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Abstract

The earliest sign of breast cancer is the existence of microcalcifications which
are tiny calcium clusters in breast tissues detected in mammographies. Early detec-
tion and diagnosis of microcalcifications is the main step to improve prognosis of
breast cancer, which is one of the most frequently serious disease among women.
In this work, we study the methodology based on Bi-dimensional discrete wavelet
transform and statistical measurements to estimate the position of these tiny clus-
ters in mammographies. The statistical analysis involves calculating skewness and
kurtosis values of all three sets of wavelet coefficients. The crossing of rows and
columns associated to the high skewness and kurtosis values determine regions of
microcalcifications clusters. Simulation results show that the investigated method-
ology is successful in the majority of the 18 analyzed images containing tumors.

Key Words: Microcalcifications in Mammography, Wavelets Transforms, Skew-
ness and Kurtosis Parameter.
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1 Introduction

Breast cancer is the most frequently diagnosed type, which ranks first place as a cause
of cancer death in women. Since 1990 the rates for breast cancer death, according
to statistics collected in USA [5], have been decreasing about 3 percent per year ex-
actly due to earlier detection of the disease. The early diagnosis of malignant tumors
can contribute for the survival of patients up to 98 percent, which can be detected by
mammogram before any abnormal feeling by patients.

A mammography is a specific type of imaging that uses a low-dose x-ray system
to examine breasts and a mammography exam is called a mammogram [18]. One
of the indicators of breast cancer searched in mammograms are clusters formed by
microcalcifications, tiny calcium deposits in breast tissues, that appear as small bright
spots in the imaging [18].

In the last 15 years several mammography processing methods have been devel-
oped in order to detect microcalcifications by radiologists, among them wavelet based
methods have been used efficiently. A wavelet transform is a powerful tool to analyze
and to identify strong variations contained within the original data, since in each level
of the transform data is divided into different scaling components. This main prop-
erty is therefore explored in many applications, where different behaviors have to be
highlighted and recognized during the analysis [2, 3].

There is a large number of wavelet families, for example the functions introduced
by Meyer [10], which are suitable for continuous transformations. Another example is
the orthonormal set of functions with compact support defined by Ingrid Daubechies
[3]. They create a framework for representing elements in the space of the square inte-
grable functions L?(R) , which in fact contains the finite signals analyzed in this work.
The representation of any element in L>(IR) is obtained by wavelet expansions in time
and resolution levels of these elements. According to [3], the Daubechies wavelet fam-
ily is connected to filter bank methods in digital signal processing, and therefore they
are used for discrete and fast transformations. The 1:1 relation between Daubechies
wavelets and finite sized filters makes this family very important in the analysis of
discrete signals.

There are many types of fast algorithms for computing the discrete wavelet trans-
form [8]. Basically they can be divided into two groups: decimated and undecimated
algorithms. In the decimated case, each time a new decomposition level is calculated,
the input vector with discrete data is splitted in two other vectors with half of the size
from the original one. In the undecimated case, all vectors remain with the same size
during the entire factorization process. In this work the decimated version for the fast
wavelet transform, called Mallat Cascade algorithm, is considered for one and two
dimensions [8]. Nevertheless, in the analysis of mammograms not only the Cascade
algorithm is explored, versions of the undecimated case are used with different families
of filter banks.

Examples of analysis considering undecimated algorithms are presented in [11, 14].
In [11] the mammogram image is first processed by a subband decomposition filter
bank, and the resulting subimages are divided into overlapping square regions. In [14]
the same kind of overlapping blocks are obtained, but this time the simplest Daubechies
wavelets, called Haar functions, are used in the transformation. According to [15],



microcalcifications in mammograms correspond to high frequency coefficients of the
image spectrum, and in this case they are related to wavelet coefficients in the highest
levels of the factorization. One simple method to detect and to extract calcifications
is to decompose the mammography by wavelet transforms, suppressing the low fre-
quency subband (scaling coefficients block from the lowest level), and reconstruct data
considering only the high frequency associated wavelet coefficients. In [15] the deci-
mated algorithm for the Daubechies wavelet transform with 2 and 10 null moments is
used. Unfortunately this procedure can lead to a high number of false positive results
(wrongly cancer detected regions).

An attempt to reduce the number of false positives is to include statistical param-
eters during some stage of the wavelet analysis. According to [14], in microcalcifi-
cations regions the symmetry of the Gaussian distribution of wavelet coefficients is
destroyed and the tails of their distribution are heavier. The statistical quantities able
to identify these deformations in the shape of the Gaussian distributions are the third
and fourth order correlation parameters, called skewness and kurtosis, respectively. In
[11, 14] the analysis explores both kurtosis and skewness computations for overlap-
ping blocks. The detection problem is then posed as a hypothesis test in which areas
with the skewness and the kurtosis values greater than threshold values are considered
as regions of microcalcifications. Experimental studies showed that this method was
successful in detecting regions containing microcalcifications.

In the present work, the methodology for detecting microcalcifications in mam-
mography differs from the one presented in [11, 14], since here the discrete Daubechies
wavelet transform with 2 null moments and statistical measurements are applied. An-
other difference is that now the decimated algorithm for Daubechies wavelet transform
is considered, avoiding the arise of overlapping subregions. For each row and column
of the sets of wavelet coefficients ( also called wavelet subbands), skewness and kur-
tosis values are computed. The vectors containing these values are then thresholded.
The significant values, those greater than threshold parameters are kept. The crossing
of common lines and columns (for both skewness and kurtosis calculations) associated
to the significant values determine candidate regions of microcalcifications clusters.

This work is organized as follows: In section II we present a review of wavelet
framework and multiresolution analysis, the scaling and wavelet functions for orthonor-
mal Daubechies family of compact support and some of their essential properties are
presented. Section III and IV present one and two dimensional discrete wavelet trans-
form for Daubechies wavelet families. The simplest example for this family of trans-
formations, the Haar wavelet transform, is also exemplified. At the end of section III,
three possibilities for the data extension on the boundaries are presented to circumvent
the problems at the boundaries occurred by Daubechies wavelet transform with more
that 2 null moments, when finite signals are analyzed. In section V some methodolo-
gists based on the decimated Db2 wavelet transform and statistical algorithms proposed
in [11, 14] are studied. In this section 24 images obtained from the University of South
Florida Digital Mammography Home page [18] are analyzed with the modified algo-
rithm presented in the subsection 5.3. The numerical results show that the aforesaid
method with the negligible rate of false positive numbers is successful in detecting re-
gions containing microcalcifications. Finally a table resulting from tests on a set of 24
digital mammographies where 18 of them identify microcalcifications is presented.



2 Wavelet Framework

The wavelet transform is a mathematical tool with a great variety of applications, and
one important example, given by Mallat [8], is signal and image analysis. By a wavelet
transform data can be splitted into different scaling components and then each compo-
nent is analyzed with a resolution matched to its scale [3]. There are many types of
wavelet families, for example functions suitable for continuous transformations [10]
and the orthonormal set of functions with compact support, which define an important
group of discrete wavelet transforms [3], spline -wavelets and many others [3, 8].

In this work the family of orthonormal wavelets with compact support defined by
Ingrid Daubechies [3] is considered. This family of functions defines an orthonormal
basis for the space of square integrable functions

LZ(R):{f:R%C:/ﬂQf(x)F<<>o}.

The construction of the Daubechies wavelets is based on a specific framework called
multiresolution analysis [8, 10], which is a set of properties necessary not only for the
construction of the basis on L?(R), but also for the definition of the family itself, the
relation between scales, and the obtainment of the wavelet transform.

In this section the Multiresolution anlalysis is defined according to definitions pre-
sented by Ingrid Daubechies in [3]. Nevertheless no filter construction is presented.
The filters are directly considered defined from the list provided in [3]. The main goal
is to point out how the discrete wavelet transform can be derived from the scaling rela-
tions defined by this framework.

2.1 Multiresolution Analysis

Definition 2.1.
According to [3], a multiresolution analysis (MRA) is a family of subspaces V; € L*(R)
that satisfies the following properties:

I. Monotonicity
The sequence is increasing, V; C V;y for all j € Z.

II. Existence of the Scaling Function
There exists a function ¢ € Vj, such that the set {@(. — k) : k € Z} is an orthonor-
mal basis for V.

III. Dilation Property
For each j, f(x) € Vp if and only if £(2/x) € V;.

IV. Trivial Intersection Property
N jEZ V= {0} .

V. Density
UjeZ Vi= Lz(R)’




Condition I shows that a multiresolution analysis consists of a sequence of approx-
imation spaces V; where

0C---CV CVoCVC---CL*R).

Condition II states that the approximation spaces are spanned by functions ¢, which
is called the scaling function of the multiresolution analysis, so different choices for ¢
yield different multiresolution analysis. And

ol = (o) 1

For all j,k € Z, the dilation, translation and normalization is given by
9x(x) =27 9(27x— k).

Conditions II and III together imply that {¢; x : k € Z} is an orthonormal basis for
V;forall j € Z.
For every j € Z, W; is defined to be the orthogonal complement of V; in V. It
means that
VilW; , V,oW; =V;,,. 2.1

Applying (2.1) recursively for J > Jy follows that
Vi=Vi®&Wi, @ oWy, (2.2)

where all the involved subspaces are orthogonal. Continuing the decomposition (2.2),
and letting Jyo — —oo and J — +oo yields

L*(R) = PWw;.

jez

It means that W;’s are orthogonal. As Shown in [3], there exists a function y(x) €
Wp such that {y(2x — k) }rez is an orthonormal basis for Wy. So according to the
multiresolution analysis properties , the whole collection {y; s j,k € Z},

Wik (x) =27y (20x k),

is an orthonormal basis for L?(R). w/(x) is called wavelet function.
An example of spaces V; satisfying the aforesaid conditions in [3] is

V;={f€L*R): fisconstanton [277k,27/(k+1)), VjkeZ},

where it is called the Haar multiresolution analysis, and a possible choice for ¢ is the
indicator function for [0,1). In this case ¢ is called the Haar scaling function of the
multiresolution analysis, and the function ¢ (x — k) has the same graph as ¢, Figure 3a,
but translated & units to the right. Since ¢ (x—k) is discontinuous atx =k and x =k+1,
and k ranges over a finite set, so each element of Vj is zero outside a bounded set. It
means that ¢ has finite or compact support ( the other Daubechies constructions of the



wavelet system are compactly supported and continuous). Also for k # k', ¢(x — k)
and ¢ (x — k) have disjoint supports, therefore the set {@(x — k) } ez is an orthonormal
basis for Vj.

In general, The Haar scaling function generates the subspaces V;, which are discontin-
uous in the set of integer multiples of 27/. The scaling condition for the Haar system
(special case of the Daubechies system) satisfies the condition III, so the Haar system
of V; satisfies all the properties of a multiresolution analysis.

2.1.1 Properties of Scaling and Wavelet Functions

According to the condition of multiresolution analysis, {@(x — k) }xcz is an orthonor-
mal basis for Vj.

The first and third conditions imply that {@(2x — k) };cz is a basis of V;, and by
substituting 2x =y we have

+oo +oo +oo
3 (p(2x k)d 2/ o(y—k)d 2/ Q(X)dx. (2.3)

The scaling function has the mass equal to one,[1], i.e.

| otar=1,

so the equation (2.3) yields
~+oo
Oo(2x—k)dx =

Therefor ||¢p(2x—k)||,, = 75 and the normalized case is

pQ2x—k) e
@R, ~ V2P0

Hence {2'/2¢(2x — k) } ;7 is an orthonormal basis of V;. Recursively, {2//2¢(2/x — k) }xez
is orthonormal basis for V;.

Also for the wavelet space W}, {2//2y(2/x — k) } 4z is an orthonormal wavelet basis.

2.1.2 Scaling and Wavelet Equations

Since Vy C Vi, any function f in Vj can be expanded in term of the basis function for
Vi. So in particular the scaling function ¢(x) € V, and the wavelet function y € V; can
be written as:

) =Y i (x) =22 Y p(2x—k), (2.4)
keZ keZ
and
y(x)=2"2Y grp(2x k), 2.5)
keZ



where
+oo Foo

hy = P(X) @ r(x)dx, gr= V(x) @1 k(x)dx,

Y =Y lal* =1

keZ kEZ
Equation (2.4), (2.5) are called the scaling and wavelet equation, respectively. For a
scaling function with compact support defined by Haar and Daubechies ([1], [2]), only
a finite number of (filter) coefficients 4 and g; are non zero.
Therefore, for the case of wavelets with compact support, scaling equation defined

and

as:
D—1
o(x)=2"7Y ho(2x—k),
k=0
where D € N is called the wavelet genus, and the numbers hg, hy,--- ,hp_1 are called
filter coefficients.

According to [3], since ¥ € Wy C Vi, the same property holds for y

D-1
w(x) =22 Y ap(2x—k),
k=0

where gy = (= 1)*hp_ 4, fork=0,1,--- ,D— 1, and Y2~ hyg = 0.

Ingrid Daubechies in [3] computed this relations and obtained discrete values for
the filters Ay, gr according to the properties imposed to the multiresolution analysis.
Therefore the filters are uniquely related to the choice of ¢, y for the wavelet basis.

2.1.3 Vanishing Moments

Here we explain the important property of wavelets which produces their capability in
compressing data [1].

According to [1], the scaling function ¢ has the approximation property when it
reproduces exactly polynomials up to order N — 1,

ZM,f(p(x—k):xl” for p=0,--- ,N—1.
k

The integer N is the order of the multiresolution analysis. M,f is the pth moment of
@(x—k).

Consider x” €V, since V; LW}, so <xP,y; , >= 0, for every wavelet function y; x
and

oo too
/ Py (x)dx = ZM,f/ o(x—k)y(x)dx =0,
Cw - oo

for p=0,---,N — 1. It means that the wavelet y, associated to the scaling function ¢,
has N vanishing moments.

According to the properties stated by the Multiresolution framework, Scaling and wavelet
functions with compact support are specially suitable for the decomposition and the re-
construction of data in many resolution levels.



3 One Dimensional Discrete Wavelet Transform

In this section we focus on the main property of wavelets: decomposition and recon-
struction of a function in L?>(R) (e.g. a signal or an image) in terms of its wavelet
series, and we point out the relation between coefficients in approximation and wavelet
spaces and the filters associated to the functions ¢ and y. With this the discrete wavelet
transform is presented.

3.1 Wavelet Expansions

According to the MRA presented in Section 2, L?(R) = ]t’iw W;. So if we denote
Vi, = @;":w W; , then
~+oo
L*R)=V,aPW,.
J=J

Therefore, any function f € L?(R) can be written in the wavelet basis as
o0 +oo
fO =Y cni@ni+ Y, Y diyir), 3.1)
k=—o0 J=JokeZ

where Jj is considered the lowest level of representation of the function, and

Chok =< [rQpk> 5 dix=<fWx>, (3.2)

are scaling and wavelet coefficients of the wavelet expansions, respectively.
According to [1], the approximation fj, € V;, of a function f € LZ(R) is the or-
thogonal projection onto Vj, (which is denoted by Py, ). Therefore

+oo
@) =P f(x)="Y ciiPrxlx). (3.3)

k=—oo0

The error in this approximation is given by

foo oo
eg=f)—Pfx)="Y Y divix).
J=Jo+1k=—oo

Since V; = V;_; & Wj_, the projection P; f can be
oo oo
Pifx)=Y cmna@ri(x)+ Y diriwy_r(x).
[=—oo |=—o

Where according to the scaling equation (2.4)

J-1
2

D—1 D—1
Qr1(x) =27 @2 'x—1) = 23 Y mo@x—21—k) =Y mora(x). (3.4)
=0 =0



And similarly by the wavelet equation we have

D-1
Wo1(x) =Y &Pk ().
k=0

Therefore, by equations (3.2) and (3.4) we have

~+o0

oo D1 D1
cj-1 = fx)Qr-1(x)dx = FE Y, M) dx =Y hicyoiir,
w0 =0 =0

and similarly
D-1

dj_1;= Z 8kCJ2i+k-
=0

3.2 Discrete Wavelet Transform

Now consider f : I — L*(I) , the expansion 3.1 no longer has variation for k from —oo
to +-o0.

Assume that we have a function f; € V;. Since V; =V;_; ®W;_y, f; can be splitted
into its orthonormal components in V;_1,W;_4

Nji—1 Nji—1
flx)= Z Ci—119j—1,(x)+ Z di—11¥j-1,1(x),
=0 =0

where according to the scaling equation (2.4) we obtain

D1 D1
ciotg= Y, hincjx, and dj_y;=Y hodjy,
k=0 k=0

with ¢;; = f;(x;) for  =0,--- ,N; — 1 and N; = 2Nmax,

Repeat this process recursively, starting with the coefficients c;;, this gives the
wavelet and scaling coefficients d;_;; and cj_1; for j=j,j—1,---,j—Land [ =
0, % 1

According to[1] this recursive scheme is called the fast forward wavelet transform,
and it is used to decompose a function in L levels.

Since we compute ¢;_1 4, d;j_1; form c;, the coefficients c; 4 can be reconstructed
by coefficients ¢;_1; and d; 1 associated to V; | and W;_ spaces,

(5] (5]
cik=<[fj,@; >= hy—2cj11,+ Z 8k—2dj1;-

lz[k*?#»l] l:[kflz)ﬁ»l]

So from cj_;; and d;_; ;, we can reconstruct ¢;_r 1, and so on, until the highest level
is achieved. This is called fast inverse wavelet transform.
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3.2.1 Daubechies Wavelet Transform

In this section we focus on the specific example of Daubechies wavelets transform
based on the scaling and wavelet function with 2 vanishing moments, which define
filters with D = 4 coefficients denoted as Db2. The scaling filters are given by

1+3 343 3-V3 1-3
, h= , hy= , h3= .
4 4 4 4

ho =

Since wavelet function is orthogonal to scaling function, the scaling and wavelet filter
coefficients are related as:

go=hs, g1=-hy, g=h, g3=—h

In this case ,one may easily check that:

Ry +h3+h3+hi=1, (3.5)
hohy +hihs =0. 3.6)
ho+hy+hy+h3y =2, 3.7

graitete=1,
go+g1+g2+g3=0.
Equations (3.5) and (3.6) correspond to orthogonality of scaling functions. Equation

3.7 shows the dilation property.
Detailed study of Daubechies filters can be found in [3].

3.2.1.1 Daubechies Scaling and Wavelet Functions

In this subsection, we only give an example of filters construction for the Db2 scaling
function, based on the computation of its values on integers, and then on dyadic grids.
For the general case of construction based on the Fourier transform of the wavelet func-
tions and its properties, see [3]. In [2] one can find how to compute these values of ¢

at all dyadic points x = % This procedure can be seen in the following steps.

Step 1. compute ¢ at all the integer values

In the case of Db2, the scaling function is nonzero only on the interval 0 < x < 3.
So ¢(0) = ¢(3) =0. ¢(1) and @(2) are the only two nonzero values at integer points,
Figure 1. So for x =1 and x = 2, the scaling equation

o(x) =Y ho(2x—k),
k

implies that

@(1) =hop(2) +hio(1),
and

0(2) =h20(2) +h39(1).

11



So

(h = 1De(1)+hop(2) =0, (3.8)
on the other hand, to arrange the normalization [ ¢@ = 1, we need }; ¢ (/) = 1. Hence
(1) +o(2)=1. (3.9)

Thus the solution of equations (3.8) and (3.9) in the case of the Db2 are

ol = 202,
and 3
o2)=157.

Step 2. Compute ¢ at the half integers

In the case of Db2, we know @(x) =0 for x < 0 and x > 3. So we need only to

compute (p(%) forl=1,3,5. Forx = é using the scaling equation,

<p(é) :;hk(l)(l_k)7

implies that

2
o(3) =nop() = L5
<p(%) =h19(2)+hyo(1) =0,

Step 3. Iterate

By continuing this procedure, computing values of ¢ at % is similar, we just consider
x= le in the scaling equation. In general, computing ¢ at the values x = 2,,%1 leads to

compute the value of ¢ at x = 2% Now we are able to compute the wavelet function ¢
using the scaling function @ as

vx) =Y (D)2 —k).
kez

Figure 1 shows the graphs of scaling function ¢ that results from 1 to 4 iterations,
and Figure 2 depicts 1 to 4 iterations of this procedure for wavelet function .

12



Scaling Function Construction via Cascade Algorithm Iterations
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Figure 1: Db2 scaling function ¢ that results from iterating the procedure 1 to 4 times.
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Figure 2: Db2 wavelet function y that results from iterating the procedure 1 to 4 times.



3.2.2 Haar Wavelet Transform

The Haar functions were first defined by Alfred haar in 1909, and they were recognized
by Ingrid Daubechies as being also an example of orthonormal wavelet functions with
compact support. Haar used these functions as an example of orthonormal system
for the square integrable functions. Haar wavelet transform is a simple example of
Daubechies family with 2 scaling filters coefficients which is denoted by Db1.

Definition 3.1. Haar Scaling and Wavelet Functions
Haar scaling and wavelet functions are defined as

| 0<x<1 1 0<x<1)2
o(x) = =P=0 yw={-1 1/2<x<1/)2 (3.10)
0 otherwise )
0 otherwise.

Figure 3 depicts the graphs of Haar scaling and wavelet functions.

1 b
T *'>'<"~ “
= (— | S w
< ol
05
Q 25
-1
=1
15 <
s 0 05 1 15 s . > ! 15
X X
(a) Haar scaling function (b) Haar wavelet function

Figure 3: Haar scaling and wavelet functions

We can obtain the function ¢ (x — k) with the graph of ¢(x) by translating k units to
the right. It is obvious that ¢ (x — k) is discontinuous at x = k and x = k+ 1. In general,
we can define a family of shifted and translated scaling functions {@; «(x)} j xez by:

j(x) =2/ p(2/x k).
Recalling the definition 3.1, we may write the following equation

1 k2 <x<(k+1)27

0 otherwise.

Q(2x—k) = {

15



The set {23 @(2/x — k)} j xcz is an orthonormal basis for V;. In order to decompose a
function properly, we need to decompose V; as an orthogonal sum of V;_; and the space
of its complement. So to define this orthogonal space, we need to define a translate
and dilate function y. Hence the main tool to construct y € V is that it should be
orthogonal to Vp, it means that for all k € Z,

~+oo
. y(x)o(x—k)dx =0.

According to [1], Haar scaling filter coefficients are obtained as:

1 .
L f k=01
by = \fz/cp(x)qa(zx—k)dx v Y (3.11)
0 otherwise.
So wavelet filter coefficients gy = (—1)h;_; are calculated as
% for k=0
g = —% for k=1 (3.12)

0 otherwise.

Since Haar function is a good example which satisfies multiresolution analysis
properties, we can use it to approximate functions at different levels of resolution [15].

By definition 3.1, f; is piecewise constant on the interval (2%, ";—]1) In [1], the
scaling values c;  are calculated as

1
Cjk= \72(Cj+1,2k +Cjr1,2k41)-

Also the wavelet values (coefficients) d;  at scale j are obtained as

1

dir=—=(Cj—12k — Cj—12k+1)-
Js ﬂ(J L, -1 +)

This means that, we measure the derivation of f; from its mean value on the interval

(%, k;—]l) Hence in order to obtain the decomposition of f; , we continue this proce-
dure.

3.2.3 Cascade Algorithm

One type of fast approach to compute the normalized discrete wavelet transform is
decimated algorithms, in which each time a new decomposition levels is calculated,
the input discrete data (vector) is divided into two other vectors with half of the size of
the original one. since these algorithms apply the same procedure over and over to the
output of the previous sampling points, it is known as the cascade algorithm.
Consider the function f with N samples, where N = 2. The following algorithm
describes the cascade algorithm in order to decompose f into different frequency do-
main. Here we use the same notation for scaling and wavelet coefficients. According
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to the definition (3.3), we come up with the conclusion that the level of decomposition
is related to the number of samples of discrete data, for example, a function with 8 = 23
samples can be decomposed to 3 levels (the final level).

Algorithm 1 Decomposition

for j=1— Ldo
fork=0—2"7—1do
for/=0—D—1do
cj,k=% Yihici 1ok
d j,F% Y1 81Ci—12k+1
end for
end for
end for

Algorithm 2 Reconstruction
for j=L—1—0do
fork=0—2"7—1do
for/=0—D—1do
Cjk= %(Zz hicj1 ko + Y0 81d 1 kv21)
end for
end for
end for

3.2.4 Boundary problem

In the case of Daubechies wavelet decomposition with 4 filters or more, cascade al-
gorithm faces a problem on the boundaries, since for the last positions of any level
of decomposition, the fixed sized filters will need to access data no longer inside the
vector with the signal samples. It means that, we always require unknown samples
to construct the last scaling and wavelet coefficients. The number of run out values
depends on the length of the wavelet filters. So by considering the specific wavelet
transform, we can extend the given sample beyond the initial set of data.

According to [2], to circumvent this problem, and handle boundaries with extended
data, we tested some well established methods called Periodic, Zero, and Symmetric
extensions as describe below.

1. Periodic Extension
Here, we perform an even extension by f,,1x = fx, and make the function periodic.
It means that, we repeat the values of samples all over again.

For better understanding, consider a function f with 8 samples (f1, f2,---, fg) and
decompose it with Db2 wavelet transform. In the first level of decomposition, we need
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to extend f in order to be able to compute the last scaling and wavelet coefficients s4
and d4. Then we construct a function f which is the periodic extension of the function

f where fo = f1 and fio = f>.

f: (fl?fZa"' af8af97f10)-

Now we are able to pass function f € V) through the scaling (%) and wavelet (g) filters
in order to get the scaling s € Vp and wavelet d € W coefficients.

The following equation shows how these coefficients are calculated by cascade
algorithm:
s1 hfi+hofathsfs+hafs
52 hif3+hofa+hsfs +hafs
53 hi fs+hafe+h3f7+hafs
54 hif1+hafs+hsfi +hafz
d; gifi+8fr+8f3+8sfs
d g1f3+82fa+83fs+8afe
ds g1fs+82f6+83/71+84fs
dy 1817+ 8208+ 831 +84f2]

Hence the first level transformed matrix is:

(b hy h3 hy O O O O
0 O h hy h3 hy 0 O
0 0 0 0 h hy hy g
hsy hy 0 0 O O h h”y

T,=|- - — — — - - -
g & & g 0 0 0 O
0 0 g1 g &g g 0 0
0 0 0 0 g & & &g
g3 84 0 0 0 0 g g

This method shows that in transformed matrix, coefficients 4 and g which are an-
nihilated on the left reappear on the right. It means that in each step, the i and g
coefficients are moved to the right by 2 steps (cascade algorithm), and the first pair of
positions in the last step are filled in periodically.

By the properties of Db2 filters we know that

R4+ +hi4+hi=1, hihs+hhs =0,

and
g+ +a+ai=1, g18+884i=0,

so we have
T
I,T, =1,

hence, the periodic extension yields an orthogonal transformed matrix, and the matrix
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Tp’l describe below is used to reconstruct the function f in Db2 periodic system.

hy 0 0 h3 g 0 0 g3

hy 0 0 hy g 0 0 g4

h3 /’ll 0 0 83 &1 0 0

71— hy hp 0 0 g g 0 O
p 0 h3 hl 0 0 83 &1 0
0 hy ho 0 O g g O

0 0 h3 i 0 0 g g
10 0 hy hp O O g4 g

2. Zero Padding Extension

Another approach to tackle the overlap issue is to add enough zeros to the initial func-
tion f, ( fr=0fork<Oandk >n—1).

In order to decompose function f with 8 samples in Db2 wavelet system, we should
extend it by f where the values fo = fiq set to zero.

f: (fl7f2a“' af87050)'

For f € Vi, the coefficients s and d in scaling and wavelet spaces Vy and W, are
obtained as:

s1 (hifi +hafo+ 3 fs+ hafs ]
52 hif3+hafa+hsfs+hafe
53 hifs+hafe+hsfr+hafs
54 h1f7+ho fs

d g1f1+8/2+8f3+84f4
do 813+ 8 f1+83f5+84f6
d3 g1fs+g2fe +83f7+8afs
dy i g1f1+82/s

So the first level transformed matrix 7, for zero padding extension is :

hy hh h3 hy, O 0 0 O
0O O h hy hs hy 0 O
0O 0 0 O h hy hy hy
o 0 0 O 0 0 h h
T,=|- — — -— - _
g1 & & g 0 0 0 O
0 0 g & g g 0 O
0 0 0 0 & & & g
0 0 0 0 0 0 g g

The main difference between transformed matrices T, and T is orthogonality. The
matrix 7, is not orthonormal. since the first pair of positions in the last step in 7, are
filled by zero, further we will see that reconstruction by zero padding method does not
give us the initial data. In this case we can calculate the error.
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Suppose that the function f= ( fifo,-, fN) is the reconstruction of the function
f with N samples by Db2 zero padding transform. Then the />-norm error is calculated

as:
1

R 1 (X A
Wf=Flle=<| Y- -
N \=
3. Symmetric Extension

The third approach to deal with boundaries is symmetric extension.
In this method, the function is extended at the end points by reflection, (they are mir-
rored at end points).

To decompose a function f with 8 samples in Db2 wavelet system, we need to
extend it by f where values fo = fg and fio = f7 .

f: (flaf27"' 7f8af87f9)'

For f €V}, the coefficients s and d in scaling and wavelet spaces Vj and Wy are obtained
as:

c hifi+hafo+hsfs+hafs
c hif3+hafa+hsfs+hafs
3 hifs+hafe+h3f7+hafs
ca| _ | (hi+ha)fr+ (ha+h3)fs
di|  |eifiit+efrtefstaafs
dy g1f13+82fa+g3fs+84fs
d3 81f1,5t82f6 +83/7+84f8
di| | (&1+ga)fi+(g2+83)f8 |

So the first level transformed matrix Ty is

hy hh hy hgy 0 O 0 0

0O 0 hi hy hy hg 0 0

0O 0 0 0 mhn h h3 hy

0O 0 0 0 0 0 h+hy h+hs
T,=|- - — — — = _ _

g1 & & 8 0 0 0 0

0 0 g1 & & & 0 0

0 0 0 0 & & & 84

0 0

0 0 0 0 gi+g g +g3]

This matrix is not orthonormal, and the first pair of positions in the last step are filled
by zero. The main difference between T and T, is the last pair of positions in the last
step, which are filled by the combination of filter coefficients.
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Example 3.1. Db2 Decomposition and Reconstruction

Consider the function f(x) = sin(x) for x = 0: 2!°, it means that we have 1024 samples
to pass through the filters in order to decompose and reconstruct f.

The main goal of this example is to decompose and reconstruct this function with all
three extension methods and compare the results. For function f with 2! samples, we
are able to do the decomposition process up to 10 levels. Consider periodic extension
of this function, and perform some level decomposition.

Figure 4 illustrates the scaling and wavelet coefficients for 5 level of decomposition

with periodic extension. By increasing the level of iteration, the value of wavelet co-
efficients decrease, and the effect of the wrapping around the data is visible in wavelet
coefficients.
It means that in each level of decomposition, the last two values of wavelet coefficients
are not in the same linearity, and they are zero wherever wrapping act is not considered.
Now suppose that the right boundary of the function f is extended with zero padding
method. When we do the decomposition, we realize the differences between this ex-
tension and the periodic method near boundaries.

Figure 5b shows 5 level wavelet and scaling coefficients, which in comparison
with periodic extension, wavelet coefficients are greater and the distortion in the right
boundary are more visible. The same distortion in the right boundary happens for
symmetric extension.

Figure 6b depicts the graph of wavelet and scaling coefficients for function f in
Db2 system with symmetric extension.

Since the initial function sin(x) is periodic, comparing these three methods indi-

cates that the periodic extension can be the best way to deal with borders. While,
according to the definition of function sin(x) in the interval [0, 1], we obtain inverse
results. Therefore in order to have a periodic function, we should consider sin(x) for
0<x<1.
As we described above, the periodic extension is a suitable method to reconstruct pe-
riodic functions. It means that we can reconstruct the decomposition function in level
j and return exactly to the initial function (perfect reconstruction) since the periodic
extension yields an orthogonal transformed matrix. However, in the zero padding and
symmetric extensions, some points in boundaries are not reconstructed perfectly.
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Figure 4: (a) Depicts the sin function defined in Example 3.1. (b) From up to bottom:
5 level wavelet and scaling coefficients considering Periodic extension for the wavelet
transform.
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Figure 5: (a) Depicts the sin function defined in Example 3.1. (b) From up to bottom:
5 level wavelet and scaling coefficients considering Zero padding extension for the

wavelet transform.
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Figure 6: (a) Depicts the sin function defined in Example 3.1. (b) From top to bottom: 5
level wavelet and scaling coefficients considering Symmetric extension for the wavelet
transform.
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Example 3.2.

Consider function f(x) = sin(x) for x = 0 : 210 | with three jumps around x = 2.5.
It means that the function f is continues and differentiable everywhere except at

k= 1501—224, 150%, 150]—244. where k is the translation number. In this way first level de-
composition with any extension (by Db2 wavelet) gives some spikes at the location
k= %, 1205—274, % in wavelet and scaling coefficients, where these locations are re-
lated to the discontinuity in initial function at perturbation points. It means that the
only nonzero wavelet coefficients are near points where the slop changes.

Figure 7 depicts wavelet coefficients in 5 level Db2 decomposition with periodic
extension. By changing the number of k, the location of the wavelet coefficients will
change along the horizontal axis. As it is expected, in the first level of decomposition
the wavelet coefficients correspond to projection of 512 scaling coefficients to the space
Wo.

In general, for number of N sample, the jumps in wavelet coefficients occur at
k= 2N27,{,71 , 2N7;§1+1 , ZNZ;,I”. It means that each coefficient reflects the behavior of
a function over a specific time interval, so the coefficients should capture interesting
behavior such as sharp changes or smoothness of a function.

Figure 8b and Figure 9b illustrate the wavelet coefficients in 5 level Db2 de-
compositions by zero padding and symmetric extension for function Sine with 3
perturbation in the middle.

Looking precisely to all wavelet coefficients in following graphs, we come up to the
conclusion that there is no differences in the discontinuity points for all three methods
in Db2, and the perturbations in the middle of functions do not effect the scales of the
wavelet coefficients in boundaries. The only visible different between these methods
is in right boundaries (as we expected), since the extensions are added in the right

boundary.
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Figure 7: (a) Depicts sin function with perturbation defined in Example 3.2 . (b)
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Figure 9: (a) Depicts sin function with perturbation defined in Example 3.2 . (b) From
top to bottom: 5 level wavelet coefficients considering Symmetric extension for the
wavelet transform, right side panels illustrating boundary effects caused by the chosen
extension.
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4 Two Dimensional Discrete Wavelet System

In section 3 we explained one dimensional discrete wavelet transform based on mul-
tiresolution analysis. We applied two different examples and calculated the scaling and
wavelet coefficients in different levels by considering Db2 wavelet transform. In order
to use wavelets for image processing we need to extend the wavelet transform to multi
variables functions.

In this section we describe, based on [2] and [1], how to construct a two dimensional
wavelet transform from the uni-dimensional one.

4.1 Two Dimensional Scaling and Wavelet Functions

To construct the two dimensional wavelet functions from one dimensional scaling func-
tion @(x) and wavelet function y(x) , we define a scaling function ®(x,y) by:

D(x,y) = 9(x)@(y), (4.1)

and three two dimensional wavelet functions as
P (x,y) = ey (),
Y (xy) = y(x)o(),
P (x,y) = W)y ).
Dilated, translated, and normalized scaling and wavelet functions are defined by
D@ 1 (x,y) = 2/D(2/x — ky, 20y — ky),
P () = 2797 (P~ ke, 2y — ky),
Wi (x,y) =279 (2 — ke, 2y — k),
PPi(x,y) = 2WP (2x — ke, 2y —ky),

where j € Z and k € 7.

So the two dimensional subspace ij =V;®V; C L?>(R?) at scale j is spanned by
®(2/x — ky,2/y — ky) of the scaling function @, and it can be defined as the set of all
functions of the form

Fitny) =Y cju®in(xy) = Y cjx@ix(x) @ik ().
k k

In this work we are not going to study continuous functions in L?(R?). Instead we are
interested in discrete objects represented by matrices, as the mammograms images are
analysing in the applications. Therefore we scape the presentation of the MRA in 2
dimensions [1], and focus on the discrete 2 dimansion wavelet transform.
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4.2 Two Dimensional Wavelet Transform

The construction of the discrete transformation is a consequence of the definition 4.1,
since now the x and y directions are going to be decomposed in terms of the 1 dimen-
sional wavelet transform.

Lets consider the set of input data represented by the matrix M = [f,,,] where
n,m=0,--- N — 1 and Nj = 2V,

The 1 level two dimension discrete wavelet transform is defined by first applying
1 dimensional discrete wavelet transform on rows matrix M (denoted by M), and then
applying 1 dimensional discrete wavelet transform on columns of resulting matrix M
(denoted by M ).

The result of the first level decomposition process is the matrix with 4 blocks.

HyHM;, H,GM;, GHM; GyG:Mj,

where the size of each block is the half size of the function M.

The block HyH,M; (left up corner) contains low frequency (smooth) function, it is
scaling coefficients block. The right up corner block (H,G,) contains horizontal high
frequency, the left down corner block (G, H,) has vertical high frequency, and the right
down corner block (G,G,) shows the diagonal pattern. All this three are the wavelet
coefficients blocks.

M M

HHxM;=M;; | HGxM;=D" 1
M;

v

HxM; GM; —

GyHxM=D"}1 | GyGxM=D";,

Figure 10: Two dimensional wavelet decomposition. Each M; can be decomposed as M; =
M +DY  +DY  +DY .

In Figure 11 we present for the Db2 filters the construction of the scaling func-
tion and the three corresponding wavelet functions denoted as horizontal, vertical and
diagonal wavelets. Each function is obtained by considering a coefficient of corre-
sponded block to one and set other blocks to zero and reconstruct all four blocks (M1,
D?71 ,D}/_l, D?fl) together , for instance scaling function ®(x,y) represented in figure
11a is obtained from the reconstruction of four blocks where all coefficients except one
in up left subband (M;_1) are set to zero.

The cascade Algorithm used in this case shows the two dimensional wavelet de-
composition for function of the length N * N where N = 2&. where the length of the
wavelet filter is considered D.
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(a) Two dimensional Db2 scaling function ®(x,y) (b) Two dimensional Db2 horizontal wavelet function ¥ (x,y)

0015~
0

0005

00050

L0

(c) Two dimensional Db2 vertical wavelet function ¥ (x,y) (d) Two dimensional Db2 diagonal wavelet function ¥? (x,y)

Figure 11: (a) Db2 scaling function that is obtained from the reconstruction of the up
left block. (b) Db2 horizontal wavelet function which is related to the up right block.
(c) Db2 vertical wavelet function which is captured from reconstruction of the down
left block. (d) Db2 diagonal wavelet function.
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Algorithm 3 Two Dimensional Decomposition

for j=1—Ldo
fork, =0 — 2"/ —1do
fork,=1—2L"7_1do
for/=0—D—1do
Joo_ -
Chody =2t Mo 1 2k 1
Jo_ j—1
i b =L 810 11 211
end for
end for
end for ‘
JjooZ j
Cha ky =X Coler+1,2ky 41
ho J
Ay r =L 81 11 ok
vooj_ Jj
dkx,ky =Lihi d2kx+1,2ky+l
d j_ J
i r=L1 81 11 24
end for

Example 4.1. Two Dimensional Db2 Wavelet Transform .

Consider the input matrix M = [fj;] defined by f;j; =i *x; where x; = %6 fori,j =
1,2,---,16, represented by Figure 12. Each line of the input matrix is generated by a
linear function discretized in a fine grid with step Tl()'

To decompose the matrix M with 16 x 16 values, we consider two dimensional
wavelet transform. since Db2 wavelet transform has filters greater than 2, some data
extension has to be performed on the boundaries, exactly as in the one-dimensional
case. Here and in the applications we only consider periodic extension because they
cause less distortions in the final results.

[ 0.06 0.12 0.18 0.25 0.31 0.37 0.43 0.5 0.56 0.62 0.68 0.7 0.81 0.87 0.93 1 7]
0.12 0.25 0.37 0.5 0.62 0.7 0.87 1 1.1 1.2 1.3 1.5 1.6 1.7 1.8 2
0.18 0.37 0.56 0.7 0.93 1.1 1.3 1.5 1.6 1.8 2 22 24 2.6 2.8 3
0.25 0.5 0.7 1 12 1.5 1.7 2 22 25 2.7 3 32 35 3.7 4
0.3 0.6 0.9 1.2 1.5 1.8 2.1 25 2.8 3.1 3.4 3.7 4 4.3 4.6 5
0.37 0.7 1.1 1.5 1.8 22 2.6 3 33 3.7 4.1 4.5 4.8 52 5.6 6
0.43 0.8 1.3 1.7 2.1 2.6 3 35 39 4.3 4.8 52 5.6 6.1 6.5 7
M _ 0.5 1 1.5 2 25 3 35 4 4.5 15 55 6 6.5 7 7.5 8
- 0.56 1.1 1.6 2.2 2.8 33 39 4.5 5 5.6 6.1 6.7 73 7.8 8.4 9
0.62 1.2 1.8 2.5 3.1 3.7 43 5 5.6 6.2 6.8 7.5 8.1 8.7 9.3 10
0.68 1.3 2 2.7 34 4.1 4.8 55 6.1 6.8 715 8.2 8.9 9.6 10.3 11
0.7 1.5 22 3 3.7 4.5 52 6 6.7 75 8.2 9 9.7 10.5 11.2 12
0.8 1.6 24 32 4 4.8 5.6 6.5 7.3 8.1 8.9 9.7 10.5 11.3 12.1 13
0.87 1.7 2.6 35 4.3 52 6.1 7 7.8 8.7 9.6 10.5 11.3 12.2 13.1 14
0.9 1.8 2.8 3.7 4.6 5.6 6.4 7.5 8.4 9.3 10.3 11.2 12.1 13.1 14 15
L 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
Example 4.1.1

In this example two issues are investigated: (1) What happen with coefficients near the
boundaries, and (2) What happen with the wavelet coefficients in each one of the three
blocks away from the boundaries.

since the original data is not from a periodic function, the periodic extension in
boundaries will cause some kind of distortion in both directions.

As we mentioned in two dimensional wavelet decomposition, Figure 10, a function
is decomposed into four blocks by transforming it through any wavelet filters, where
the low-high subband is related to the horizontal detailed coefficients, and the high-low
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Figure 12: Function M = [f;;]; jen, defined fi; = i*x; where x; = % fori=1:16,
j=1:16.

subband is mentioned as the vertical detailed coefficients . It means that the low-low
block is obtained by moving data through the low pass filter. And the results of the high
pass filters yield details, (for data of an image, they represent changes in the location
of the image edges).

The decomposition of the matrix M through the two dimension Db2 wavelet trans-
form is denoted as matrix N (N = 2DWT (M)).

In matrix N, we can observe the effect in the wavelet transform cause by the prop-
erty of the vanishing moments. Since Db2 has 2 vanishing moments, the scaling func-
tions represent exactly polynomials with degree 0 and 1. This implies that the wavelet
coefficients associated to this transformation for the case of polynomials with degree 0
or 1 must be zero. This is exactly what can be observed inside the domain. All wavelet
coefficients are zero inside the domain in all three wavelet blocks. Naturally, because
of the effect of the periodization, (the periodic extension of the data) there is a region
(exactly in the boundary vicinity) where the wavelet coefficients are no longer zero,
bacause they captured the variation generated by the extension.

[ o6 1.4 23 3.1 39 4.7 55 59 0 0 0 0 0 0 0 -1.6 7]
1.4 33 5.1 6.9 8.7 10.5 12.3 132 0 0 0 0 0 0 0 -3.6
23 5.1 7.9 10.7 13.5 16.3 19.2 20.5 0 0 0 0 0 0 0 -5.6
3.1 6.9 10.7 14.5 18.3 222 26 27.7 0 0 0 0 0 0 0 —7.6
39 8.7 13.5 18.3 232 28 32.8 35 0 0 0 0 0 0 0 —9.6
4.7 10.5 16.3 22.2 28 338 39.6 42 0 0 0 0 0 0 0 —1.6
55 12.3 19.2 26 328 39.6 46.4 49.6 0 0 0 0 0 0 0 —133.6
N . 59 13.2 20.5 27.7 35 42.3 49.6 53 0 0 0 0 0 0 0 14.5
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L -16 -3.6 -5.6 -7.6 -9.6 —11.6 —13.6 —14.5 0 0 0 0 0 0 0 4 a
Example 4.1.2

In this example we investigate what positions are related in the 4 blocks of wavelet
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decomposition. That means, if we change just one position of the original matrix, what
happen with the wavelet coefficients on the three blocks? Do they change in a specific
position? And if one wavelet coefficient is altered, what is the effect of this change in
the reconstruction process?

In the above example, we change just the one input value, fg g = 100 in matrix M
denoted by M, and apply the bi-dimensional Db2 wavelet transform (N = 2DWT(]\7I ).
We can notice which values in decomposed matrix N have changed because of the
alteration introduced in the original matrix M. There are 4 altered values, in each block
of the wavelet coefficients effected by this change. Positions of altered values are 2 by
2 blocks start from d3 35 d3 5 and d3 5 due to the number of filters in wavelet transform
and the decimated algorlthm (here cascade algorithm is chose).

[ 06 1.4 23 3.1 39 4.7 55 5.9 0 0 0 0 0 0 0 1.6
1.4 33 5.1 6.9 8.7 10.5 12.3 132 0 0 0 0 0 0 0 -3.6
2.3 5.1 11.1 -10 13.5 16.3 19.2 20.5 0 0 012 55 0 0 0 —5.6
3.1 6.9 —-10 148.9 18.3 222 26 27.7 0 0 -71.5 -36 0 0 0 -7.6
39 8.7 13.5 183 232 28 328 35 0 0 0 0 0 0 0 —9.6
4.7 10.5 16.3 222 28 338 39.6 42 0 0 0 0 0 0 0 —1.6
55 12.3 19.2 26 328 39.6 46.4 49.6 0 0 0 0 0 0 0 —133.6
ﬁ _ 5.9 13.2 20.5 27.7 35 423 49.6 53 0 0 0 0 0 0 0 —14.5
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 12 -71.5 0 0 0 0 0 0 44.7 20.7 0 0 0 0
0 0 55 —36 0 0 0 0 0 0 20.7 9.6 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L 1.6 -3.6 —5.6 —7.6 -9.6 —11.6 —13.6 —145 0 0 0 0 0 0 0 4 i

In the example 4.1, we change just the one value, d3D.5 = 100, in decomposed ma-
trix N and denote the altered matrix by N’, then we apply the bi-dimensional inverse
wavelet transform (D! = 2DIWT (N')) to indicate the effect of this change in recon-
struction process. We can notice which values in the reconstruction matrix D~! have
been changed because of the alteration introduced in the diagonal subband of decom-
posed matrix N. There are 16 altered values which is a 4 by 4 matrix starts from f5 o,
Figure 13(d). The same changes in position occur due to the changes in the same
positions in the scaling, horizontal and vertical blocks, Figure 13.

[ 0.06 0.12 0.18 0.25 0.31 0.37 0.43 0.5 0.56 0.62 0.68 0.7 0.81 0.87 0.93 1
0.12 0.25 0.37 0.5 0.62 0.7 0.87 1 1.1 1.2 1.3 1.5 1.6 1.7 1.8 2
0.18 0.37 0.56 0.7 0.93 1.1 1.3 1.5 1.6 1.8 2 22 2.4 2.6 2.8 3
0.25 0.5 0.7 1 1.2 1.5 1.7 2 22 2.5 2.7 3 32 35 3.7 4
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.5 3.6 4.5 -1.9 6.8 4 4.3 4.6 5
0.37 0.7 1.1 1.5 1.8 22 2.6 3 4.8 6.2 -5.2 9.9 4.8 52 5.6 6
0.43 0.8 1.3 1.7 2.1 2.6 3 35 -14 -5 39.8 -14.9 5.6 6.1 6.5 7
D—l _ 0.5 1 L5 2 2.5 3 35 4 7.6 104 -14.3 17.6 6.5 7 7.5 8
- 0.56 1.1 1.6 22 2.8 33 39 4.5 5 5.6 6.1 6.7 73 78 8.4 9
0.62 1.2 1.8 2.5 3.1 3.7 4.3 5 5.6 6.2 6.8 75 8.1 8.7 9.3 10
0.68 1.3 2 2.7 34 4.1 4.8 55 6.1 6.8 715 82 8.9 9.6 10.3 11
0.7 1.5 22 3 3.7 4.5 52 6 6.7 7.5 8.2 9 9.7 10.5 11.2 12
0.8 1.6 2.4 32 4 4.8 5.6 6.5 7.3 8.1 8.9 9.7 10.5 11.3 12.1 13
0.87 1.7 2.6 35 4.3 5.2 6.1 7 7.8 8.7 9.6 10.5 11.3 12.2 13.1 14
0.9 1.8 2.8 3.7 4.6 5.6 7.5 8.4 9.3 10.3 11.2 12.1 13.1 14 15
L ! 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16|
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() (d)

Figure 13: (a) Shows the reconstruction of the matrix N with change in the scaling
block i.e f35 = 100. (b) Depicts the reconstruction of the matrix N with change in
position (3,5) in horizontal block (f11,5 = 100). (c) Shows the inverse of the matrix N
with change in position (3,5) in vertical block (f3,13). (d) Illustrates the inverse of the
matrix N with changes in the position (3,5) in diagonal block, (D) .
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5 Microcalcifications detection in Mammography

In the last 2 decades, several mammography processing methods have been developed
to detect microcalcifications by radiologist where among them wavelets transforms
have been exploited efficiently. In this section we apply 2D wavelet transform as
described in section 4 on mammographies in order to analyze and to identify strong
variations contained within the mammogram images.

The mammogram images presented here, scanned as raw format with 8-bit grayscale
and 256 by 256 pixel size, were obtained from the University of South Florida Digital
Mammography Home page [18].

The main goal of this section is to detect the microcalcifications in mammogra-
phies by exploring concepts of wavelets transforms and statistical measurements such
as skewness and kurtosis parameters. In this case mammogram images are decomposed
by Db2 wavelet transform into four different subbands (1 level decimated decomposi-
tions).

Here we consider two different mammographies of the mentioned website. Figure
14a is the right breast mammogram image suspected as a mammogram with some
microcalcifications clusters. and Figure 14b is the left breast mammogram image with
normal tissues such as blood vessels and mammary ducts.

According to [11], in microcalcifications regions the symmetry of the Gaussian
distribution of wavelet coefficients is destroyed and the tails of their distribution are
heavier. The statistical quantities able to identify these deformations in the shape of
the Gaussian distributions are the third and fourth order correlation parameters, called
skewness and kurtosis, respectively.

So in order to have the exact detection we calculate the quantities of skewness
and kurtosis of wavelet coefficients and threshold wavelet coefficients for row and col-
umn directions separately. After thresholding, the positions (intersections of rows and
columns) associated to the significant values are identified. The regions of interest
(areas of microcalcifications in mammography) are obtained as intersection of the sig-
nificant rows and columns. Remembering that significant values are those greater than
the threshold values.

5.1 Wavelets Representation of Images

In the Section 4, we indicated how an image matrix M is decomposed into four differ-
ent subbands through the wavelet filters in 1 level decomposition (see Figure 10).
The subband H,H,M (called C) contains the smooth information of the image (back-
ground), and the subbands HyG,M,GyH:M and G,G.M (called V, H, D, respectively)
contain the detail information of the image (edges).

The properties of wavelet transform show that the significant information of an im-
age can be extracted by eliminating the subband of the wavelet decomposed image that
contains the lowest frequencies (subband C) [15]. Reconstructing the wavelet com-
ponents individually (subbands V, H, D) gives us the vertical, horizontal and diagonal
edges.

In other words, each pixel in an image has two pixels in the horizontal, two in the
vertical and four in the diagonal directions in its neighborhood. For instance, vertical
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edge points of an image occur, if the variation of the pixel value (in the specific lo-
cation) is small in the vertical direction. So all eight different pixels in variations are
calculated by considering the wavelet coefficients in decomposed image before recon-
struction.

(b)

Figure 14: (a) Right breast mammography with microcalcifications. (b) left breast mammogra-
phy with normal tissues.

5.2 Thresholding
5.2.1 Soft Thresholding

The wavelet coefficients d;. « Where i indicates vertical, horizontal and diagonal sub-
bands are obtained by applying the specific wavelets transform on an image. The soft
thresholding method on the wavelet coefficients d}_ « can be performed as:

' dip =2 if di > A
sy = d§.7k+l" if dj.7k<—7Li (5.1

0 otherwise,

where s;_k are the threshold wavelet coefficients, and A is the threshold value.
Now we modify the soft thresholding formula and amplify the wavelet coefficients
by:
A dj‘,k + AL if d;k > A
s’j,k’ =qdi— AL if dj < —A! (5.2)
0 otherwise,

where s’j ki are the threshold wavelet coefficients.
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5.2.2 Hard thresholding
Hard thresholding is another filtering method that is applied on the wavelet coefficients
in the following way:

PET0 i Jdl | < A

where A is threshold value for subband i. In this process, wavelet coefficients are
suppressed if the values are less than the threshold, and they are kept if they are greater
than the threshold.

There are several methods to calculate the threshold value A/, here we use a statis-
tical method to calculate this value . In this case A’ is calculated from

AM=p+ oo, 54

where ui is the mean value of the wavelet coefficients for subband i, 6 is the standard
deviation of the wavelet coefficients for subband i.

Algorithm 4 Edge Detection

Input: image (I)

DWT (D=(C, V,H, D), 1 level Db2 wavelet transform

2)V=Thr(V), H=Thr(H), D=Thr(D), Softand hard thresholding

3) E;;;:IWT (O,V,ﬁ ,5), Inverse wavelet transform of threshold detail coefficients
Output: image (I/E;;) with changes in the scale, new pixels=1-old pixels

Example 5.1.

Consider a mammography with several clusters formed by microcalcifications (Figure
14a). In order to detect these abnormal textures the algorithm 4 is performed on this
image.

Figure 15 shows the output images with 3 different threshold methods on wavelet
coefficients. The inverse wavelet transform of soft threshold wavelet coefficients (Fig-
ure 15a), modified soft threshold wavelet coefficients (Figure 15b) and hard threshold
wavelet coefficients (Figure 15c) are depicted, respectively.

Using the modified soft threshold method amplifies the wavelet coefficients and pro-
vides enhancements in the microcalcifications regions.

From what is clarified in Figure 15, Db2 wavelet transform detects big numbers of
pixels where some of them belong to microcalcifications. Thus shorter wavelet filters
are more sensitive to extract microcalcifications, however, they tend to produce more
false positive numbers.
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(a) (b) (©)
Figure 15: (a) Edge detection using the soft thresholding method. (b) Edge detec-

tion using the modified soft thresholding method. (c) Edge detection using the hard
thresholding method.

5.3 Detection Parameters: Skewness and Kurtosis

In the previous subsection we observed that some of the pixels detected after threshold-
ing the wavelet coefficients are microcalcifications. So in order to have exact detection
rates ( to classify information associated to microcalcifications) statistical measures
(skewness and kurtosis parameters) have been applied to the wavelet coefficients of the
transformed mammographies [11, 14].

Definition 5.1. For a sample of n values, skewness (S) parameter is defined as:
2 Eiy (6 —%)°

§= ,
(i =)

(5.5)

where X is the sample mean.
Skewness is a measure of the degree of asymmetry of a distribution. The skewness
value can be positive or negative, or even undefined [17].

A negative skewness indicates that the tail on the left side of the probability density
function is longer than the right side and the bulk of the values (possibly including the
median) lie to the right of the mean. A positive skewness indicates that the tail on the
right side is longer than the left side and the bulk of the values lie to the left of the
mean, see Figure 16.

An understanding of the skewness of the data set indicates whether deviations from
the mean are going to be positive or negative, So the normal distribution ( data are
symmetric about the mean) has a skewness of zero.

Definition 5.2. For a sample of n values, kurtosis (K) parameters is defined as:

1 yvn =\4
_ akinu-x7
s o 50

where X is the sample mean.
Kurtosis is the degree of peakedness of a distribution [17]. A distribution with positive
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(a) negative skewness (b) positive skewness

Figure 16: (a) The left tail is longer and the mass of the distribution is concentrated on the right
of the figure. (b) The right tail is longer and the mass of the distribution is concentrated on the
left of the figure.

kurtosis has a sharper peak and longer tails, while a distribution with negative kurtosis
has a more rounded peak and shorter tails, Figure 17.
Normal distribution is the most prominent example of distribution with zero kurtosis.

.-’rf_ﬂ_.—\_-_h“\“-.

(@ (b)

Figure 17: (a) Negative kurtosis. (b) Positive kurtosis.

5.3.1 Numerical Experiments

According to [11], if a region contains microcalcifications then the symmetry of the
distribution of wavelet coefficients is destroyed. Figure 18 and 19 show histograms of
wavelet coefficients of Figure 14a and 14b, respectively. The skewness and kurtosis
values clarified here for abnormal tests are greater that those for normal ones.

5.3.1.1 Numerical Experiments of Skewness
In this subsection, we compute the skewness of mammographies before and after
wavelet thresholding, since we want to investigate if a previous thresholding stage of
the wavelet coefficients can help in the microcalcifications detection.

Algorithm 5 and 6 indicate the process to point out the regions of interest in mam-
mographies by calculating skewness values of wavelet coefficients and threshold wavelet
coefficients, respectively.
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Wavelet Coefficients Histogram of the Mammography with Microcalcifications
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Figure 18: (a) Vertical coefficients histogram . (b) Horizontal coefficients histogram. (c) Diag-

onal coefficients histogram

Wavelet Coefficients Histogram of the Mammography without microcalcifications
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Figure 19: (a) Vertical coefficients histogram . (b) Horizontal coefficients histogram. (c) Diag-
onal coefficients histogram

Example 5.2.
In this example we apply the algorithm 5 on two main blocks of simulations consider-
ing input data images with and without microcalcifications, Figure 14a and 14b.

From what is clarified in Figure 18, the distributions of wavelet coefficients for
each subband are not normal and has skewness.

The row and column skewness values for each mentioned mammography are de-
picted in Figure 20 and 21, respectively. The horizontal lines in each subpolt point
the threshold values of each row and column subbands skewness.

After thresholding the skewness values, the sample 108 of row skewness and sam-
ple 120 of column skewness have the high skewness values for all wavelet coefficients,
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Figure 20, where the intersection of them (point (219,243) in Figure 14a) detects one
of the most important calcifications, Figure 28. While the threshold skewness values
for mammography without calcifications in Figure 21 do not indicate the common
significant rows and columns, and the skewness values approach to the normal distri-
bution, since the distributions of wavelet coefficients for each subband tend to normal.

Algorithm 5 Skewness Calculation via Wavelet Coefficients

Input: image (I)

1) WT (D=(C, V, H, D), 1 level Db2 wavelet transform

2)S"(v),S"(H), S"(D), skewness computed for each line of the subbands V, H, D
3)S°(V), S°(H), S¢(D), skewness computed for each column of the subbands V, H, D
4) Threshold of S7(.), $¢(.)

4.1) Compute max skewness value of each subband

42) T =0.75% max|S;|, where i=V, H, D threshold value of each subband

4.3) S;= hard threshold S;

5) The significant rows and columns are obtained after thresholding.

Output: Regions are selected as being neighborhoods of the crossing of significant rows and
columns.

Algorithm 6 Skewness Calculation via Threshold Wavelet Coefficients

Input: image (I)

1) WT (D= (C V,H,D), 1 level Db2 wavelet transform

)V = =Thr(V), H=Thr(H), D=Thr(D), hard thresholding of wavelet coefficients

3) 87 (V), S (ﬁ ), S"(D ) skewness computed for each line of the subbands V, H, D

4) §¢(V), S¢(H), §°(D),  skewness computed for each column of the subbands V, H, D

5) The significant rows and columns are obtained.

Output: Regions are selected as being neighborhoods of the crossing of significant rows and
columns.

Example 5.3.

In this example, algorithm 6 is applied on the aforesaid images in example 5.2.

Figure 22 and 23 show the skewness values of threshold wavelet coefficients. For
the mammographies with calcifications the same sample as nonthreshold wavelet co-
efficients has the high row and column skewness. And it is marked as the region of
interest, Figure 28.

5.3.1.2 Numerical Experiment of Kurtosis
In this subsection, we compute another statistical parameter based on kurtosis. The
high kurtosis values of wavelet coefficients can determine the regions of interest in
mammography.

Performing algorithms 7 and 8 on mammographies leads to investigate regions of
microcalcifications.
Following two examples indicate how these algorithms process to mark the significant
rows and columns.

42



vertical row skewness values

horizontal row skewness values

diagonal row skewness values

Subbands Skewness Case with Calcifications

vertical row skewness

vertical column skewness
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Figure 20: (a) Row skewness values of vertical subband of malignant mammography. (b) Column skew-
ness values of vertical subband of malignant mammography. (c) Row skewness values of horizontal subband
of malignant mammography. (d) Column skewness values of horizontal subband of malignant mammog-
raphy. (e) Row skewness values of diagonal subband of malignant mammography. (f) Column skewness
values of diagonal subband of malignant mammography.
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Subbands Skewness Case without Calcifications
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Figure 21: (a) Row skewness values of vertical subband of normal mammography. (b) Column skewness
values of vertical subband of normal mammography. (c) Row skewness values of horizontal subband of nor-
mal mammography. (d) Column skewness values of horizontal subband of normal mammography. (e¢) Row
skewness values of diagonal subband of normal mammography. (f) Column skewness values of diagonal
subband of normal mammography.
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Figure 22: (a), (c), (e) Row skewness values of threshold subbands of malignant mammography. (d), (e),
(f) Column skewness values of threshold subbands of malignant mammography.
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Figure 23: (a), (c), (¢) Row skewness values of threshold subbands of normal mammography. (b), (d), (f)
Column skewness values of threshold subbands of normal mammography.
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Algorithm 7 Kurtosis Calculation via Wavelet Coefficients

Input: image (I)

1) WT (D=(C,V,H,D), 1 level Db2 wavelet transform

2)K"(V),K"(H), K"(D), kurtosis computed for each line of the subbands V, H, D
3)K°(V),K°(H), K°(D), Kkurtosis computed for each column of the subbands V, H, D
4) Threshold of K"(.), K°(.)

4.1) Compute max kurtosis value of each subband

4.2) T =0.75 *max|K;|, where i=V, H, D threshold value of each subband

4.3) K;= hard threshold K;

5) The significant rows and significant columns are obtained after thresholding.

Output: Regions are selected as being neighborhoods of the crossing of significant rows and
columns.

Algorithm 8 Kurtosis Calculation via Threshold Wavelet Coefficients

Input: image (I)

1) WT (D=(C,V,H,D), 1 level Db2 wavelet transform

2)V =Thr(V), H=Thr(H), D=Thr(D), hard thresholding of wavelet coefficients
3)K"(V),K"(H), K"(D), kurtosis computed for each line of the subbands V, H, D

4)K¢(V), K°(H), K°(D), kurtosis computed for each column of the subbands V, H, D

5) The significant rows and significant columns are obtained .

Output: Regions are selected as being neighborhoods of the crossing of significant rows and
columns.

Example 5.4.

In this example we apply the algorithm 7 on two main block of simulations considering
input data images with and without microcalcifications, see Figure 14a and 14b.

The row and column kurtosis values for each mentioned mammography are depicted in
Figure 24 and 25, respectively. The horizontal lines in each subplot point the threshold
values of each row and column wavelet subbands kurtosis.

From what is clarified in Figure 24, after thresholding the kurtosis values, the sam-
ple 108 of row kurtosis and sample 120 of column kurtosis have the highest kurtosis
values for all wavelet coefficients (same as in the case of skewness computation in ex-
ample 5.2), where the intersection of them (point (219,243) in Figure 14a) indicates
one of the most important calcifications, Figure 28. Whereas the threshold kurto-
sis values for mammography without calcifications in Figure 25 do not indicate the
common significant rows and columns, and the kurtosis values approach to the normal
distribution.

Example 5.5.
In this example, the algorithm 8 is applied on the aforesaid mammographies in example
54.

Figure 26 and 27 show the kurtosis of threshold wavelet coefficients. For the
mammography with calcifications the same samples as nonthreshold wavelet coeffi-
cients have high row and column kurtossis.
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Subbands Kurtosis Case with Calcifications
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Column wavelet subbands kurtosis of malignant mammography.
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Subbands Kurtosis Case without Calcifications
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Figure 25: (a), (c), (¢) Row wavelet subbands kurtosis of normal mammography. (b), (d), (f)
Column wavelet subbands kurtosis of normal mammography.
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Threshold Subbands Kurtosis Case with Calcifications
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Figure 26: (a), (b), (c) Row kurtosis values of threshold vertical, horizontal and diagonal sub-
bands of malignant mammography. (d), (e), (f) Column kurtosis values of threshold vertical,
horizontal and diagonal subbands of malignant mammography.
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Figure 27: (a), (b), (c) Row kurtosis values of threshold vertical, horizontal and diagonal sub-
bands of normal mammography. (d), (e), (f) Column kurtosis values of threshold vertical, hori-
zontal and diagonal subbands of normal mammography.
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Figure 28: The region of interest selected as being neighborhood of the crossing of significant
row and column.

5.4 Result and Discussion

In subsection 5.3, microcalcifications regions in mammographies have been detected
by performing algorithms using wavelet transforms and statistical measurements. We
calculated the quantities of skewness and kurtosis of wavelet coefficients for both (rows
and columns) directions, separately. The intersections of rows and columns associated
to the significant values are marked as areas of microcalcifications, see Figure 29b.

Now we apply the aforesaid algorithms without performing any wavelet transforms
in order to investigate if a previous filtering stage of an image is necessary to detect
microcalcifications. It means that, the values of skewness and kurtosis of mammogram
images for row and column directions are calculated directly for the image data. The
intersections of rows and columns associated to the significant values for skewness and
kurtosis are again marked. Nevertheless for this experiment some false positives re-
sults were obtained. Blocks in mammographies were assigned to calcification clusters,
where in fact no malignant tissue was present, see Figure 29c.

This experiment indicates the relevance of the wavelet coefficients for the correct
analysis.

Another preliminary experiments presented in subsection 5.3 indicates that remark-
ably similar outcomes for calcification clusters detection were obtained when thresh-
olded and non thresholded wavelet coefficients were considered for the computation of
skewness and kurtosis.

In order to evaluate the results of the proposed detection methods, we perform a sta-
tistical test based on skewness and kurtosis on 24 digitized mammographies obtained
as scanned raw format with 8- bit grayscale and 256 by 256 pixel size where 18 of them
are suspected as mammographies with microcalcifications.

According to [11], the microcalcifications detection method is posed as a hypothesis
testing problem in which the null hypothesis, Hy, corresponds to the case of no micro-
calcifications against the alternative Hj, and it follows the rule I" based on skewness
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(b)

Figure 29: (a) Mammography with malignant tissue marked with physicians. (b) Tow regions of
interest selected as being neighborhood of the crossing of significant row and columns obtained
by calculating skewness and kurtosis values of wavelet coefficients. (c) A region selected as
being neighborhood of the crossing of significant row and columns obtained by the analysis
of skewness and kurtosis computed directly from the image data, where indicates no interested
tissues.

and kurtosis values,

5.7
1 $§;>T; and K;>T,

F(x):{o Si<Ti or K;<T
where T; is the threshold values determined slightly below the maxima of the row and
column skewness and kurtosis values of each subband.

Table 1 shows the proceeds of the aforesaid statistical test on the mentioned mam-
mographies. For the normal mammographies, no regions of interest are detected by
this test, which characterizes 100% of correct detection.

For the cases where the mammographies presented abnormal formations, the detec-
tion algorithm also performed properly. Nevertheless in some cases, some malignant
regions were over detected, with several crossings inside the same region, as presented
in Figure 29b.

The red curves in Figure 29 are the indicated areas containing malignant clusters,
according to [18].

6 Conclusion

This thesis concerns an approach to detect microcalcifications of mammographies based
on the wavelets transforms.

In fact, the potential of wavelet-based subbands of image decompositions are exploited
to extract the microcalcifications.

Using decimated Db2 wavelet transform, and reconstructing first level threshold wavelet
coefficients we have been able to detect the edges of image, where in the case of mam-
mographies, some of the detections are microcalcifications and the others are false
numbers.
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In order to have more reliable detection, statistical methods based on the skewness and
kurtosis concepts are proposed. These parameters are the measures of the asymmetry
of the subbands distributions, where high values represents the microcalcifications.

Based on the numerical results, we come up to the conclusion that the high skew-
ness and kurtosis values of wavelet coefficients and threshold wavelet coefficients in-
dicate same regions.
Hence the previous thresholding stage of the wavelet coefficients has no effect in the
microcalcifications detection.

In the experiments using the statistical test, all of the 18 malignant clusters are
detected with the number of false positive results for some of them, table 1.

Normal mammographies
Image number Detection
skewness | kurtosis

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0

Abnormal Mammograms
Image number Detection Skewness and kurtosis detections | Identified Malignant regions [18]
skewness | kurtosis
7 1 1 same 1
8 4 4 same 4
9 1 1 same 1
10 2 2 same 1
11 2 2 same 2
12 1 1 same 1
13 2 2 same 2
14 2 2 same 1
15 4 4 same 1
16 4 4 same 2
17 4 4 same 2
18 2 2 same 2
19 1 1 same 1
20 6 6 same 6
21 3 3 same 1
22 2 2 same 1
23 2 2 same 1
24 4 4 same 1

Table 1: Performance using proposed detection methods on normal

mammographies
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