THE DISCRETE ORDINATES METHOD FOR
THE NEUTRON TRANSPORT EQUATION
IN AN INFINITE CYLINDRICAL DOMAIN*

MOHAMMAD ASADZADEH, PETER KUMLIN AND STIG LLARSSON

ABSTRACT. We prove a regularity result for a Fredholm integral equation with weakly singu-
lar kernel, arising in connection with the neutron transport equation in an infinite cylindrical
domain. The theorem states that the solution has almost two derivativesin L;, and is proved
using Besov space techniques. This result is applied in the error analysis of the discrete or-
dinates method for the numerical solution of the neutron transport equation. We derive an
error estimate in the Li-norm for the scalar flux, and as a consequence, we obtain an error
bound for the critical eigenvalue.

1. Introduction. We consider the numerical solution of the steady state isotropic mono-
energetic neutron transport equation in a cylindrical domain in R* with a polygonal cross
section . The restriction to the mono-energetic case means that we assume that the
velocity space is the unit sphere S C R®. The cylindrical symmetry reduces the problem
to R? by projection along the axis of the cylinder. Thus we study the neutron transport
equation in a bounded polygonal domain 2 C R? with the velocity space equal to the unit
disc D C R?.

We analyze a semidiscrete numerical method, the discrete ordinates method, involving
the discretization of a weighted integral over D, described in polar coordinates, by means
of an N-point Gaussian quadrature rule in the radial variable, and a uniform M-point
quadrature rule in the angular variable.

For this method we give an L; error estimate for the scalar flux of order N ™% + M ~%*¢,
as well as an error bound of the same order for the critical eigenvalue. In order to prove
these estimates we apply an error bound for weighted-L; polynomial interpolation due to
De Vore and Scott [7], together with a new L; regularity result for the scalar flux. Loosely
speaking, the latter result states that the scalar flux, which is the solution of a Fredholm
integral equation with weakly singular kernel, has almost two derivatives in L;. This is
proved using Besov space techniques. The limited regularity of the solution strongly affects
the error analysis. Although our main concern is Ly, we also derive some results in Lo
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(regularity and error bounds), which are needed in a duality argument in the proof of the
error estimate for the critical eigenvalue.

Problems of this type have been studied in various settings by several authors. The slab
geometry, 2 C R! and velocity space [—1, 1], was considered by Pitkaranta and Scott [11],
who proved L, and eigenvalue estimates for both semidiscrete and fully discrete schemes.
Two-dimensional geometry, @ C R? and velocities in the unit circle S!, was considered
by Johnson and Pitkaranta [8] and Asadzadeh [2]. In [8] semidiscrete and fully discrete
schemes were analyzed in Lo, whereas [2] contains L, and eigenvalue estimates for the
discrete ordinates method.

In Asadzadeh [3] the discrete ordinates method was studied in Ly in a fully three-
dimensional setting, Q C R? and velocity space S?. In Asadzadeh [1] the geometry is the
same as in the present work, but the analysis takes place in Lq, this norm being more
suitable for spatial discretization based on the finite element method. Due to the limited
regularity of the exact solution, the error bound in [1] for the angular discretization was
O(N~' + M~'). By using the L; norm together with our new regularity result (and a
better analysis of the Gauss quadrature), we are able to improve this to O(N ™% + M 7?%¢).
Thus, due to regularity limitations, an error estimate in the L norm for functions yields a
better error bound for the critical eigenvalue. Moreover, the Ly norm is the most relevant
norm from a physical point of view, since the scalar flux represents a particle density.

The outline of the paper is as follows: In Section 2 we describe the continuous problem
that we want to solve, and in Section 3 we formulate the semidiscrete approximation and
state our main result. Section 4 is devoted to an analysis of the regularity of the scalar
flux. Section 5 contains the error analysis for the scalar flux, and in Section 6 the results
obtained in the previous section are used to prove an error bound for the critical eigenvalue.

2. The continuous problem. We consider the following model problem for one-velocity
neutron transport in an infinite cylinder 0 € R* with boundary T':
e NVulz,p) +u(e,p) = /\/ u(z,n)dn + f(z), (z,p) € Q x 8%,
S2
u(z,u) =0, (z,p) € f; x S2.

(2.1)

Here )\ is a positive parameter and u(z, u) is the density of neutrons at the point x € Q
flowing in the direction p € S? = {u € R? : |u] = 1}. The boundary condition is specified
on the inflow boundary

(2.2) I, ={zel:p n(z) <0}
where n(z) is the unit outward normal.

We assume that the cross-section of the cylinder §2 is a bounded convex polygonal
domain 2 C R? with boundary T'. Assuming also that the source term is constant along

the axial direction of the cylinder, we may project the integro-differential equation (2.1)
onto the cross-section €2

e Vu(e, p) + ulz, p) = A/Du(ftf,n) (1|9~ dn+ flx),  (z,1) € QxD,

uw(e,p) =0,  (z,u) €T, xD,

(2.3)
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where now the velocities u vary over the unit disc D = {g € R* : |u| < 1} and T is

defined analogously to (2.2).
Let us introduce the so-called scalar flux U defined by

(2.4) Ule) = [ utwn) (1= )™ d

In order to derive an equation for U, we consider the following hyperbolic partial differential
equation: given g = g(«) find v(z,n) such that

pVotov=g,  (z,p)€xD,

2.5
(25) v =0, (z,u) €T, x D.

The solution is

d(z,p)/|p]
2.6 oles) = (Tg)(e) = | e glv — o) ds,
0
where d(z,p) is the distance from z to the inflow boundary in the direction —pu:

d(m,p):inf{s>0:m—s|—'u—|¢9}.
[

Using (2.3) and (2.6) we obtain the following equation for U:

(2.7) (I - \T)U =T#¥,
where
(2.8) Tg(o) = [ Tugle) (1= )/ di.

We show in Section 4 below that T' is a compact operator on L1 (§2) by rewriting it as an
integral operator with weakly singular kernel. The Fredholm integral equation (2.7) thus
has a unique solution U € L,(Q) for any f € L1(f2) as long as A™! is not an eigenvalue of
T. The solution u of (2.3) can then be computed from (2.6) with g = AU + f.

3. The semidiscrete problem. Our aim in this section is to formulate a quadrature rule
for the integral in (2.4) or (2.8) using a certain set of quadrature points A = {u1,... ,pn} C
D and weights w,, u € A, thereby obtaining a semidiscrete approximation Uy, of the scalar

flux U. Thus, if

(3.1) [ o (= P 3 ol = Qlot)

REA
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is this quadrature rule, then we define U, by
(3.2) (I - /\Tn)Un = Tnf7

where

Thg(z) = z wpTug(z).

pEA

Using polar coordinates p = rfi(p), fi(¢) = (cosp,sing), we want to define two quad-
rature rules

1 rar N

(3.3) / o(r) ﬂ_fl_zmz
0 -r k=1

M

>

(3.4) / () do ~

and the quadrature rule in (3.1) will then be

Qv(p)] = Qw[Qr[U(T/&(‘P))H
with
A= {refile;)ier ity wkj = AW
For convenience we introduce the notation
n=NM, n=min(N,M).

Thus n is the total number of quadrature points, and if 77 is large then both N and M are
large.
For the angular integral in (3.4) we choose the trapezoidal rule:

27y 2m
Yi = V? Wj = 'M)

For the radial integral in (3.3) we choose the Gauss rule associated with the measure

da(r) = (1 —r2)~2r dr:
(3.6) rr =sinfp, Ap =a(sp) — a(sk—1), E=1,....,N,

(3.5) j=1,...,M.

where a(r) = —v/1 — r?, and 0y, s are certain points satisfying
(2k = 1)r  2km
9k € ) 5
(3.7) AN +2 "4N +2

Sk € (ThyTht1), S0 =0, sy =1,

see Szegd [13], pp. 47-50.

In Lemma 5.7 below we demonstrate that equation (3.2) has a unique solution U, €
L1(Q) for any f € L1(2), provided that A™! is not an eigenvalue of T' and that 7 is large.
The main result of this paper is the following error bound for U,. Its proof will be given
in Section 5.
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Theorem 3.1. Assume that A\~ is not an eigenvalue of T. For each € > 0 there 1s C
such that, for large n,

1 1
I = Unllsior <€ (5 + 3= ) (0w + 1l )

4. Regularity. In this section we study the mapping properties of the operator 7' defined
in (2.8), which can be rewritten as

(4.1) Tg(a:):/Q/O§ eXp(_:i:z“/COSt) dt g(y) dy,

where € is our bounded polygonal domain in R? and g € L(§2). Hence T can be viewed
as an integral operator with a weakly singular kernel. We recall that T is associated with
the scalar flux U(x) via the Fredholm integral equation

(4.2) U = \TU + Tf.

Our main result in this section is the following estimate:

Theorem 4.1. Let f € WH(Q) and let U € L1(Q) be a solution of (4.2). Then for all
9 €1[0,1) and all q € [1,00] there is a constant C' = C(A,0,q) such that

U1 @ wz@ne, < C UL @) + 1 fllwi)-

Here (L1(Q2), WZ(£2))s., denotes the real interpolation space between L;({2) and WE(Q),
see Bergh and Lofstrom [5]. The value of the exponent ¢ is irrelevant for our discussion
and we let ¢ € [1,00] be fixed throughout this section. Loosely speaking this result means
that U has almost two derivatives in L;. Since there is no restriction on A, the result is
also applicable to eigenfunctions of T'. Furthermore we prove:

Theorem 4.2. The operator T is a bounded linear operator from L1(Q) into B}*(2) for
all s € [0,1), and from Leo(Q) into (Loo(), W2 (2))g,q for all 8 €10,1).

The Banach spaces B}"?() appearing in the theorem are Besov spaces. We recall their
definitions below. Employing the fact that B;"?(2) is compactly imbedded in L;(£2) for
5 > 0, we conclude:

Corollary. T is a compact operator on Ly(€2).

We remark that the regularity of solutions to (4.1) was also investigated by Pitkaranta
[10] in terms of weighted Hélder spaces instead of Sobolev spaces as in the present work.
The main steps in the proof of Theorems 4.1 and 4.2 are the following:

(1) identifying T as a convolution operator on R?;

(2) imbeddings between interpolation spaces (W{, W{)s , and Besov spaces;
(3) multilinear interpolation;

(4) a bootstrap argument.

2
3
4
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Step 1. Set h.(z) = exp(—|z|/7)/|z| for € R*, 7 > 0 and note that

(43)  Tg(z) = /Q /OE exp(=e = yl/cost) 4, v gy /E[hmt ¢ (xg 9))(2) dt,

]:z:—y] 0

where x, is the characteristic function of the set © C R? and * denotes convolution in R?.

The functions Tg(z) and h,(z) are defined for all + € R?* and in the sequel we shall think
of all functions in L;(§2) as being defined on R? (extended by 0 on R*\ € unless otherwise
stated). We write L1 = L;(R?), B;? = B}/(R*), etc. In particular, by (WE W, we
mean (WF(R?), WH(R?))g, although the final result refers to (WF(Q), W[(Q))g,. The

justification for this is the existence of continuous linear extension operators
(4.4) wkQ) - WFR?), keN,

(see Stein [12]), which are defined for bounded Lipschitz domains, and in particular, for
the domain 2 above.

Step 2. All explicit norm calculations will be done in Besov spaces. The reason for this is

that they have nice intrinsic norm definitions
1 de\ M1
</ (t[S]_Sw(Daf)(t)>q —t~> ,
0

Ifllsee = >, 1D flls + )
lorl=[s
for q € [1, 00] and noninteger s > 0, where [s] denotes the integer part of s and

| <[s] =[s]

w(h)(t) = sup [[A(-+ 1) = hllL,,
In|<t

and with the usual modification for ¢ = oo, see Bergh and Lofstrom [5]. Moreover, they
are interpolation spaces, i.e.,

(Bi‘?l,ql Blﬁ*z,qz)e .= Ble82+(1"9)81,q
for 0 < 6 <1, s1,s2 >0, and they approximate the Sobolev spaces W in the sense that
1
Byttt cwlc Bf_e’qa
for small € > 0, k € Z, see Nikolskii [9]. This trivially implies the imbeddings
Bl+(1—8) ke, , )k,
(45) B1 +(1=0)k+e,q1 C (Wlkvvvll)e,q C BlgH—(l )k (12’

for small e >0, 0 <0 <1, k,l € N. We also note the Sobolev imbedding
. 8,9 s 1
(4.6) B{* C Ly, for 1 — 3 < ;

In the argument below we need the following lemmas.
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Lemma 4.3. We have

sup ||hs|

B4 < 00, for s € [0,1).
T€(0,1]

Proof. Recall that h,(x) = exp(—|z|/7)/|z|. Hence we have
[hellz, = Tlhall, <C, for 7 € (0,1,
and similarly

w(h:)(t) = sup |he(- + 1) —hellz, =7 sup [[hi(- +n) = hal[z, = rw(h)(t/7),
In|<t In|<t/T

(47) (AYfﬂwm»u»q%)”q=T“*(Aurwﬂwwnu»q?>nf

We shall show that
(4.8) w(hy)(t) < Cmin(t(1 + |logt),1).

Then the expression in (4.7) is bounded by

71“3</01/T(t‘8w(h1)(t))q Eit—t>l/q < Cogs

for 0 < s < 1, and the desired result follows. For the proof of (4.8) we write

L 1y (el _ mlely 2
FET AN T

= 91(%"’7) + 92('17777)'

hi(x 4+n) —hi(z) = e~ Il

Setting, for fixed 7,
1
R = R(n) = max(1,3|n], |77—|),

we have

lmmmmzﬁJm%ww+[JMaww,

with
Al ={$€R22‘77|§|$|SR}, AQZRZ\Al.
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Straightforward calculations give

/A g1 (z,m)| dx < Clyl(1 + [log n]])

and

/ lg1(2,m)| dz < Cln.
As

Moreover, we obtain

1
"92(‘777)”L1 < / _;€*|$+77| - €—|x|| dx + 0’77|
|z|<R \CU’
=|z|
<C min(1, e — 1) dz + C|n| < C|n).

Together these estimates prove (4.8). O

Lemma 4.4. Let s € (0,1) and let 2 be the polygonal domain above. Then the following
estimates are true:

(4.9) Ixq 9llpes < Cllgllgaetes, >0,
(4.10) Ixq 9llBse < Cllgllws

where C' depends only on s,q,e and s, q, respectively.

Proof. To prove the first estimate we note that

g 90) < o))+ tp [ o) g (2 +7) = xg (@)1

Holder’s inequality applied to the second term on the right-hand side together with the

Sobolev imbedding (4.6) yields (i =s+d6=1- %)

/ 1/p
g 0)0) < 1)1+ s, w9 ([ v (a-41) = xq (017 )

< wl(9)(t)+ CH 7 gz, < w(g)(t) + O gl gzeres,

for any € > 0, 0 < ¢ < €/2. This proves (4.9).
The estimate (4.10) follows from

2
(4.11) 1fllsee < CUAlLs + D 18s, Fll ge-s.0)

=1
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applied to f = x, g and the estimate

(4.12) 102 (xg o)l ge=ra < Cllgllwy,  1=1,2.
Proof of (4.12): For g € W' we have by the divergence theorem that
(4.13) 82:(Xg 9) = Xq On;g — gnidS,  in D'(R?),

where n = (n1,ny) is the unit outer normal on I and dS denotes the arclength on I'. Here
we note that gn; dS is well-defined in D'(R?), since g has an Li-trace on I'. The first term
on the right-hand side is an L;-function. For the second term we use an equivalent form
of the Besov norm,

o0 . l/q
1 fllgss = (Z(zsiuf—l(@ff)m)q) |
7=0

where s € R, F denotes the Fourier transform and

$i(6) = #(277¢),  j=1,2,...
do(€) =1- 3 6;(8),

where ¢ € C5°(R?) satisfies

1) supp¢ = {€: = < €] <2},

i) ¢ >0, in {¢: €] < 2},

iii) ‘Z p(277€) =1,  for £ #0.

j=—o0

To prove

llgn; dS|

gt < Cllgllw:

it suffices to show
IFH 6 F(gni dS)L, < Cllgllwz,  §=0,1,2,...,
with C independent of j. The latter bound follows from

774 63, = | | 2(F6) =) m: dS)),
< [, [#F e - )l gl dst) ds
< [ 1Pl de [ laty)lasty

<Clgle,m < Cllglws, =12,
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where in the last step we used the trace estimate. The case 7 = 0 follows in a similar way
and completes the proof of (4.12).
Proof of (4.11): For ¢ = 1,2 set

Wi (6) =%:(2776),  j=1,2,...,

Yiol6) = &= vi;(€)
J=1
With this notation we have

e 1/4
for g = (S UNF s F L)) i
7=0

and so it suffices to show

(4.14) 17~ (65 F Pl <CZHJ-” (Wi FAlle,  J=12...
1=1

and

(4.15) 1F (G0 F F)llz, < Cllflz,-

Inequality (4.14) is equivalent to (not the same f)

IF~HSF )1, <CZHf (WiF L,

Let x; € C°(R?), x; > 0, be supported away from the &;-axis for i = 1,2, and such that
Y1 + x2 = 1 on supp ¢. We obtain

l(ixiwiff)HLl

2
IF SF ), <D IIF” 3
i=1 t

- z H}"_l(%xz') « F 0 Ff)

<CZHf (i F )Ly

Finally for (4.15) we find
IF = e F F)llzy = I(F " bo) * fllz, < Clifllz.,
and (4.11) is proved. O

Remark. Actually the right-hand side of of (4.11) is an equivalent norm for By

Step 3. Consider the bilinear mapping (f1, f2) — f1 * f2. We observe that D(f1 * f2) =
(Dt f1) * (D%2 fy) for any multi-index a = a3 + a3. This yields
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Lemma 4.5. The following estimates hold true:

(4.16)
If1# fallgea < Cllf1llgrra [ 2]

B2, 0 < s <351+ 39,

(4.17)
11 % fall(p wiye, < Cllfillize wiye, If2llie, £20,0<6<1.

Proof. For fixed s,s1,s2 satisfying the hypotheses in (4.16) we choose k > 51,0 > sy and
6 € (0,1) such that k6 < sy, 16 < s9, (k4 1)# > s. Multilinear interpolation applied to

[f1# fall s < [f1llwe [ F2llwe
[ fu= fallo, < fullzy [1f2llzs

yields
1f1# fall oy wisty, , < CllAll s w2l oy, w00

for 6 € [0,1]. An application of (4.5) now proves (4.16). The remaining estimate (4.17) is
proved analogously. O

We can now prove Theorem 4.2. Let s € [0,1) and choose s; € (s,1). Using the
representation (4.3) and Lemma 4.5 together with Lemma 4.3 we obtain

s

(4.18) Tl 00 < ITallggo < [ heone* (g 0l

[SE}

<c/ummmnwwmmmscmm

which is the first claim of Theorem 4.2. The second assertion is proved in the same way
using (4.17) instead of (4.16).

Step 4. We now prove Theorem 4.1 by means of Theorem 4.2 and a bootstrap argument.
Consider the integral equation (4.2), i.e.,

U=NTU+Tf.
Assume that f € W} (Q) and that U € L;(f2) is a solution of (4.2). We shall show that
(4.19) 1Ullgso0y < CUIU Nz ) + I fllwiy),  for0<s<2,

from which the desired bound follows in view of the imbedding (4.5). If 0 < s < 1, then
(4.19) follows directly from (4.18). Thuslet 1 < s < 2. Let U denote the extension of U
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to R? by A\TU + Tf. Extend f € W(Q) to f € W} (R?) as in (4.4). Using again the
representation (4.3) together with the bounds in Lemmas 4.4 and 4.3 we obtain

us

(4.20) 055 < € | Wheoeil e g (B0 + )
0

Bs—1+€’,q
1

< C(HXQ UHB;—HC’JI + IIxq J?HBf_ure/,q)
< C(HﬁHBf(s—we’He“,q + HfHVV11>7

for small €, €/, ¢” > 0. Choosing €', ¢ such that

-3

2 Y

and repeating the argument in (4.20) a finite number of times we arrive at
1Tl ge < CITNgres + 1 Fllwy)-

with 0 < s; < 1. Since [|U||gsa(q) < HﬁHBls,q, and since (4.18) shows

1Tl gz < CUTUN Ly + 1 lzao)s

2
s—(2(s—1+€)+€") >

and by (4.4) i
1A llwz < Cllfllwray,

this completes the proof of (4.19) and Theorem 4.1 is proved.
5. Error analysis. The aim of this section is to prove Theorem 3.1. The proof is based
on the observation that, since

(I-AT)U =Tf, (I—\Tu)Uy =T,
we have

(I = ANT)(U = Uy) = (T = T,)(AU + f).
We show in Lemma 5.7 below that (I — AT,)~! is uniformly bounded on L;(€2). This
implies that
(5.1) |U = Unllz, @) < CIT = Tu)(AU + )z, (0)-
We therefore need to estimate (7' — T, )g, which can be viewed as the quadrature error

w—nmwzéwmmv%%ﬁ—me»xmmmm:nmw
This will also be the key to the proof of the boundedness of (I — AT,)7!.
Using polar coordinates p = rfi(y), fi(¢) = (cos ¢, sinp), we split the quadrature error

as follows

(5.2)

T Tgte) = [ ([ otorito) s dr — @bt i) ) ds

-7

2m
+Q{A w@mw»w—@mmmmmﬂA

We estimate the latter two terms in the following sequence of lemmas.
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Lemma 5.1. Let (), be defined by the trapezoidal rule (3.5). Then
2m 2m
C
| uterdo-Quluol < 37 [ WO, a=12
0 Ms Jo

Proof. This is a standard result. O
Lemma 5.2. Let Q, be defined by the Gauss rule (8.6). Then

s—1
/ [ (r) (r(L=r)) * rdr, s=1,2,....

dr — Qr[u

/o1 u<r)\/1—:7— S N

Proof. We modify the argument of De Vore and Scott [7] so as to handle an integral with
weight w(r) = r/v/1 —r?. By Taylor’s formula and using the fact that N-point Gauss
quadrature is exact for polynomials of degree < 2N — 1, we can represent the error as

—Qufu(r)) = / o' (r)E(r) dr,

‘f[“]“/l v
/ 1—1" dt =) Ar

TR >T

where

We show below that

C
(5.3) [Br)l =
Hence )
C
= i — < = "r) —
efull =, jnf felu=Pl|< 5 nf | ()= P(r)lrr,

and our task is now reduced to a problem of weighted-L; polynomial approximation.
Applying a general result from [7] we obtain

1 C 1 s—1
« I < S (s) — 2
st ] =Pt < i [t o) 7

which proves the desired result.
It remains to prove (5.3). Consider first the situation that r € [0,7x]. We may assume,
without loss of generality, that r;—1 < r < r;. Then, by (3.6), we have

=+/1—1r2 —ZAk—\/l—r2~a(sN +a(si—1) =vV1—1? - \J1—s,,

Tk >T

and, since rj_1 < s;—1 < 1, by Taylor expansion we get

C
)] < 4/1 —7"12_1 — /1 —r? =cosb_; —cost; < Nr.

Finally, for r € [ry, 1] we have

=1 —7r2<4/1 < (2N — D) <C O
—_ —7“ COS ———/————— -
" N IN+2 =N

We now need to consider the regularity of v(z, ) with respect to r and .
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Lemma 5.3. Let S;. i =1, ..., P, denote the sides of the polygonal domain 2 and let 7; =
(cos g, sint;) be a tangent to Si. Let v(:,p) = Tyg with p = ri(p), file) = (cosp,siny).
Then for 0 <r <1,0 < <27, we have

(5.4) a—vé;;i) o) < Cllgllwi (e

(5:5) 5”;9;/1) Lo  minicicp |Zin(¢—¢i)| lgllws.
20(-

(5.6 e o I Frreerrs L LY

(57) Zol N T

(5.5) T s Sl

Proof. In order to prove (5.4) we recall from (2.6) that v(z, ) = T,g(2) is given by

d/r
(5.9) e = [ € gle—srids.
0

where d = d(z,pu), p = rjt, i = (cosp,sing). Making the transformation of variables
o = sr we find that

r

d
(5.10) o) = [ e gle = of)do
0

so that

ov 10d _y . Yo . 0h )
_ = r —di) — Y —ofr . _ ‘
P —3996 glz —dp) /0 ¢ 2 Vyglz —ofi)do

We now divide €2 into strips
Qui={zeQ:a—diec S},
where the S; are the sides of Q. In each §,,; we use a transformation of coordinates
=P+ &+ &, 0 <& < Bi(6), 0<& < Ly,
where P; is an endpoint of S; and 7; = (cos;, sint;) is a tangent of S;. Thus d = £; and

we compute that
od  0& _ cos(y — ¥i)

dp 0o sy — 00"
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Since the area element is do = |sin(¢ — ;)| d€ we thus have
’ Ov (-, p)
LI(QM L)
82 cos cos(p —1bi) §1
e/
/ / sin(p — ¥ ) |9(Pi + &274)| [ sin(e — ¢s)| dE1dEs

|V9(P + (&1 — o) i + &27)| do [ sin(p — )| d€1dE>

Bi(€2) ré&
A A

SCOMMwHWMmmW)

Using also the trace theorem and summing over i we obtain (5.4). The maximum norm
bound (5.5) is proved in a similar way.
In order to prove (5.6) we differentiate v(x, ;) once more:

v _ |10 1 (oaY’
0p2 |1 0?12 \ Oy

1 661 —gl/r 852 A
Lp

e /Tg(Py + £oF)

Vg(P + 527-1)

r at,o
0 o[ .
-8 i B g+ 1)
r &,o Oy
&1 52A
_/ Le=alr B g(P; + (€1 — o) + &%) do
o T Op

3 0_2 a/) 2
# [T (9] alPt 6 - i+ o) do
o T O¢

One easily computes that

0, &1 0%, 1+ cos?(p — 1)

9o sin(p—vi) 09%  sint(p — ) 33
Hence
20 i(€2) —7: r) e=&u/r
‘6 (2 ) <C/ / ) |g(P; + &a7)| dE1dEs
Oy L@ ) |sin(p — ¥i)]

Bi(€2) —51/7" 51 ~£/ X
VT V(P 2Ti dé,
+c// (lsw TR )m + 67| dErde

Li pBi(&2) (& o
T 0/ / / <—e"’/’”\Vg<Pi (& — o)+ 7]
0 0 0 r
2

b e D2 + (6 = o)+ a7 ) do derds
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C
S —— ) . 2 .
= lSiH(gD — ¢2)| (HgHLl(Sz) + vaHLl(Sz)) + CHQHVVI (2p,4)

C
< m”gHWf(m <

min; | sin(¢ — »;)] HQHWI’Z(m,

where | D?g| denotes the sum of the absolute values of all second order partial derivatives,
and where we have used the trace theorem. Summation with respect to ¢ now leads to
(5.6).

We now turn to the proof of (5.8). We want to take four derivatives of v with respect
to r, placing as few derivatives as possible on g. To achieve this we first differentiate
(5.10) three times, using the fact that d is independent of r. With P(s) denoting various
polynomials, not necessarily the same at each occurrence, we obtain

v 4 iy
57 = rt / P(o/r)e™"g(z — of)do =r~° / P(s)e™" gla — srfi) ds.
0 0

Differentiating once more we get

d*v

ot

d d/r
_-ip (_> 9 gla—di 4t [ P L) gl = i ds
0

d/r
473 / P(s)e™® - Vg(z —srji)ds,
0

or, after integration by parts in the middle term,

84’0 —4 d —d/ ~ 3 d/r ~
5a =" P(;)e "gle —dp) +r” / P(s)e *fi-Vg(z —srit)ds = 1) + Ip.
0
Here
» Ly pBi(€2) 3
[ illzyoun =7 / / P <7>~ e/ g(Py + &r#y)| déy déy
o Jo
4 [T ¢ e /r _
<rt [Tlp ()] o der oy < €7 ol
and

L; B;(€E2) p&y/r
AT / / / P(6))] =S V(P + (61— s)jt + Eaf)| ds ey dE
< Crlgllwia)-

Using also the trace theorem and summing over ¢ we obtain (5.8). The maximum norm
bound (5.7) is proved in a similar way. O



THE NEUTRON TRANSPORT EQUATION 17

Lemma 5.4. (a) Let @), be defined by the Gauss rule (5.6). Then

e r C
[ rem =@t < lslmo
[etma @t sl

) > \/1———7“5 r ) L@ N2 Loo(£2)

independently of .
(b) Let Q, be defined by the trapezoidal rule (3.5). Then

2m C
| tmde=Qelots| < lllwica
0 Li()
2m C
[ vt o= Qulotml] < g los M lallwcar
0 Li(Q)
2m C
| otmde = Qelotpl| < 7108 M e oy
0 Lo (92)

independently of .

Proof. Part (a) and the first estimate of part (b) are immediate consequences of Lemmas
5.2, 5.3, and Lemmas 5.1, 5.3, respectively. For the second estimate of part (b) we have
to pay special attention to angles ¢ that are close to an angle of direction 1; of a side S;.
For this purpose we define intervals

[27r(k —1) 2wk
I =

— [op_ k=1 ..M,
M ) M:| [Sok 1790k]7

and for each v¢; we let J; be the union of the interval I that contains ¢; and the adjacent
interval I+ closest to ;. Further, we define

So = Uleji,

where the union is taken over all the sides of 2, and

52[0727('], 51‘—‘5\50.

Corresponding to the division js = fSo + fSl of the integral we divide the trapezoidal rule
over S into the trapezoidal rule over Sy and S;. For this we have the weights

~.__{VV]'Z‘%T/]\f, lf @j%Somsl,
POl WS /2 =n/M, if ¢, €S5N58.



18 M. ASADZADEH, P. KUMLIN AND S. LARSSON

Using the standard error estimates for the trapezoidal rule from Lemma 5.1 together with
Lemma 5.3 we now have

/O ﬁv(wu) dp — Qulv(:, )]

< /Sovc,m(ap))dw— S Winl,riles))

Ll(Q) ijESo Ll(Q)
H [ verite)do— 3 Winlorite)
S1 w; €51 L1(9Q)
. y 2 . Y
< & [ | olarile) dot 02 8%v( w;(@) "
M Js, Op Li(9) M? Js, Oy L.(9Q)

IN

= [ delolwn + 377 : do gl

i h 2

M Js, PIIIwEH) T 32 s, min; |sin(e — ¥;)] 2 W9l
C C C

< "M—QHQHWf(Q) + WlogM lgllwza) < M—Q—log M ||gllwz(q)-

The maximum norm bound is proved in a similar way. [

Lemma 5.5. We have

11
(T = Ta)gllry o) £ C it 77 HgHWf(Q)a
N M
1 1
(5.11) (T = To)gllzio) = € 3 l9llwia) + € 77 log M lgllwzca),
1 1
(5.12) (T = Ta)gllpecioy < € 55 9lle i) + € 5 log M lgllwe (-

Proof. This is an immediate consequence of the previous lemma and (5.2). 0O

We can now prove the boundedness of (I—\T},)~!. We need the following simple lemma,
the proof of which can be found in Johnson and Pitkéaranta [8].

Lemma 5.6. Let T : L1(Q2) — L1(Q) be a bounded linear operator such that for some C

(I =ATD)gllryoy = Cllgllyey Vg€ Li(),

and let {T,,}52, be a bounded sequence of continuous linear operators on Ly(2) such that
for some positive integer m

(5.13) T —T,)T) || =0 as n — oo.
Then there 1s Cy such that for n large

(5.14) (I = ATn)gllzi @) 2 Cillglln, @) Vg € Li().
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Lemma 5.7. Assume that \™! is not an eigenvalue of T. Then the operator I — AT, is
invertible on L1(2) for n large and, moreover, its inverse 1s uniformly bounded.

Proof. We only sketch the proof, which is a simple modification of the corresponding
argument in [1]. The idea is to show that (5.13) holds with m = 2. In order to do this one
splits T into two terms:

(5.15) 2= Y wwhD= Y wwlDlh+ Y  wwhil,
(pv)€A? (nv)€EAZ (nv)EAR\AZ

where the first sum on the right is over all velocities pu, v € A,

(1) whose directions are bounded away from each other;
(2) whose directions are bounded away from the directions of the sides of Q; and
(3) whose magnitudes are bounded away from 0;

closeness being quantified by the positive parameter e. One can then show that
(5.16) 1T, Togllws @y < Ce®llalliey, — Yinv) € AZ

for some a@ > 0. The proof of this is based on direct estimates on the formula (5.9). For
example one has

(5.17) I VTugllz, o) + 11 TugllL, o) +/P|Tp9\ \-nlds < Cllgllr, )

where 7 is the outward unit normal to I'. The negative power of € in (5.16) comes from
the fact that the operator T, is smoothing in the direction of 1 but not in other directions.
Applying Lemma 5.5, using (5.16) and (5.17), we thus obtain

T =T T2gliey S IT=To) Y. wweTuLoaliu)

(nv)EAZ
+HT =T > wpeTuTogllL @)
(p,v)EAZ\A2
1 1
<C i + i Z w#wVHTpTugHWf(Q)
(n,v)EA2

+C Z wuw |91z ()
(p,v)EAZ\A2

1 1Yy
<C <_]W + M) e "+ z WpWy H9HL1(Q)'
(p,v)EAZ\A2

Choosing € appropriately and using the fact that Z(W/)eAg\Ag wpwy — 0 as e = 0, we
find that

(5.18) (T — T,)T2|| — 0 as n — oo.
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This proves (5.14), and hence that I — AT, is one-to-one. Since T}, is not compact we may
not conclude directly that I — AT}, is onto, but this can be shown by using (5.14) together
with the fact that (5.15) splits T? as T? = A, + B, where A, L1(2) = W), e, An

n

is compact, and ||Bp|| — 0 as 7 — co. We refer to [8] for the details. U

We can now prove Theorem 3.1. Interpolating between (5.11) and the bound

(T = Ta)gllzico) < Cliglizie:

obtained by stability, cf. (5.17), we get

1 1
(5.19) T — T)glne < C 5 lollwi@ + € 3= 9l wians.o

for 0 < 1 —¢/2 <8 <1. Applying this with g = AU + f, and recalling Theorem 4.1, we
have in view of (5.1),

1 1

0=Vl 0 (3 + 57 ) (0o + )

This completes the proof of Theorem 3.1.

6. An error estimate for the critical eigenvalue. The kernel of the compact integral
operator T is symmetric and positive, see (4.1). Hence T is self-adjoint (on La(R2)), and
therefore has only real eigenvalues. Moreover, by the Krein-Rutman theory, its largest
eigenvalue is positive and simple. Without loss of generality we may assume that M is
even so that the set of quadrature points A is symmetric, ie., pn € A implies —p € A.
Then it follows that T, is self-adjoint and its eigenvalues are real.

Theorem 6.1. Assume that M is even and let r and Kn be the largest eigenvalues of T
and T,,, respectively. For any € > 0 there is C = C(e, k) such that, for n sufficiently large,

we have
1 1
I/‘&—:‘in‘ SC (N—‘I—}_M_}:)

Proof. We shall show that
(6.1) |72 — T2 — 0, as n — 00,

i.e., T? converges to T° in the norm of bounded linear operators on L1(§). It then follows
that the family {T3} is collectively compact, see [6, p. 251], and a result of Atkinson [4]
yields

"%3 - ﬁ?z‘ S CH(T3 - Tg)XHLMQ)?
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where \ is the eigenfunction of T' associated with x, normalized by ||x||z,) = 1. Using
the boundedness of T' and T}, the error bound (5.19), and the regularity estimate from
Theorem 4.1, we thus have

1 1
[ —rpl < C (W + W) Ixllczs @), w2 @4

1 1 1 1
<C (W + W) Ixll,0) = C (7\[—4 + W) ,

which implies the desired result, since £ > 0.
It remains to prove (6.1). We first note that

T3 —T3 =TT —T,) +T(T — T,)Tn + (T — T)T7.

Here, by (5.18), the last term tends to zero in the operator norm. For the remaining terms
we note that, with (-, ) denoting the duality pairing between L;(Q2) and Lo (£2), and using
the symmetry of T and T},

(T(T = Ta) f. 9)| = (£, (T = Ta)Tg)l < [[fll oy (T = To) Tl Lo ()

By interpolation, (5.12), stability in L., and Theorem 4.2 we get

1%
11
(T = Tw)Tgllp.n) < C (—— + —logM> 1Tl (L), WL (26,4

Nz M
1 '
<C (W + MlogM> 191 Lec@)s

with 0 < 8 < 1. Hence

and (6.1) follows. O
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