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Abstract

Compressed sensing is a new approach for acquiring signals. It captures and represents signals
and images at a rate significantly below Nyquist rate. In certain areas like magnetic resonance
imaging (MRI), it is urgent to reduce the time of the patients’ exposure in the electromagnetic
radiation. Compressed sensing breaks the canonical rules and effectively reduces the sampling
rate without losing the essential information, so it has a wide application in medical imaging. In
this project, different recovery strategies will be explored to investigate the performance of

algorithms on different MRI images.
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Notation

X
Ixllp)1 < p < o0

||X||o
#T, |T|
[0}

(f g)
At

A

Real numbers
Real valued, finite length signal with length N

1/p
P-norm |Ixll, = (Zi4xIP)

Quasi-norm ||x||o = [supp()|

Cardinality of T

Measurement matrix with size M X N

Inner product

Pseudoinverse of full-rank matrix A. AT = (A*A)~1A*
Index set

supp(x):={j : x; # 0}
Yk ={x€eCN:|xll, <K}



1 Introduction

1.1 Background

1.1.1 The drawback of Nyquist sampling

According to the Shannon/Nyquist sampling theorem, in order to reconstruct a bandlimited
signal perfectly the sampling rate should be at least two times that of the signal bandwidth [3]. To
be more specific, let x(t) represent a continuous-time signal and X(f) be the continuous
Fourier transform of the signal x(t), we have:

X(f) = f oox(t)e‘iz“ftdt

The signal x(t) is said to be bandlimited if there is a B, such that X(f) = 0 for all |f| > B. Figure
1.1 shows an example of a bandlimited signal x(t). The quantity 2B is called the Nyquist rate. The
sufficient condition for signal x(t) to be perfectly reconstructed from an infinite sequence of
samples is the sample rate f, should be larger than 2B. If f; is less than 2B, aliasing will be

introduced after reconstruction.

AN ()

\ 4

~-B B !
Figure 1.1: An example the Fourier transform of a bandlimited signal x(t)[3]

While in reality, this sampling rate is still so high that too many samples should be achieved.
Especially in the medical imaging modality, we need to reduce the time of the patients’ exposure
in the electromagnetic radiation. So it is desirable to take as few samples as possible without
losing essential information. It is interesting to notice that most signals in reality are sparse.
When they are represented in some domain (such as the wavelet domain), they contain many
coefficients close to or equal to zero. Compressed sensing acquires and reconstructs a signal
applying the prior knowledge that it is sparse. It can capture and represents compressible signals
at a rate significantly lower than Nyquist rate.

1.1.2 The sparsity of signals

Using mathematics to illustrate, we have a discrete-time signal X in RN that can be represented

in terms of an orthonormal basis of N X 1 vectors [{;]™, as follows:
3



N
X= Zs,‘Pi (1)
i=1
where s; is the coefficient sequence of x. For simplification, we can write (1) in matrix form as
x = s (where s is the N X1 column vector and Y is the N X N matrix with P; as
columns). Signal x has a K-sparse expansion if only K of the entries in s are non-zero and
(N =K) are zero. Real signals are often compressible which means the sequence of coefficients
decays quickly. It means the large fraction of small coefficients can be thrown away without much
perceptual loss.

1.1.3 The inefficiencies of conventional data transform

In traditional data acquisition, the first step is to acquire the full N-sample signal x; then compute
the coefficients {s;} vias = YTx and only keep the K largest {s;} while discarding the others.
The values and locations of the K largest {s;} should be encoded. This traditional signal
acquisition processing divides the sampling and compression into two separate processes which
samples a lot of unnecessary information. This inefficiency is more obvious when the number of
samples N is large compared to K. Compressed sensing is a method to skip the sampling step by
directly acquiring the compressed sighal representation to overcome these inefficiencies.

1.1.4 The introduction of compressed sensing

In order to measure all the N coefficients of X, we consider the M x 1 (M < N) column inner
products y between x and collection of vectors {<I>j}j“ilz

y = ®&x = PPs = BOs (2)
where @ = @Y isan M X N matrix. @ is called an M X N measurement matrix with (DjT as
rows. @ is fixed and does not depend on the signal X, so this process is non-adaptive. This is a
great point since if we get a robust result from a measurement matrix ®, we can apply this
measurement matrix @ to any kinds of signals without worrying about the stability. Figure 1.2

illustrates the process of compressed sensing.

N x1

sparse
signal

M x1

measurements

K
K < M << N nonzero

entries

Figure 1.2: Compressed sensing measurement process [4]
The main task of this thesis is to investigate the algorithms about reconstructing the K- sparse
signal x € N x 1 by the given measurement vectory € M x 1, withM « N and M = O(K).



1.2 Purpose

The purpose of this project is to explore the compressed sensing strategy to reconstruct images
stably and efficiently by using as few measurements as possible. Three reconstruction methods
OMP, CoSaMP and Model-based algorithms will be illustrated and analyzed.

1.3 Outline

Chapter 1 gives a brief background of the thesis. Chapter 2 shows the idea of reconstruction and
depicts the theory behind it. Chapter 3 emphasizes on the reconstruction algorithms of OMP,
CoSaMP and Model-based, some experiments will be carried out as well. In Chapter 4, some real
MRI images will be tested for further investigation by using different recovery strategies. Finally, a
conclusion will be made in Chapter 5.




2 How to do reconstruction

2.1 Restricted isometry property (RIP)

The main task of encoding is to transform the N X 1 signal x to the M X 1 measurement y
by using a proper measurement matrix ®. The sampling matrix ® must map two different
sighals to two different sets of measurements, so all of the column submatrices (containing at
most k columns) of @ should be well-conditioned.
Candés and Tao proposed a condition for the sampling matrix ®. For all K-sparse vector X, an
M X N matrix @ has the K-restricted isometry property if
(1= 38plIxll3 < [[@x]lF < (1 + 8x)lIxlI3 (3)

When 8y is less than 1, the inequalities (3) imply the all of the submatrices of ® with K
columns are well-conditioned and close to an isometry. If §x <« 1, the sampling matrix @ has a
large probability to reconstruct the (K/2)-sparse signal x stably.
The connection between RIP and CS is if 8,k is sufficiently less than 1, all pairwise distances
between K-Sparse signalmst be well preserved in the measurement space which implies that
(1 = 8,50 l1x1 — X513 < ||dxg — Dx,[|2 < (1 + 83¢)]1%1 — X213 holds for all K-sparse vectors
X; and X,. It can also be said that the sampling matrix @ should map two different K-sparse
signals to different samples.
So as to invert the sampling process stably and get a K-sparse signal x, we need to get a small
restricted isometry constant §,x. However, it is computational difficult to check whether a matrix
@ satisfies the inequality (3). Fortunately, many types of random matrices have a good restricted
isometry behavior, and they satisfy the restricted isometry condition with high probability. One of
the_quintessential examples is Gaussian measurement matrix @, that the entries ®; of ® are

S m———

Jndependent and ldentlcally distributed random variables from a Gaussian probability density

function. An M X IID/Gaussmn matrix has restricted isometry behavior with high probability if
M>c:-K: log(N/K) wherec is a constant [1] [2]. This also means K-spare or compressible
signals with length N can be recovered with M random Gaussian measurements.

In my project, | just pick a random matrix without checking its restricted isometry property. The
random sampling matrix is regarded to have a good RIP behavior if the recovery signal is stable
and approximately accurate. V;/

e

2.2 The idea of Reconstruction

fhf

In order to achieve an optimal recovery algorithm, there are several requlrement%uld be
satisfied. First the algorithm should be stable. That means when the signals or the measurements
are perturbed slightly by noise, recovery should still be approximately accurate. Then the
algorithm should be fast if we want to apply it into practice. In addition, when acquiring linear
measurements by using a specific method, these linear measurements can apply to all sparse
sighals. This is called the uniform guarantees. Finally, the algorithm should require as few
measurements as possible.

Now we want to reconstruct a K-sparse signal x € RN by the M X 1 measurement vectory =

6



®x. Since the measurement matrix® € M X N and M < N, the system (2) is underdetermined.
Theoretically, there are infinitely many X that satisfy Eq. (2). However, in our case the additional
assumption is that x is K-sparse, and then there is often a unique X that will suffice to
recovery. The best solution will be the sparsest vector that means it has the most zero
coefficients. Consider the #,-norm that counts the number of non-zeros entries, the
reconstruction problem turns to be:

x =argmin|X] , subject to y = X (4)

Unfortunately, the £4-minimization problem is NP-hard [25][26]. It is computationally intractable
to solve Eq.(4) for any matrix @ and vector y. So there are two families can be alternatively used
to solve Eq.(4). One is the basic pursuit that is a convex relaxation leading to £;-norm
minimization [18], the other is greedy pursuit [9] such as Orthogonal Matching Pursuit (OMP)
[15], Stagewise Orthogonal Matching Pursuit (StOMP) [18], and Regularized Orthogonal Matching
Pursuit (ROMP) [22][23].

£1-minimization approach

As we discussed in section 2.1, in most cases if the RIP holds, the £;-norm can exactly recover
K-sparse signals and do a proper job to approximate the compressible signals with high
probability using only M = O(K -log(N/K)) 1ID Gaussian measurements. Then the Eq.(4) will

o

change to be: ,
x =argmin|[X] , subject to y = ®X (5)
X
Eq. (5) is equivalent to the linear programming
2N
min Zvj , subjectto v=0, y = (®,-P)v (6)

Q
. Jj=1

where v € IR{EZN. The signal x is obtained from the solution v* of (6) viax = (I, =I)v*. So the
£,-norm minimization can be solved by linear programming problem. Interior-point methods [12],
projected gradient methods [13] and iterative thresholding [14] can be used to solve the Eq. (6).
The #;-minimization approach can provide stability and uniform guarantees. But it doesn’t have
linear bound on the runtime, it is not optimally fast.

Greedy pursuit

Greedy pursuit is another approach to reconstruct the signal. It is an iterative signal recovery
algorithm to calculate the support of the signal and it makes the locally optimal choice at each
time to build up an approximation and repeats until the criterion is fulfilled. When we get the
support S of the signal, the signal x can be reconstructed by x = (®,)Ty, where @ is the
measurement matrix @ with entries indexed by S and (@)t is the pseudoinverse of ®. The
pseudoinverse of a full-rank matrix @ is defined by the formula o = (@*P) 1",

Greedy pursuit is extremely fast while it is not optimally stable and doesn’t have uniform

guarantees.



3 The reconstruction algorithms

3.1 OMP algorithm

3.1.1 Description

Orthogonal matching pursuit is a so called greedy algorithm for signal recovery. It was proposed
by Mallat and Zhang [20] and analyzed by Gilbert and Tropp [9]. Suppose X is a K-sparse signal
in RN, and let ® € RM*N be a measurement matrix with columns @4, @5 ..., @y. Then the
signal x can be represented by an M-dimensional measurement vector y = ®x. Since X has
only K non-zero components, y can be regarded as a linear combination of K columns from ®.
So when we do the signal recovery, the most challenge part is to identify the location of the
largest ideal signal X. It is important to determine which columns of & participate in the
measurement vector y. OMP applies the greedy algorithm to pick the columns of @& by finding
the largest correlation between @ and the residual of y. At each iteration, one coordinate for
the support of the signal x is calculated. Hopefully after K iterations, the entire support of the
signal x will be identified.

Tropp and Gilbert gave a proof about the weak uniform guarantees about the OMP [15]. They
showed that OMP can correctly reconstruct the K-sparse signal x from its measurements ®x
with probability exceeding 1 — 28 if @ is an M X N Gaussian measurement matrix with M =
C-M-log(N/8). Here § is a fixed constant between 0 and 0.36 and C is a constant. This
guarantee is only for a fixed signal x not for all of signals. OMP may fail for some spares signals. It
is also unknown whether OMP works for compressible signals rather than sparse signals or
succeeds when samples contain noise.

The OMP algorithm has 4 major steps during each iteration:

(1) Find the index A; by choosing the largest correlation between {‘Pi}[: and the residual of y.

(2) Unite the newly chosen index A; with the index set A; = [Aj_1 A;], and @, with the
matrix ®; = [®;_1 @,,]. Here, @, isan empty set.

(3) Form the signal estimate x; by using the least squares method which is to find the projection
of y onto the range of ®;. It is easy to recognize that the residual r; =y — a; is always
orthogonal to ®;.

Figure 3.1: least square method



(4) Calculate the newly residual of r; and then returnto (1) if i <K.
Once the support A of signal x is found, the approximation of signal X can be found by

% = (dp)Ty.

Algorithm 1: OMP

Input: Measurement matrix @, measurement y, sparsity level K of the ideal signal x
Output: index set A, measurement estimate a;, residual r; =y — a;

rh=y, Ag=0,1=0 {Initialize}
while 1 £ K do
1. i=i+1
2. A =arg max{j=1wm[(r1_1, (pj)| {identify index of largest correlation}
3. A=A VN {Augment the index set}
4. @ =[Pi1 @] {Augment the matrix}
5. x; = argmin,||®x -y, {Signal estimate by least squares}
6. a,=Dx;, =y—a {Update the new residual}
end while

3.1.2 Experiments

Figure 3.2 illustrates the results of a simulation study on the impact of the number of
measurements M on the performance of OMP recovery. A piecewise polynomial signal of length
N=1024 is generated by random. The signal in a piecewise polynomial wavelet basis is K-spare
and K is equal to 42, Figure 3.2(a) to (d) show the performances of OMP recovery from M=2K,
M=3K, M=4K and M=5K noise free measurements respectively. The figure shows that as the M
growing, the recovery results are more and more accurate. When M=5K, the recovery and

original signal almost overlap.

OMP(M=2"1) OMP(M=3K)

== gignal =« signal
3 ! recovery |4 . T recovery
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Figure 3.2: Example performance of OMP signal recovery. The red dotted line is the orignal
signal, the green solid line is the signal recovery. (a) Signal recovery from M=2K samples. (b)
Signal recovery from M=3K samples. (c) Signal recovery from M=4K samples. (d) Signal recovery

from M=5K samples.

Then let us study the behavior of OMP algorithm when the orignal signal is perturbed by noise.
Here, ther%eak ignal-to- ise I?atio (shorted for PSNR) is used to measure the quality of
reconstrucion. PSNR is a term of ratio between the maximum possible power of a signal and the
power of corrupting noise. The PSNR is defined as:

2

MAX
PSNR=10-1o !
1o MSE )

Here, I isa m X n signal and MAX; is the maximum component of signal. MSE is the mean
squared error and defined as:

1 m=1 n-1

MSE=—7% % [1(i. /)= K@ )Y
mn g j=0

and K is an approximation of signal. Typical values for the PSNR are between 30 dB and 50 dB
and acceptable values are considered to be about 20 dB to 25 dB. The higher PSNR is, the better
recovery performance is. [11]
Since the measurements are generated though the multiplication of signal and measurement
matrix @, the noise is also perturbed the measurements. Figrue 3.3 gives the PSNR of OMP
under perturbed signal. The red pentagram line is the performance without noise. When M=4K,
the PSNR is around 22 dB. But when M grows to 5K, the PSNR suddenly increases to
approximately 81 dB. So for the noise free case, when M is bigger than 5K, the recovery
performance is really good. But as noise gradually adding to the signal, even we have a large M,
the reconstruction effect is still bad. The PSNR for M = 6K with noise power level that is bigger
than 0.2 is less than 20 dB.
It is similar when we add noise directly to the measurements. Figure 3.4 shows the PSNR result
with noise measurements and noise power level is increased from 0 to 0.5 with increasing step
0.1. The quality of reconstruction is very poor if measurements are interfered by noise.

10



The performance when adds noise in signal
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Figure 3.3: The stability tests of the OMP algorithm when random noise is added to the original
signal. The noise is a random generated vector with the same size as the signal. The noise

power level is increased from 0 to 0.5 step by step.

The performance when adds noise in samples
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Figure 3.4: The stability tests of the OMP algorithm when we add noise to measurements. The
noise is a random generated vector with the same size as the signal. The noise power level is

increased from 0 to 0.5 step by step.

3.1.3 Conclusion

From the results Figure 3.3 and 3.4, it is easy to draw a conclusion that OMP can achieve a really
ideal result without interuption of noise when M is big. But this algorithm is not stable. When the

signals or the measurements are perturbed slightly by noise, recovery is not accurate any more.
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3.2 CoSaMP algorithm

3.2.1 Description

CoSaMP, short for the Compressive Sampling Matching Pursuit, is a new reconstruction algorithm
based on OMP (;orthogonal r/{\atching}z/ursuit). CoSaMP was first put forth by Needell and Tropp in
2009 [24]. 0

The same as the OMP, identify the location of the K largest ideal sighal x is the most important

i
__ target. According to the restricted isometry property, by giving a sampling matrix & with the

restricted isometry constant §x <« 1, the £,-norm of the largest K entries of vector u = ®*Px
is close to the £,-norm of the largest K entries of the K-sparse signal X. So u that-is_equal to-

~@*®x can be called as a proxy of signal x. The proxy u can be obtained by applying the matrix

®* to the measurement y. In order to identify the location of the largest K components of x, it is
enough to find out the location of the largest K components of the proxy u.

At each iteration, the algorithm first selects the largest 2K components of the signal proxy u and
adds the index of these components to the support set. Next using the least squares, we can get
a signal estimation b. The sparse signal x can be obtained by keeping only the largest K
components of the estimation b to make it sparse. This is called pruning.

Needell and Tropp established the following result that for an arbitrary signal x with noise
samples y = ®x + e, CoSaMP produces a 2K-sparse signal approximation ® that satisfies

N\ 1% = xlz < C(llell, + =21

VK

C where xj is a best K-sparse approximation of x, ® is an M X N sampling matrix with

restricted isometry constant 8,5 < ¢ ani;'lﬂ.jefé refer to positive constants.

This result illustrates without the ihfgr?ﬂp{gdv of noise, CoSaMP can recover an arbitrary signal
with high precision. What’émore, the performance of recovery reduces gracefully if we add noise
in the samples. The {’z-r%rm of 2K-sparse signal approximation X that is produced by this
algorithm is comparable with the £;-norm of the best K-sparse approximation xy.

The CoSaMP has 5 major steps during each iteration:

(1) Find the proxy of the current samples’ residual.

(2) Locate the largest 2K components of the proxy and unite with the index of the current signal
approximation.

(3) Estimate the signal on the merged set of components by using the least squares.

(4) Choose the K largest components as the signal approximation to prune the signal estimation

(5) Update the samples’ residual.

12



Algorithm 2: CoSaMP

Input: Measurement matrix @, measurement y, sparsity level K of the ideal signal x

o

Output: K-sparse estimate &, index set A, measurement estimate an,, residual r =y —ay

Xg=0, 1=y, Ay=0,i=0 {Initialize}
While (halting criterion false) do
1. i=i+1
2. u=®'r {Find the proxy}
3. Q= supp(uyk) {Identify index of largest 2K components}
4. A= QUsupp(xi_1) {Augment the index set}
5. bl|y= d>):y ; blpc=0 {Signal estimate by least squares}
6. x; =bg {Prune the signal estimation}
7. T=y— ®x; {Update the new residual}
end while

return X = x;

3.2.2 Experiments

Same setup as for the OMP algorithm, we generate a signal of length N=1024 by using Matlab to
implement. The recovery results with different size of M are displayed in the Figure 3.5. As
compared with the OMP algorithm, the performance of CoSaMP is not as accurate as OMmP
algorithm. It is easy to texH when M=5K the reconstruction by OMP is almost exact while result of
CoSaMP has some devrat|ons by compa |son to the\‘ornglnal signal.
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Figure 3.5: Example performance of CoSaMP signal recovery. The red dotted line is the orignal
signal, the green solid line is the signal recovery. (a) Signal recovery from M=2K samples. (b)
Signal recovery from M=3K samples. (c) Signal recovery from M=4K samples. (d) Signal recovery
from M=5K samples.
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Figure 3.6: The stability tests of the CoSaMP algorithm when random noise is added to the
original signal. The noise is a random generated vector with the same size as the signal. The
noise power level is increased from 0 to 0.5 step by step.

Figure 3.6 and 3.7 show the performances of recovery of CoSaMP algorithm when adding
random noise in signal and measurements respectively. If the original signal is perturbed by the
noise and the noise power level is less than 0.1, the PSNR is more than 20 dB when M is bigger
than 5K. If the noise power level is more than 0.1, the result is not good no matter how big M is.
The performance of CoSaMP is better if we add noise to the measurements. The recovery results
are acceptable if the noise power level is not more than 0.2 for M is bigger than 4K.

CoSaMP is more stable than OMP algorithm. If the signal or the measurements is interrupted by
little noise, we can get an approximately accurate result with a large M.
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The performance when adds noise in samples
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Figure 3.7: The stability tests of the CoSaMP algorithm when random noise is added to the
measurements. The noise is a random generated vector with the same size as the signal. The
noise power level is increased from 0 to 0.5 step by step.

Now let us compare the PSNR of OMP and CoSaMP and the results are given in Figure 3.8.
Without the noise, the recovery results by OMP are much more accurate than the results by
CoSaMP. For example, the PSNR of OMP is around 78 dB when M=5K while the PSNR of CoSaMP
is about 32 dB. Figure 3.9 shows the comparison about runtimes between these two algorithms.
CoSaMP recovery is extremely fast. When M=5K, CoSaMP needs less than 0.2 seconds to do the
reconstruction but OMP requires more than 1.5 seconds. So if we only need an acceptable result
and require more about the cost of calculation, CoSaMP algorithm is a better choice.

Perfarmance of two algorithms
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Figure 3.8: The comparison about performance of two algorithms
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Figure 3.9: The comparison about runtime of two algorithms

3.2.3 Conclusion :
'\/Gk -

\ /\(}\v
Compared with OMP, CoSaMP algorithm cah’f<achieve such a high PSNR as OMP when there is no
noise. But CoSaMP has its own advantages. It is more stable when adding noise to the signal. The
recovery result is acceptable if the noise is not too high and measurements are large. The

calculation is extremely fast.

3.3 Model-based compressive sensing

I

- Y ., e
3.3.1 Description C/L PRSRTE //2 \ (/;/ Fpe o 5pe

As we discuss/gefore, in order)a@the robust reconstruction, we peed M = O(Klog(N/K))
measurements. thle—theﬁufa fact fbégfqiodern wavelet lmage(ct@_‘els/not only have most of
small wavelets coefficients, but also the locations of the small p{ert of large coefficients have a_
partlcular structure. One of the structured sparsity modeJ ’have the large wavelet coefficients
[g/ggon a rooted, connected tree structut@ﬂ_iﬁthe other one)éccoum;L(for the large coefficients
are clustered together([7,8].( Baramuk and Duarte J;J@&sed on the structural dependencies
between the locations and values of sMposed a new signal acquisition method called
model-based recovery. If the inter-dependency structure among the coefficients is considered in

the process of reconstruction, fewer measurements will be required to offer the robust recovery.

S

This is the foundation of model-based compressive sensing.
Structured sparse signals
A structured sparsity model My [5] is defined as

My = Up®, X, st X = {x ¢ Xlg, € R x|qc = 0} (7)

where x|, denotes the entries of x equali to the set of indices Q< {1,..,N}

and {Ql,...,_QmK} contains all the allowed /support with #0; = K. Q¢ represents the
16



X

complement of the set Q.
My is the union all the K-dimensional subspaces and the signals from My are called
K-structured sparse.
Model-based Restricted Isometry Property
Forallx € Mk, an M X N matrix @ has the My-restricted isometry property if

(1 = 83 )lIxl3 < @113 < (1 + 8ag ) IXIIZ (8)
Blumensath and Davies[10] quantified the number of measurementy M required for
reconstruction to have My-restricted isometry property and pointed out that forany t > 0 and

positive constant ¢, a random M XN iid. subgaussian matrix @ has the M -restricted

. . o —t Te— \
isometry property with probability at least 1 —e , if C/)em\m..m S

M 2 i (In@mi) + K- Ingft+ ) S

= 52
By substituting mg = (E) ~ (Ne/K)X, inequality (9) can be used for the bound of standard RIP.

As we know, myg is much smaller than (E) since mg arises from the structure imposed. So

the number of measurements needed that satisfied the M-RIP is much fewer than that of the
standard RIP.
Structured compressible signals
Richard [5] defined the algorithm to obtain the best K-term structured sparse approximation of x
by
M(x,K) = arg minges, I — %Il (10)

If the £, error about the best K-term structured sparse approximation X andsignal x is

O (X) = infgeng [1X — Rll2,
then

Oar (X) = lIx = M(x, K|
So the set of structured compressible signal is define as

M = {x € R¥: 03, () S CK™, 1<K <N, G < oo},

y\k € M, is called an s- structured compressible signal under the structured sparsity model M.

f

The value of s is selected by minimizing the distance between O'MK(X) and GK™5,
Enlarged union of subspaces
The enlarged union of subspaces is defined as
B
ME={x= Z x@  with x® € My}

Shel =
It is easy to tell that My = M} and M < Mpy.
Mg (x,K) is the algorithm to obtain the best approximation of x in the enlarged union of
subspaces and defined as

Mg (x,K) = arg min ||x — X
5% K) = arg min [1x = &l
Rooted tree structure
In a rooted tree, there is a unique path linking any two nodes. For a node k, all nodes that lie

from k to the root are called ancestors of k; all nodes that lie from k away from the root are
named descendants of k. The parent of k is the ancestor that links directly to k and the child
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of k is the node that has k as its parent. A node can have several children but only one parent.
Nodes without children are called the leaves. The parent of k is denoted as p(k).
Wavelet coefficient tree
The subspace of functionsin L2(R) of the form
F(O = ) sijo(2it—)

j
is denoted V;, where (2t —j) is the scaling functions at scale 27, The dilated, translated and

normalized scaling functions are ¢;; = 2i/2p(21t —§). So every function f; € V; can be written
as
fi(t) = Z $1 91 (D

j
The general multiresolution analysis gives that a function i is said to be a wavelet if the detail

space W, spanned by the functions Y (t —j) complements V; in V; [6]. Wavelets Y (t — j)
should be a Riesz basis for Wy. So any f; € V; can be decomposed as f; = f, 4+ dy, where
fo € V is an approximation of f; and dy € Wy contains the lost details.

The detail spaces W; are defined as the set of functions of the form

d;(t) = Z wij ¥y (H)
j

i (t) = 22 (21 — t) is the dilated and translated wavelets.
According to the above, any function fj,; € Vj,; can be decomposed as fj; = fj + d;, where
fi €V; and d; € W,.
Now consider a signal x at a finest scale I, we can write X; € V; as
Xp =di_y +dip + -+ di, + X,

I
= Z Z wiji;+ Z Sig P,
j

i=ig j
by repeating the decomposition x;.; = x; + d; until a certain level ij.
Since X;, = 0 as iy & —o0 and X; » X as | - o, the wavelet representation of x is given by

(6]
X= Z Wi i
Lj

Using a matrix to illustrate, x = y5s where { is a matrix containing the wavelet functions as

T . . -
the columns and s = [WO'O, Wy,0, Wy,1, W2,0, W2 1, ] is a vector with the wavelet coefficients as

the components. The vector s can form a rooted binary wavelet tree with wy, as the root of
the tree. Figure 3.10 shows the wavelet coefficients tree. "ng
If a coefficient w;; €T and its parent w;_q[j;) €T as well, the coefficients satisf?’*"&\is
property will form a connected subtree. Then the definition of the structured sparsity model T
is
Tk ={x= ZWU Pi:w|Q¢ =0,]0] = K}
ij

Here Q) is the index set. In order to recover the tree based signal, we need to solve the optimal
problem as follows:

xf = argmingeg, X — %1l (11)

18



Figure 3.10: Binary wavelet tree

(C§5A>

The structured sparsity model Jix and optimal problem (10) are similar to thetﬂihctured sparsity

model Mg and algorithm M(x, K). Condensmg sort and select is an algorithm’that can solve the

optimal problem (10) and (11). Because X is K-sparse, wé need to find K largest absolute value

of wavelet coefficients w;; to get the optimal value of signal x.

The CSSA algorithm

If we refer to B(k) as the value of node k and (k) as the kernel of linear program, the

condensing sort and select algorithm (shorted for CSSA) [16] is a greedy algorithm to find the

maximum value of B(k)y (k). The kernel should satisfy the nonincreasing constraint that is

Y(k*) < Y(p(k"). ‘

(1) Use k* = argmax{B(k): (k) = 0} .to find the node k* that has the largest data value of
all of the nodes with (k) = 0.

(2) If Y(p(k)) =1, P(k*) is set to be 1. While if Y(p(k)) = 0, we merge k* with p(k*) to
form a larger supernode S by

o(S) = B(k )+zB(p(k )),
and v(S) is the supernode value (SNV)> of the supernode S.
Supernode can also contain several nodes. Let n(S) denote the number of internal nodes
the supernode S has and Y(S) denote the kernel value, its SNV is

wa—($§:&>

(3) If w(p(s)) is still equal to zero, we continue to merge nodes into supernodes until we get
= argmax {v(S): Y(S) = 0}
with llJ(p(S*)) = 1, then the kernel of S* can be set to 1.

Before given the algorithm of CSSA, the_exp,l_ananon-of_t-he notations,is:

fs\*

B(k): The value of node k.
P: The kernel value. =

y: The volume of kernel. D Y é{)‘SHW:;i‘ mk— *M K-?

I': The volume counter. — R
p(0): Root of the tree. o S
Hhe algorithm of CSSA is as follows:

v
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Algorithm 3: CSSA

Input: value of nodes B(k), tree, y = 0

Output: ¢
v(k) = B(k),n(k) = 1,¢(k) = 0,
r=0,¢(p(0) =1 {Initialize}
while I' <y do
1. $* = argmax {v(S): y(S) = 0} {identify the largest supernode}
2. If Y(p(S) =1
Y(S*) =min (1, (y = T)/n(8*)); T =T + n(S*) {update the kernel value}
3. else Y(p(S*)) =0
Merge S* and p(S*) into a single supernode {condense}
end if
end while

Model-based signal reconstruction algorithm

As we have already known, the model-based signal recovery algorithm is based on the CoSaMP
algorithm, so we can get the model-based algorithm by replacing the best K-term sparse
approximation step in CoSaMP with a best K-term structured sparse approximation. Because

each time, we merely search mg subspaces of My that is significantly fewer than (g)

subspaces of Yx in the conventional recovery algorithms. Fewer measurements are needed to
keep the robust of algorithm.

Baraniuk and Duarte gave the proof of performance of structured sparse signal recovery. By given
a noise measurement y = ®x + e, the signal estimation X, of structured sparse signal x € Mg
obtained from iteration i satisfies

lIx =%, < 27HIxll, + 15]lell;

As the growing of the number of iteration, the £,-error is becoming smaller and smaller. In the
absence of noise, the model-based algorithm can recover a structured sparse signal with high

accuracy.

The Model-based algorithm has 5 major steps during each iteration:

(1) Find the proxy of the current samples’ residual.

(2) Obtain the best approximation of the proxy in the enlarge union of M} and unite the index
of the best approximation with the index of the current signal approximation.

(3) Estimate the signal on the merged set of components by using the least squares.

(4) Choose the best K-term structured sparse approximation of the estimation as the signal
approximation to prune the signal estimation

(5) Update the samples’ residual.
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Algorithm 4: Model-based

Input: Measurement matrix @, measurement y, sparsity level K of the ideal signal x, structured
sparse approximation algorithm M

o

Output: K-sparse estimate X, index set A, measurement estimate ay,, residual r =y —ap,

Xo=0, 1=y, Ag=9,i=0 {Initialize}
While (halting criterion false) do
1, i=i+1
2. u=9®'r {Find the proxy}
3. Q= supp(M,(u,K)) {Prune residual estimate based on structure}
4, A= QUsupp(x;_q) {Augment the index set}
5. bly= CIJ;{y ; blpc=0 {Signal estimate by least squares}
6. x; = M(b,K) {Prune the signal estimation}
7. r=y—®x; {Update the new residual}
end while

return X =x;

3.3.2 Experiments

By using the same method as OMP to generate a test signal with length N=1024. Figure 3.11 and
3.12 give the stability tests of Model-based algorithm with different power levels of noise.
Compared with OMP and CoSaMP algorithms, Model-based recovery is much more robust. Even
with noise, the results of recovery are till-permissitste; especially when the noise interrupt the
measurements. That means it is possible to get an approgﬁimggg!‘xnaccurate reconstructed signal
with an interference sample. 8 /“%S_}M{,rﬂ}:

\

The performance when adds-naise-in-sighial
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Figure 3.11: The stability tests of the Model-based algorithm when we add random noise to the
original signal. The noise is a random generated vector with the same size as the signal. The
noise power level is increased from 0 to 0.5 step by step.
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The performance when adds noise in samples
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Figure 3.12: The stability tests of the Model-based algorithm when random noise is added to
the measurements. The noise is a random generated vector with the same size as the signal.
The noise power level is increased from 0 to 0.5 step by step.

Figure 3.13 depicts the experiment about the performance of CoSaMP and Model-based
algorithms without noise. It is easy to see that M=2K is far fewer than the requirement of
CoSaMP to recover the signal accurately. On the contrary, model-based recovery using M=2K can
get a pretty good result.

Figure 3.14 illustrates how the number of measurements M affects the PSNR of two algorithms.
Model-based recovery achieves good recovery at M=3K while CoSaMP gets this performance at
M=5K. It is not difficult to tell that comparing with CoSaMP, Model-based recovery uses
significantly fewer measurements to offer the same stability.

By using the same class of signals, the recovery time of Model-based and CoSaMP algorithms are
compared empirically and the results are illustrated in Figure 3.15. In general, Model-based
recovery is slower than CoSaMP. The best benefits of model-based recovery are obtained at
M=4K. Around this area, Model-based algorithm yields much higher PSNR than CoSaMP and the
computational times of two methods are comparable.

signal
16
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(a) The original signal of length N=1024

22



Modet based CnSamP
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(d) Signal recovery from M=6K=378 samples
Figure 3.13: The comparison about CoSaMP and Model-based algorithms. (a) is the original
signal with length N=1024. The signal is K-sparse in wavelet basis and K=63. (b), (c) and (d) are
the comparisons of reconstruction with different size of M. Left column is the result of
Model-based algorithm and right column is the result of CoSaMP algorithm.
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Figure 3.14: The comparison about performance of Model-based and CoSaMP algorithms
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Figure 3.15: The comparison about runtime of Model-based and CoSaMP algorithms

Now, Figure 3.16 and Figure 3.17 give the comparisons of stability and recovery time of OMP,
CoSaMP and Model-based algorithms. With the noise free measurements, OMP can achieve a
really high PSNR when M is larger than 5K. But as we have discussed in section 3.1.2, OMP
recovery is very unstable. If the signal or measurements are disturbed by noise, the recovery is not
accurate any more even with a large M. When M is less than 4K, Model-based algorithm can get
the highest PSNR comparing with the other algorithms. In general, CoSaMP is the fastest
algorithm. This is due to the fact that CoSaMP uses the simple K-term approximation. This
algorithm picks the largest K components each time instead one component in OMP algorithm
and the CSSA step in Model-based recovery is more computational. So—GMP—is-the-slowest
algorithm-and-viodet-based-s-stower—
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Comparing Figure 3.16 and 3.17, the near perfect point Model-based algorithm obtains is around
M=4K. The recovery error of Model-based approach at this point is smaller than the other
algorithms
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Figure 3.16: The comparison about performance of three algorithms
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Figure 3.17: The comparison about runtime of three algorithms

3.3.3 Conclusion

From the above discussions, Model-based algorithm can recover a signal accurately with fewer
measurements. This approach is more stable. When the samples are interfered by noise, it is
possible to reconstruct the signal properly. The recovery time is much faster than OMP but a litter
slower than CoSaMP. Overall, Model-based(is a costless, effective and efficient algorithm.
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4 Experiments on MRI Images
In this chapter, the algorithms mentioned above will be tested by serlejreal 2D medical images.
These images are provided by MRI scanner. MRI stands for magnehc résonance xﬁnaglng and is
also known as spin imaging. MRI makes use of the property omuclear %gnetlc%/sonance (NMR)
to image nuclei of atoms inside the body and this technique is widely uf;\d in médical imaging to
visualize detailed internal structures. The main problem is that=®RI that MRI scanner requires a
huge number of measurements to reconstruct an image, so it will take a long time of scanning.
Comparing to X-ray and CT }%mputed jxomography ), MRI does not expose the patient to the
— ihazards of ionizing radiation. But the long time scanning is still harmful and will bring a lot of
K -yneem#e%t—&ble. to the patient. Compressed sensing can significantly reduce the number of P

vy
/samples so it is broadly used in medical image processing.

i
4

/ <
[ A Cot / ’ )
" < _;,,// Since OMP is very unstable, it is not accurate if the signal is perturbed slightly by W%{jwt -/

is not T ——

N\,

algorithm is also slow so it is quite expensive compared with the other algorithm
practical in reality. So in this part, we only test CoSaMP and Model-based algorithms and
compare.theperformance Jult»h"different types of images. All of the test images in this thesis are
_ofsize N = 256 X 256. But aeee?mg-to the data processing capability of my computer, | resize

- - the image to be one quarter of/the origina Qne and the new images are of size N = 64 X 64. ?’\u ’T(A,L—/
Because the size of i lmages is small the resolutlgn of test images i the quality \___,,/
N " ‘

But it is not difficult to tell the ence when

/ we change the sample size compare the performance by using different methods.
Head
/«'7( First, an example of head iage recovery is given in Figure 3.18. There are a lot of details in this
{f’f X 5t ! type of image. In this figure, both PSNR are not higher than 20 dB until M = 5K. The recovery
\ /\\ ’ qualities for both algorlthms are

Head(M=3t) (headiM=3K

M=3K, PSNR=17.31dB M=3K, PSNR=13.84dB
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head(M=5k) (head)M=5K

M=5K, PSNR=21.15dB M=5K, PSNR=20.17dB

head(M=7K) (head)M=7K

M=7K, PSNR=22.8dB M=7K, PSNR=22.88dB
Figure 3.18: Example of Model-based and CoSaMP recovery on images. The left column is
Model-based recovery and the right column is CoSaMP recovery.
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Figure 3.19: Performance of Model-based and CoSaMP recovery on a 2D head image.

Brain |

The following is the test results of brain (horizontal view of a head which is cut into two pieces).
This type of image is quite smooth in the centre, but it has a bright circle which is quite different
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from the other parts. Model-baséd 'r\evéyov/é’ry Ean achieve aj\[é[y”good PSNR when M = 4K while

the PSNR of CoSaMP recovery is not acceptable(u‘h'i'iflvlih > 5K. But the PSNR of CoSaMP is
increasing very fast as fb%ﬁga{_m , From the \’Cuwe_iani/gure 3.21, the PSNR of CoSaMP is
higher than Model-based recovery when M _is.abeve 5.5K.

(brainM=3K e ' Cee ; (brai)=3K

M=3K, PSNR=17.02dB M=3K, PSNR=12.55dB

(brainhi=5iK (brainjM=5K.

M=5K, PSNR=24.07dB M=5K, PSNR=23.11dB

(brainjM=7K (braimM=7K

M=7K, PSNR=25.01dB M=7K, PSNR=26.14dB
Figure 3.20: Example of Model-based and CoSaMP recovery on images. The left column is
Model-based recovery and the right column is CoSaMP recovery.
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Figure 3.21: Performance of Model-based and CoSaMP recovery on a 2D brain image.

Knee

On the whole, the knee image is quite smooth and doesn’t have a lot of curves. The main trend
of PSNR is similar as the first type of brain, Both PSNR are growing fast as M increases and the
PSNR of CoSaMP is bigger than Model-based at the end when M s larger than 6K. The qualities
of recovery are good when M = 4K.

(knee)M=3K

M=3K, PSNR=19.33dB M=3K, PSNR=15.33dB

(kneg)M=5K (knee)M=5K
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M=5K, PSNR=23.96dB M=5K, PSNR=22.97dB

(kneg)M=71K (knee)M=7K

M=7K, PSNR=25.08dB M=7K, PSNR=25.82dB
Figure 3.22: Example of Model-based and CoSaMP recovery on images. The left column is
Model-based recovery and the right column is CoSaMP recovery.
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f\\ \) If Figure 3.23: Performance of Model-based and CoSaMP recovery on a 2D knee image.

Lumbar

There are some clear objects in the lumbar images and these objects are very smooth. According
to the Figure 3.24 and 3.25, Model-based recovery achieves quite good results and the PSNR of
this algorithm is more than 20dB when M = 3K. The PSNR of CoSaMP recovery is very low
at M = 3K, and it can get a comparable PSNR when M > 5K. Finally, the quality of CoSaMP
algorithm exceeds Model-based at M = 7K.
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(lumbanM=3K (lumbar)M=3K

M=3K, PSNR=20.39dB M=3K, PSNR=16.70dB

(lumban)iv=8i< (lumbanM=5K

M=5K, PSNR=24.56dB M=5K, PSNR=23.93dB

(umbaniv=7 K

(lumbani=7K

M=7K, PSNR=26.33dB M=7K, PSNR=26.63dB
Figure 3.24: Example of Model-based and CoSaMP recovery on images. The left column is
Model-based recovery and the right column is CoSaMP recovery.
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Figure 3.25: Performance of Model-based and CoSaMP recovery on a 2D lumbar image.

Brain Il

This is the second type of brain image and it is the vertical view of a head which is cut into two
pieces. The top of this image is quite smooth but the bottom part is rough. The results of the
experiments are illustrated in Figure 3.26 and 3.27. The PSNR of both algorithms are not more
than 20dB until M = 5K.

(brainl

KyM=3K (brainback)M=3K

M=3K, PSNR=17.08dB M=3K, PSNR=12.87dB

(brainback)M=5K {brainback)M=5K

M=5K, PSNR=21.61dB M=5K, PSNR=21.09dB

32



(brainback)M=7K (brainback)M=7KK

M=7K, PSNR=23.18dB M=7K, PSNR=23.72dB
Figure 3.26: Example of Model-based and CoSaMP recovery on images. The left column is
Model-based recovery and the right column is CoSaMP recovery.
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Figure 3.27: Performance of Model-based and CoSaMP recovery on a 2D brain image.
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5 Conclusion

The traditional process of image compression is quite costly. It acquires the entire signal at
beginning, then does the compression and throws most of the information away at the end. The
new idea of image compression combines signal acquisition and compression as one step which
improves the overall cost significantly{ w/"

The process of new image compressAs to find a measurement matrix ® € RM*N(M < N) and
multiply# jith the signal x € RN that we want to compress in order to get M linear
measurementsy = ®@X. y is the compressed sample that we wish to get. Since M < N, the
system is underdetermineqi |I we want to reverse the process and reconstruct the signal Xx. In
theory, there are infinitely/X that satisfy this system, so it seems impossible to reconstruct the
signal. Fortunately, most of signals in reality are spare or spare under some basis (e.g. wavelets).

s If we can find the location of those non-zero entries, we can reconstruct the signal uniquely.
[ﬁ-ﬂ)\/&mﬁ/ thesis, we discussed three reconstruction algorithms and compared the advantages and
i\ / disadvantages of them. Orthogonal matching pursuit (OMP) is lacked in stability guarantees. Even

it can achieve ver‘yh‘iugbrl?‘s_l_\liwhen the size of measurements M is large in the noise free case, it

is not accurate any more if the signal or measurements are perturbed by noise. Since the
__algorithm picks the optimal entries one by one, it is very slow. So OMP is not an ideal algorithm in
~\"\J;eality. Compressive Sampling Matching Pursuit (CoSaMP) is fastest among these three

) %Igorithms. The property of stabilitzléis better than OME;,\MEQ 7__r19i_sgj,s_addAe,‘dwt‘o,,:ch,eyslgnaLﬂ:chg
M éSNR is acceptable if we have a large size of measurements M. Model-based algorithm is the
/ J ;‘;nost stable algorithm. Though the experiments a’f/ 1D and 2D, it is not difficult to tell
, / model-based algorithm can offer a robust recovery b;/mt]sing fewer measurements comparing to
“ n ‘}5\/‘% ( CoSaMP. By testing the MRI images, both algorithms can provide satisfie‘d’;“[’?egults when the
images are smooth. But when the images are rough or have a lot of details, the *r}eo\yery results

\ W & are not good. This kind of images needs more measurements to reconstruct the-image;.\\ e

e\

:ﬂT\“ - % A Qg(\)‘(u)
N < Table 1: The comparison of three algorithms \ gahs%@\ 7

OMP © Not optimally fast. | rd

+  Lacked in uniform guarantees. o
Not stable.

= PSNR is very high without noise.

CoSaMP % Need a lot of measurements.

+  Fastest.

¢ Uniform guarantees.

¢ Possible to be stable.

'Model-based | = Fast.

/ ©  Uniform guarantees.

«  Large possibility to be stable.

¢ Need fewer measurements.
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