as math-
ematical programs with complementarity constraints
(MPCC, see, e.g., Scheel and Scholtes 2000). Another
interesting technical question surrounding the utiliza-
tion of the Minty parameterization concerns the asso-
ciated optimality conditions of first and second order,
which may have interesting properties and conse-
quences in their own right for the equivalent MPEC
problem.
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