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Abstract. We prove H.mlmHHon estimates for the discrete ordinates

method for the angular discretization of the three—dimensional
[N

neutron transport equation. The analysis is for monoenergetic

three—dimensional transport of neutrons in a homogeneous uniform

media and isotropic scattering is assumed. A special quadrature rule

with relatively wuniformly distributed discrete directions is

considered.
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0. anﬁomcoﬂ..o,ﬂ. Recall the stationary one-—velocity process of

neutron transport in a substance surrounded by vacuum: Given a source
£ and the coefficients @ and 0 find the angular flux u = u(x, )

such that

(0.1a) (p-Vu(x,p) + a(x)ulx,p) = T oG, p,ptyulx, w)dp +E£x, 1),

mw

(x,1) € Q x mm

.16y lux,p) =0, x e I7 = (x € Tt pen(x) <01, pb= (g ly,Hq),

L

2 3 \
3 with boundary I', §° = (peR™: [l =1}, «

where ) is a domain in R
is the total cross—section, ¢ 1is the transfer kernel, n(x) 1is the
outward unit normal to T at xel' and
wv= X b %|
i1~ i

The purpose of this note is to prove ﬁNIanOH estimates for the
discrete ordinates method for the three dimensional model problem, in
a convex bounded polygonal domain Q, obtained from (0.1) by setting
a=1 and 0 =cte.

MHm;locm. oos<mﬁmmdomvﬁmm5.nm have been obtained in supremum
norm for the discrete ordinates method for neutron transport, seee.g.
(81, [9], [11] and [12] in the slab case and [10] and [17], in two and
three—dimensional cases, respectively (these results give no rate of
orodﬁwﬂmmbnmv. In the case of slab geometry H.v“ 1 <p= .n: and
m%mmd<mwcm error estimates for the discrete ordinates method are given

by Pitkiranta and Scott [15], where also discretizations in space

variable using finite element approximations are considered. ﬁm

THREE-DIMENSIONAL NEUTRON TRANSPORT 3

error estimates for a two— dimensional model problem are given in
Johnson and Pitkdranta [5] and for infinite cylindrical domains by
this author [2],where cylindrical symmetry is assumed. H.U. l<p=<o,
and eigenvalue error estimates for the discrete ordinates method for
two—dimensional neutron transport are analyzed in [3]. In a recent
paper by Pitklranta [14], for the case of slab geometry, a family of
projection schemes are studied. This family covers the discontinuous
Galerkin method, the balance equations approach and the finite moments
method for discretization of the space variable, where a
discretization method for the angular variable is also analyzed.
Finally the present work is focused on extending the angular
discretization studied in [5] to a three—dimensional case.

An outline of this paper is as follows: In Section 1 we present
our model problem and show that this problem can also be formulated as
a Fredholm integral equation of the second kind for the scalar flux.
Notation, assumptions and a previous result, which are fundamental in
the analysis, are also included in this section. Section 2 is devoted
to a quadrature rule on the surface of the unit mvwm,ﬁm in Ww. In the
concluding Section 3 we study the stability of the discrete ordinates

method and give error estimates.

1. A model problem.

We consider the following model problem: Given a
source density f and a parameter A >0 find u(x,i), the density of
particles at the point x € ! moving in nmm direction 4 € mm~ such
that

(1.1a) (l-Vule,m) +uGem =X J uC,p)ap’ + £, (e, pye O xs”

mw

(1.1b) ﬁc?;& =0 xmﬁ“n (x € T'in(x) - u<0),
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. 3.
where ) is a bounded convex polygonal domain in R~ with boundary T

and n(x) is the outward unit normal to T at xel.

For e mw let Ht be the solution operator for the following

problem: Given mmH.NAbv find u such that

(1.2a) a p-vu+u=g in Q,
(1.2b) # u=0 on H‘t. |
i.e u=T g if u satisfies (1.2). By a simple calculation we find
.e., i
that
A,
(1.3) Hthxvn._, e g(x—sp)ds,
(o]

where d(x,p) is the distance from x € Q) to I' in the direction -,

i.e., _
d(x,p) = inf{s >0: (x—sp) & Q.
Introducing the scalar flux
(1.4) u(x) = [ ulx,p) dp,
2
S
the problem (1.1) can now be formulated as
2
(1.5) u(x, ) ueté/fmvoc. (x, ) e xs™.
2

Integrating over S Wwe obtain the following integral equation for the
scalar flux U,
(1.6) (I —AT)U=TE,

where

S

T= T, Al ~
J ,
. ]
Using (1.3) we have the following explicit formula for the integral

operator T,
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dx,p)

Te(x) = [ Tgeodu=f [ e g(x—sp)dsdy
2 20
S S
d(x,p) -s

1T e s sPasan,
20 s

so that changing from polar to Cartesian coordinates

—Ix-y|
(1.7) Tg(x) = [ S———g(y)dy.

-yl
Thus T is an integral operator with weakly singular kernel and one can
show (see e.g. [6]) that T: H.NADV - hwﬁbv is compact and consequently

(1.6) is a Fredholm integral equation of the second kind.

Remark 1.1. The degree of regularity of the scalar flux U in problem

(1.6) is limited even if £ is smooth. The best one can hope for in

general, using the Sobolev spaces mHA@v , 1s that Ue mw\mlmADv for

€>0 (this will be the casee.g. if £ is smooth see [13]). O

Throughout this paper we shall use the following notation: __ . __H

will denote the norm in Sobolev space IHADV and

__ denotes the

HNASVAOHE. C will denote a constant not necessarily the same at each

occurrence and independent of N.

We assume that \/L. is not in the spectrum of T. Thus (I-AT)

-1

is invertible and (I — AT) : FMA,DV -+ H.MA.OV is a continuous linear

mapping. This implies that

(i) For a given f e H.MADV_ the problem (I —AT)U =Tf has a unique

solution.
(ii) There exists a constant C >0 such that

(1.8) | (=AT)v| = ¢|v], ¥veL, ().



6 ASADZADEH

Once U has been determined from (1.6) we can for a given [ € mm find

the angular flux u(.,}) = Htma.v with g= AU+ £.

We shall also use the following Proposition due to Anselomne [1].

Proposition1.1. Let T: H.mnbv -+ Hmﬁbv be a bounded linear operator
such that for some positive constant C,
I =Amyv| =clvl, vverL, ),

and let :uzv be a uniformly bounded sequence of linear operators

©
N=1

on H.NADV such that for some positive integer m,

(1.9) g™ l(r 1T | +0 as N+ .

m
nl
Then there exists a positive constant OH such that for N large

enough

|z |>azv<=wf__<__ <<m.wm5v. o

Finally we shall use the following stability estimate for (1.2):

172

(1.10) vl + I el + @lma%m_ta_%_ =<clg| .

To obtain (1.10) we multiply (1.2a) by u= Htm and integrate over Q.
Using Green's formula

Tt.?v:&nua :NE.sEq l?:.q&;&f
Q r Q

we then find that
1 2 2
=[(T -n)d T dx = [ gT, g dx,
mwﬁA tmv (p-n)do + [ ( tmv x=[g tm x

from which (1.10) follows by using (1.2a). O

L

L4
2. The quadrature rule. We shall introduce a semidiscrete analogue of

(1.6) where we use the discrete ordinates method for the angular

variable fi. Using the quadrature rule

THREE-DIMENSIONAL NEUTRON TRANSPORT

7
(2.1) Ju,map~ 3 uwx,mw ,
§2 peq ;
where Q- Q- (it ) is a fini 1
N A /) is a finite set of quadrature points i~ €
2
S : A . .
with positive weights Etw. we obtain the following semidiscrete
analogue of (1.5): Find Fzﬁx_tv such that
(2.2) ug (%, ) nHtC/cz+ ) (x), (x,1) e xq,
where

U= - G,

heQ
Multiplying (2.2) by Et and summing over [l € Q, we obtain the
following integral equation: Find dz [S HMASV such that
(2.3) (I =AT)U =T, f,
where
Ty = tMo .H.te?

Remark 2.1. Proposition 1.1 together with the fact that A7 isnot in

the spectrum of T, imply that once (1.9) is established for some

positive integer m, then for sufficiently large N (I — AT VIH
! N
exists di i
and is a bounded linear operator on FNADV . On the other hand
from (1.6) and (2.3) we find that
U -y = \/Hza:czv + (T-Ty) (AU+£)

so that for large N,

-1
U =Ty = (T-AT) T (T-Tp) (AB+£) = (T-AT) e,
and hence

lo-ugll < clleg]-
Here the mﬂmc.HmH. discretization error ey = AHI.H,ZV (AU+E) is just the

quadrature error in evaluating the scalar flux; i.e
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e (x) =f T () ()dp— T w T (AU+E) (x),
R N peq # ¥

and may readily be estimated. O

In the following example we construct a special quadrature rule
which is more suitable for detailed analysis. In this particular rule
the points and weights are relatively uniformly distributed in
compairing with the usual mzémﬁﬁoam. The theoretical advantage of
this particular rule is that using interpolation space arguments
optimal error estimates may be obtained for the maximally regular

3/2—¢

scalar flux U, i.e. U€H (Q)), however conventional quadrature

rules often require higher regularity of the solution U than U €

mu\NAADV. '
We shall use spherical coordinates for [ = Atu.. fig s tuv ,
.:Huoommnom @, O=a=<?T, |wlm mw|~

fiy = cos B sin @,
by = sin f.

The Jacobian of this transformation is equal to cos s

Example 2.1. We construct a relatively uniform distribution of a set

of quadrature points Q C mm and weights Et with 4 € Q. More
precisely let M be an integer and set A= mm N wa. xm< xwv € Ww“ X, >

0, i =1,2,3). To construct the quadrature points on A we divide

mu..wnmn the interval ﬁo.mﬁw into M equal subintervals I, = ﬁwlm_

k
A%f, and let Qw be the Eu..mwou..,dn of Hw. k=0,1,..., M-1, and

then for each k we choose [Mcos mw+ 1] equidistant points on the

M—1
circular arc AN (x, = sin h ). We obtain in this way M, = Y [Mcos
. 3 k 0 k=0

THREE-DIMENSIONAL NEUTRON TRANSPORT

mwl_. 1] quadrature points on A. We choose the quadrature points on mm

to be those on A together with their reflections with respect to all
the planes defined by the coordinate axis. We shall write the weights

Et as EQNLAEQW

T
w =5

where

Reflected points have the weights of the original ones. 0O

Lemma 2.1. Let N = wzo. Then the quadrature points and weights

constructed in Example 2.1 satisfy the following conditions:

(2.4a) There is a constant C such that for u sufficiently
smooth
r
Ifuomydp — © upw | <on /2| wa 0
2 , ieq UM wlo | ggux, @, f)|dadf
r
Z 9
* 15 2wy B gptate, ay(). fr)cos Bi+iucx, ap), frsin B E&
2
where w_(f) =w for el .
(2.4b) o(€e,N) »0, as waAm.ZW\MV.'o.

where for €>0,

o(€,N):= b)) www,
(v, pery HVT

and

”w.l ! "
Q:i=ILUIl,

with
' 3 .
I = (v, €Q7: min[8(u,d,), 6r,d,), 6(7,4,),

lp-(rxMl=¢€, i=1, ..., P,)

0
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and
" w r
Itim BV, QT (VM ET),
where §($,¥) = sin a(g, ) with a($,¥) the smallest angle between ¢
and 9. Further d, are the sides of {} and P is the number of sides
of . Observe that the condition |[g-(VX7)| =€, in the definition of
H.m implies that: If (u,v,7) € Hm. then 4,7 and 7 are not in the

same plane.

Remark 2.2. The condition (2.4b) is a stability condition assuring
that the quadrature points [ €Q together with the associated weights

W =w are not too nonuniformly distributed. A totally uniform

T _
structure of the quadrature points on the surface of the sphere is not
known. An almost uniform structure may be achieved via imbedding
regular polygons in the sphere with vertices on the surface of the
sphere, then triangulating the faces of these polygons and finally

projecting the so obtained nodal points on the surface of the sphere.

For other constructions see Stroud [16]. O

Proof of Lemma 2.1. To prove (2.4a) we note that

:c.ﬂx.tvatl N Cnx.tvEt_M

peQNA

T

2r2

%ix a,fraa -Zw, avccr @%rismm%_ +
8 0 L
Y H

2

_.mm MM EQNASCQ.QN%V ,B)cosfdaf =% MM EQN . m u(x, Dm X’ mwv_

=T1+1II.
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Below we shall estimate I and II separately. Using the quadrature

error approximation for a uniform division (see, Krylov [7], pp

153-155) we obtain
m

_%ix.PES S w, Bux,apby, f| <

Y
.
c 2
M%Wll% N_wlc.on (o] QV_QD.\
so that
T
2.2
@5 1= if[fueefae 8w, Buc e B cos b
T
z.m,J cos 2 9
<C H_ u(x, o, ) |dod
WHOHWHZOOM W o.m| X mv_D\h
T
c22 o
m@%% _mmix,@.mv_g%.
Moreover
L
2
(2.6) % QN%E?. D@%v ,B)cosfldf
r
2
_% w %vccﬁ.o@%v ,B)cos fdff —
Mlmlem
Iw Tos N ED& WCAVF D\qu. \wwvoommw_
-1
c
zlme% wepN%wv _%?Q ay(By, Pycos B)|af
k
<& MH M 9
i, o% aw%%é? ay(By, B))cos Bi-
w

+ Ju(x, Q?S ,B)sin ETm.
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Finally (2.5)—(2.6) together with the fact that EQNQ& = EDN%WV for

fe HW give the proof of (2.4a).

The crucial part in the proof of (2.4b) is to show that (2.4b) is
valid with H_m. replaced by the subset of Dw consisting of all
(p,v,7) for which the volume |L-¥X7| is zero or less than €. There
are at most Zm combinations of [,V and 7 for which _.t.C\XQv_ =
On the other hand

m:FF)? o< (v <€) v ¥y T

w ow
Pty Lt | e (vxp) |<€) “w

€
In the last sum above [ lies in a strip of width H:=C _\aﬂ\vﬂl. and
thus the number of [ 1is ZM]HH.EN. Hence
m '
B s o<t o <61 “ut =€ B 9y By Tt ]
<C €logM,
so that
w
o(€e,N) <C[ MQ&FS Et€§€<+ MAFFQV Et&t i
|- (vxy)|=0 0< | - (UxY) | <€

0A|+ €logM) + 0 as BmxA , €)=+ 0

and this completes the proof of Lemma 2.1. O

3. The discrete ordinates method. The aim of this section is to prove

stability of the semidiscrete problem (2.3) using Proposition 1l.1l. For

< -1 . .
this purpose we assume that A is not in the spectrum of T, i.e.

(1.8) holds and we prove (1.9) with m= 3.

Theorem 3.1. If the quadrature rule (2.1) satisfies (2.4a,b), then

THREE-DIMENSIONAL NEUTRON TRANSPORT 13

for \/IH ¢ 0(T) there is a constant C and an integer z\/ such that for

N NZ\/“

(3.1) Iz |\/sz<= zcvl], wweL, .

Note that since Hz is not compact, (3.1l) does not directly

imply the existence of a solution to (2.3). To prove that (I-AT.) is

N

onto we may argue as in [3] and we thus have the following result.

Proposition 3.1. If \/IH ¢ 0(T), then there is an integer Z/ and a
4

constant C such that Mow N> z\/. __ AHI\/HZV IH__ =<

To prove Theorem 3.1 we need the following two lemmas:
Lemma 3.1. There exists a constant C such that if (y,v,7) € Hm then

for ge H.NADV ,

-2
Iz,m, el = ce el

Lemma 3.2. There exists a constant C such that for ge mHADV

oz!H\m

ler-rpel < lell, -

Let us postpone the proofs of Lemmas 3.1 and 3.2 and first show

that .E,.:wowma 3.1 follows from these two lemmas and Lemma 2.1.

Proof of Theorem 3.1. Using Lemmas 3.1 and 3.2, and (1.10) we have as

in the proof of Lemma 4.1 in [2]

3
T-T )T T-Ty % T T
l-romel = Na=p B 5wl

=3 www __A.HIH )T

pvty v
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+ 2" Et&:EQ__G “TOT,T :aqm_—
' ||H\M
= (T Eta_\eqv CN __.Ht v Qm__u
ooyl By w00, 111,280
< oHZIH\MmIN+ ate, ™1l

Now choosinge.g., €= zIH\m and using (2.4b) we find that
3
I Slazvaz__ +0, as N-w

and using Proposition 1.1 the proof is complete. O

We now return to the

Proof of Lemma 3.1. By an orthogonal coordinate transformation we may

assume that = (1,0,0). If (u,v,7 mH~m then

fu Ou !

Tx oy’ ,

o [N 10, T3 B 3 wﬁ.
¥ T%\ — 3T T TaVy= Valy O T3¥57 V37, 7l

where .m| t vu and similarly for vV and 7. There is a similar
relation for .ml Now
— = |- V)| =
17375 = V3Tl = 11 (PN |
so that using-(1.10)

cy0
(3.1) lver, 2,18 I mmlf_mﬂﬁt JT48) |+ _JAH: T8 I

o1, 1] = [lel + 1, e 0] + KTt I]-

Recalling (1.3) we have

a(x, i) _
- ete:eqmg n% e Hueqm@{msam.
and thus
(3.2) @1@: ANW S&@fﬁ@wﬁw
of o™ Jon, 1 g (xe)ds,

where d=d(x,/t) and X=X —Sl.

THREE-DIMENSIONAL NEUTRON TRANSPORT

1
n(x) D
%4
\. "
X X
S, d
J
Figure 3.1
On the other hand as one can see from the Figure 3.1.
4D __D_
cos —fbn
where D is the distance from the point x to the side mu of Q, i.e.
for ye mu.
D H%ﬂ_lEls y —n-x=0 —n-x
Thus
Cxn-x
d= a5
so that
0d _Vmn
(2%
where n= ASH.SN.Buv is the outward unit normal to I' at xeI'. Since
I is parallel to X, we have in (3.2) that x depends only on %, and

2

Xg. By a rotation of coordinate system we may choose the x,-axis on a

2

hyperplane parallel to S,. Let ., =(xe: xe mu;. Squaring (3.2)

J
and integrating over bu , using the fact that in the first term
dx = |-n|do axn_. and summing over j, we have

9 . 2 —=,2,V:n,2
Igr,t e =c %_H}a& |71l " enldo

a(x, )
+ me\ % .IMMAW.|H~\HQWAuﬁ|m\.Cv ds dx

1y 42
<ce gl

5
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where we have repeatedly used (1.10) and the fact that |[g-n| > Ce.

Thus
(3.3) __wﬂatevfm?:__ <ce2|g).
Similarly

i) _ = 0d

@w‘AHtHN\HQmAxVV e Htﬁqmﬁnv 3

d(x, 1) =8

+~m e .mﬂAHtHQmAxlmtvvam.
and by the same argument as for Wl. we obtain
(3.4) ¢t 2,800 P < f17,7560 21T penas

A=l 548 2
ds d
WW.% e .mﬂeta\xmﬁmlmtvv s dx

Mo@_ LB _Q|_N_|¢E nlas
2
MO_JMG g(- vv__ +.C €

Here we have also used 04 = E. To estimate __M‘VJAH QWA ) __ we note

el

Y Hn
that
d(x—slt,V) -
HN\HQmAxuﬁ:v = % .HQmANImtIQ\V dt,
so that
9 -4 04,
(3.5) wﬂawaqmﬁxlmtvv =e aqm?.&.:&HSI@ﬂ
d(x—sl,V) 0 s
+% e wﬂf\m?lmtlﬁ\vv ,

where d, = d(x—slt,V). Squaring (3.5) and integrating over Q using

0d
n.dm fact that MIIQI| and |V.n| = C¢ we find that

2 =2
3.6) _Jﬂﬁqﬁisv__ Moli IT,8G) 17 17.01d0

% H mlmﬁ 9 fm?lmtAS_ dtdx

2
Ml%__ +clel
€
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where X = x|mtluu.~\« and where we have applied Fubini’s theorem and

(1.10). By (3.4) and (3.6) we have

(3.7) __wlatevfm?:__ <Ce™

Since by (1.10) __H: N\H,x__ clgll, we obtain by (3.1), (3.3) and (3.7)

the desired result. O

For the proof of Lemma 3.2 we shall use the following result.

Lemma 3.3. There exists a constant C such that if u(x,a,f) = Htmﬂxv
with ge mwﬁbv , then

T
2271 5
(3.8) IJ _Jﬂ:._Qé__{svag&mo__m_:.
mOo
7
and
L
2 9
(3.9) ﬁ wo Dlggat By yef=clel,,
7

where ft= (cos ffcos @, cos fsin @, sinf).
Proof. We have

d(x, .0 _
u(x, ) =u(x,a,0) =[ e Tg(x-sp)ds,
0

with d(x,@,0) = d(x,l), so that
d
(3.10) mWn e g (x—ap) ww|+ fe7® wmmcmtmsmm
) 0

d
-4 - 0dd -_0
=e g(x) .mm.r%m m%mnx$tvmm,
where X =x —dg and since NlmtﬂAlem cos h cos ¢, xwlm cos m sin @,
x,—s sin ) we have 9 = i' Vg with p'=(sin f sin @, —sin ff cos @
3 o & :
0) € mm being orthogonal to [. Let us now estimate Wa| in each of

subdomains Du. defined by

. -(xef: xe8.),
J J
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where the mu. mﬁmnwmwwmmmomb.hmﬁ A\\u.un @unQ,mv GmﬁummsmHm

between S. and 4 and let for x € bu. , mu. Axvcmnrmawmmmsommﬁoax
J

to the plane mu . Now since

a. (x)

d(x,,B) u%

we have

J

0y,
oa 9 1 ~(eost) g5 ]
G0 G limvam ] -0l PR

Moreover, since {} is bounded we have mu. (x) <Csin A\\u (a,f) and thus

i)
—cos S.AQ.mva S.AQ.Q\V_
_WMQ?PE_ <c 1 eu.g.mvu |

Hence, squaring (3.10), integrating over Du and using an orthogonal

coordinate system Am_., mw~ mmv with Amu.. mwv € mu we get
(3.11) m _mmc?b.@._m%m
A

cos P, WM@ 2

— 2
MOT (lgx) |
).

J
d

+f e 2552 1 Vg N%EMH&N&L
Clsin ﬁ._
MQT g1 %do J
j 0]

= 2.0 2 2
m%_m_:m_aéu._ Hleos ¥y 1115z Y1+ IVl Q

where __ . __H, denotes the Hmﬁdvldoﬁa. Using the trace estimate

cos b, I .|

at, + Ivel’]

. __m__HMAH‘v Mo__m__u.u

L4

integrating both sides of (3.11) with respect to « and B in the first

octant we find that
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da Q%v __m__H

We see that the integral on the right hand side of (3.12) is bounded

since
wﬂﬁ. (a,B) = WMABB sin(sin ¢, (@,/))
ga G @)
/1= ﬂswﬁ.gé
Thus

) d .
_oom A&AQ,EV MMSMAQ:QV _ 73 (sin @uﬁb‘smvv

]
Now let I' = (a: w@?? ﬁ.?rm: >0) and I =[O, Mﬁ \ I'. Then
there are Qo and QHm [o, mﬁu such that
wl_wﬂﬁﬂu Y. (a,B)) | wﬂﬁg Y. (a,B))
(3.13) I J da=(f =) ] dar.
0 Jsin @u @, B H+ 1~ /sin @uAD\.mv

Further

.
; Fa (sin ¥, (@)

da=2(/sin ﬁSﬁS —Jsin 5399_7

which is integrable with respect to . Similarly, the integral over I
in the left hand side of (3.13) is integrable with respect to [. Thus
summing over j in (3.12), we obtain (3.8) for the first octant and
hence by symmetry for the whole sphere. To prove (3.9) we have
similarly v

d
Ww.n ml&mﬂﬂv .WW* .H, ml.mm%mnxlmtvam.
0
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2 .
where pU" = (sin f cos a, sin ff sin @, —cos B) € S is orthogonal to [

and

i)
— cos Y. (a,/) %@.AQ.E
_Wwa ) _WN el +Tn @D ; ”

Now by the same calculation as in (3.11) we obtain

0 2
(3.14) [ \ggux,a,pB)] dx
o, F

- 2
<crlglZ st 1 cos ¥y 1155y 17+ 17l

where

0 .
(sin ¥, (a,B))
.M__Wm.@u HWNIAWHO sin(sin @n._ CHO) nwdx - :

\Ta%ﬁ. (a,B)

Multiplying (3.14) by Ec@nmv. summing over { and integrating with

respect to € HW we find that

0
(3.15) [ Zw lz7uc,a, M| af =
1, ¢ ay(BHTIE e T ()

0
lo7 (sin P, () 0]
<cff Ames@% LK ap) el

HWN

o+

m

=0 .

2 | (sin Y. (a, BN
I u ¢

Hwo

T _

2

+J mﬂeb@axv . -do) i lelly
™
LN
2 Igg (sin 9, (@, p)]

o MOT% 131 ] apao

where we have used the fact that W, (B) 1is piecewise constant, so that

{4
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the derivative with respect to [ can be transformed to u, and
Fubini’s theorem. Treating the inner integrals on the right hand side
of (3.15) in a similar way as in (3.13) and then summing over j and k,

we obtain (3.9) for f e [0, WJ and hence by symmetry the proof is

complete. 0O

Proof of TLemma 3.2. Writing cﬁx.Q:Qv = .H,tmﬁxv. with /= (cos h cos @,

cos fsin @, sin ) we have using (2.4a),

I8l = 13,5500 =By 1,81

- __MM uCmap =%, utmw |

T

2 om
<o [T Igguc @) aaas
0

2

+

e

d
w eﬁav __%i. 0, )| |cos B1ap

_r
2

L
2
- weﬁav__ﬁ..Q.s___ai_i‘

-
2

and thus the desired result follows from Lemma 3.3. and (1.10). O

Error estimate. We have the following quadrature error for the scalar
flux U,

-1
U =Ty = (I =AT)) ep(x).
Now if \/IH & 0(T) and N is sufficiently large then by Proposition

3.1, (I Iv,.HZv -1 is uniformly bounded and since
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' -1/2
leyGoll - -1 Qw+ D G| = v Aol + Nl

we have

Ju-ol < o v 2l + gl - B

I am grateful to Professor Claes Johnson for

introducing me to the subject of this paper. Part of this work has
been done during my visit at the University of Michigan in Ann Arbor,
1984: I wish to thank Professor Ridgway Scott for his hospitality

during this period.
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THE LINEARIZED BOLTZi-NN SQUATION WITH RAIFLICTING
BOUEDARY CONDITIONS
I.THE SPACE OF CONTINUOUS FUNCTIONS

Lothar ‘ienzel
2200 Greifswald
Loitzerstr.48

DDR

ABSTRACT

We consider the linearized Boltzmann equation with
special reflecting boundary conditions.Both the Boltz-
mann operator and the reflecting conditions are time
dependent.It seems to be adequate to use locally convex
spaces.The basic idea is a transformation of the boun-
dary value problem into an initial data problem.Our
aim is the formulation of an existence and uniqueness
theorem.In this paper we describe the problem in a
space of continuous functions.

1.S0LUTION OF THE ROUNDARY VALUE PROBLEM

We start with the integro-differential equation

1.1 osAxWMvﬁv _ |<OSAMWM,dV
\ﬂ

+ J avix(x,v,vit)nlx,v5t)

-6 (x,v,t)n(x,v,t) +

-
AN.,LmH_ o,\__” x ﬁ 1\_.\@ ,t20

25
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