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We prove a posteriori error estimates for a finite element method for steady-state, energy
dependent, Fokker—Planck and Fermi pencil beam equations in two space dimensions and
with a forward-peaked scattering (i.e. with velocities varying within the right unit semi-
circle). Our estimates are based on a transversal symmetry assumption, together with
a strong stability estimate for an associated dual problem combined with the Galerkin
orthogonality of the finite element method.

1. Introduction

This paper is the second part in a series of two papers concerning approximate
solutions for the pencil beam equations. In the first part, we derived, for smooth
solutions in the Sobolev space H*t1 of functions with their partial derivatives up
to order k 41 in Lo, optimal a priori error estimates for the streamline diffusion
and discontinuous Galerkin finite element methods of order O(h¥+1/2). In this part

~ we extend our studies to a posteriori error. estimates dealing with the following

basic problem: To construct an algorithm for the numerical solution of the pencil
beam equations such that the error between the exact and approximate solutions,
measured in some appropriate norm, is guaranteed to be below a given tolerance
and such that the computational cost is almost minimal. These two properties
are referred to as the reliability and efficiency of the algorithm, respectively. The
a posteriors error analyses are required for the reliability in the sense that the error
is controlled by a certain norm of the residual term (measuring the extent to which
the computed solution fails to satisfy the actual differential equation), whereas the
a priori error estimates are based on controlling the size of the error by some norm
of the unknown solution itself. As for the efficiency the adaptivity may be invoked
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738 M. Asadzadeh

to avoid unnecessary mesh-refinements on the regions where the contribution to the
error is already small.

Below, to be concise, we focus on the reliability issue, the efficiency studies are
similar to the adaptive error analyses in Refs. 4 and 13. In our studies we shall
assume symmetry properties, compensating for the degenerate character of the
pencil beam equations, and also put a switch which slightly, raising the diffusion
coefficient in the critical cases, modifies the continuous problem. The effect of all
these manipulations would correspond to adding artificial viscosity in the case of
fluid problems, see, e.g. Ref. 18. The error may be split into the perturbation error
caused by the modifications and the discretization error for the modified prob-
lem. We shall combine the advantages of both Eulerian and Lagrangian approaches
to derive finite element error estimates for the modified problem. Compared to
the adding of artificial viscosity in the fluid problems our symmetry assump-
tions, being part of the nature of the particle beams, are less restrictive. Con-
sequently the perturbation errors are less significant and therefore not included in
our studies. For a similar problem with significant perturbation error, e.g. a convec-
tion dominated convection-diffusion problem, detailed perturbation error analysis
is given in Ref. 13.

Pencil beam equations, considered below, are modelling, e.g. problems of
collimated electron and photon particles penetrating piecewise homogeneous
regions. The collisions between the beam particles and particles from beams with
different directions cause deposit of some part of the energy carried by the beams at
the collision sites. To obtain a desired “amount of energy deposited at certain parts
of the target region” (dose) is of crucial interest in the radiative cancer therapy. To
this approach radiation oncologists employ beam configurations obeying the Fermi
equation, which is a certain asymptotic limit of the Fokker-Planck equation, see,
e.g. Refs. 10, 17 and 21. A physical study of the Fokker—Planck equation, which
itself is an asymptotic limit of the linear Boltzmann equation, is given by Risken
in Ref. 22. Fermi and Fokker—Planck equations are in the class of diffusion trans-
port equations. For a mathematical derivation of the diffusion transport equations,
through asymptotic expansions, see Dautray and Lions,'? (Vol. 6).

An outline of this paper is as follows: In the remaining of this section we for-
mulate the general three-dimensional problem as an asymptotic limit of the linear
transport equation and also extract our two-dimensional continuous model prob-
lem for the current function. Section 2 is devoted to notations, preliminaries and
a general outline of the a posteriori approach. In Sec. 3 we introduce the elements
of characteristic streamline diffusion method (CSD) for the pencil beam equations.
Section 4 contains error representation formula, interpolation and strong stability
estimates for a dual problem. In our concluding Sec. 5 we prove the main result:
The a posteriori error estimate both in an abstract form and also in a concrete
setting.

Below C will denote different constants in different occurrence independent of
all the parameters involved, unless otherwise it is obvious or explicitly stated.
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Furthermore, (-,)g and || . | = | llg will denote the Ly(Q)-inner product and
L3(Q)-norm, respectively. Other measuring quantities and appropriate, discrete and
continuous, function spaces are introduced upon their appearance in the relevant
sections.

1.1. The continuous problems

The derivation strategies, through the Gaussian multiple scattering theory, for the
Fokker-Planck and Fermi pencil beam equations relevant in electron and photon
dose calculations can be found in Ref. 17 relying on Fourier techniques, in Ref. 21
using spherical harmonics (see also Holland15), and in Ref. 22 based on statistical
physics approaches. Below we shall sketch the general idea. For this purpose we
start from the steady-state neutron transport equation:

W Vyth(x,w) + o3 ()9 (x, w) = /32 0s(x,w - w)Y(x,w) do'’ (1.1)
VOmn0) = 0= 0805, €50, ()
w(L,y,z,w)zo,' £<0, (1.3)

with x = (z,y,2) € [0,L] x R x R, and w = (¢,7,¢) € 82, describing the spreading
of a pencil beam of particles normally incident upon a purely scattering, source-
free, slab of thickness L. Here % is the density of particles at the point x moving
in the direction of w, ot and o, are total and scattering cross-sections, respectively.
Assuming forward-peaked scattering, the transport equation (1.1) may, asymptoti-
cally, be approximated by the following Fokker—Planck equation

0 0 1 62
. P —q—ey2 1 0| mp
where ¥ is the azimuthal angle with respect to the z-axis and
1 1
7= 30ut) =7 [ (1-8)o,(xe)de, (15)

is the transport cross-section for a purely scattering medium. In the expansions
leading to Eq. (1.4), the absorption term 049 on the left-hand side of (1.1) associated
with a Taylor expansion of % on the right-hand side gives the right-hand side of
(1.4) and a neglected remainder term of order O(0?), see Refs. 3 and 10. A further
approximation, assuming thin slab by letting L x o <« 1, and a simple algebraic
manipulation yields to a perturbation of Eq. (1.4), and the boundary conditions
(1.2) and (1.3), to the following Fermi equation;

wo - Vx"/JF = 0A,7c¢F,
¥I(0,,2,1,¢) = 8(1)8(2)(n)a(¢), £>0, (1.6)
1/JF(L>.U,Z,77:C)=0; V §<07
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here wo = (1,7, ¢), where (1,{) € RxRand Aye = 0%/0n2+0%/0¢?. Geometrically,
Eq. (1.6) corresponds to projecting w &€ 52, in Eq. (1.4), along w = (£,7,¢) onto
the tangent plane to S? at the point (1,0,0). In this way the Laplacian operator,
on the unit sphere, on the right-hand side of the Fokker-Planck equation (1.4) is
transfered to the Laplacian operator on this tangent plane, as on the right-hand
side of the Fermi equation in (1.6).

Detailed mathematical analyses for variants of Fermi and Fokker-Planck
equations, either as a backward Kolmogorov or some forward-backward degen-
erate type equations, can be found in Refs. 6-8 and 20. Asymptotic derivations
and qualitative approximate behavior of these types of equations have, recently,
been studied in Refs. 9, 14 and 19. Similar asymptotic approaches in the case of
a modified Chapman-Enskog procedure leads to a free molecular flow, for some
hydrodynamic quantity, rather than the diffusion, see Ref. 5. Asymptotic approxi-
mation is also considered for a global solution to a reaction—diffusion system with
exponential convergence as in Ref. 16.

The CSD-method, used in this paper, was first analyzed by Johnson and
Szepessy in Ref. 18 for the conservation laws. A posteriori error estimates for a
more related problem has recently been carried out by Verfiirth in Ref. 23.

Except in a few special cases Fokker-Planck and Fermi equations, with
energy dependent scattering and having degenerate nature, are not analytically
solvable. Therefore numerical approaches are the only realistic solution alternatives.
However, in the numerical algorithms, so far, the priority has been given to
the construction of operational codes, with no or some heuristic mathematical
justifications, consequently basic approximation theory concepts such as stability
and convergence are not appropriately studied. Our intension in this paper is to
bridge parts of this gap and also construct numerical schemes accessible for practical
purposes. In the analyses below, for simplicity, we concentrate on approximate
solutions of problems (1.4) and (1.6) in two dimensions. Extensions of these studies
to the real three-dimensional case, although would benefit a great deal from the
present studies, would still be a real challenge.

The two-dimensional version of (1.1)~(1.3) leads to the following Fokker—Planck
problem, see also Ref. 3: For 0 < £ < L and —oo <y < 00, find YFP = UFP(z,9,0)
such that

w - VxpFF = oyff, 0e(—r/2,7/2),
P¥F(0,y,0) = 517;5(1 —cos0)d(y) , 6eSi, (1.7)
'l,[)FP(L,y,O):O, feSt, A

where w = (£, 1) = (cos8,sin6), S_1|_(_) ={weS: £>0(<0)}.
Through Egs. (1.1)-(1.7) 9 denotes the flux while usually the measured quantity
(dose) is related to the current function

i=¢&. (1.8)

f——
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We use the scaling substitution z = tan#, for § € (—m/2,7/2), and introduce the
scaled current function J by

J(@,y,2) = B FTo (1.9)
Note that, now z corresponds to the angular variable 6. Below we shall keep 6 away
from the poles +7/2, and correspondingly formulate a problem for the current
function J, in the bounded domain Q@ = I, x I, X I, = [0, L] x [—yo, yo] X [—20, 20]:

(Jp +2Jy = 0AJ, (z,z1) €Q,
Jo(z,y,+2) =0, for (z,y) € I, x I,
J(0,y0,2) =0, for z <0, (1.10)
J(0,—yo,2) =0, for z >0,

(J(0,z1) = f(z1),

where z, = (y, 2) is the transversal variable and we have replaced the product of
é-functions (the source term) at the boundary by a smoother Ly-function f. Further

A=082/822, (Fermi) (1.11)
A- = 0/0z[a(z)0/0z (b(2)-)], (Fokker—Planck) (1.12)

where a(z) = 14 2% and b(z) = (1 + 22)%/2 are indicating the diffusive behavior
of the Fokker-Planck equation compared to the Fermi equation. We recall that the
transport cross-section depends on the energy and therefore on the spatial variables:
o =o(z,y) = o (E(z,y))/2.

1.2. Approzimations in the case of small angular scattering

As we indicated above Eq. (1.7) is obtained from a two-dimensional version of the
linear transport equation (1.1) through a certain asymptotic expansion neglecting
O(0?)-terms. In other words, the absorption and scattering terms involving o; and
05, respectively, in (1.1) are combined to give the, O(0), diffusion term on the right-
hand side of (1.7) as well as (1.10) and also higher order terms which are neglected.
Then a natural question would be: How much of the original absorption, which is
a regularizing term, is kept in the Fokker-Planck diffusion term cAJ with A as in
(1.12)? Below, expanding AJ, we simply see that not only the whole absorption
term in (1.1) is now in the neglected or cancelled part but we also have a acJ
term hidden in 0AJ. Loosely speaking, in the asymptotic expansions of deriving
the Fokker—Planck equation from the neutron transport equation, mathematically,
a regularizing absorption term of order O(o; + o) is gone. More precisely:

AJ = (a(b))2), = a'(b]); + a(b])zz = (0’ + ab”)J + (a'b + 2ab')J, + abJ,,,

f!
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where A, a = a(z) and b = b(z) are as in the Fokker-Planck case (1.12). Conse-
quently, with this modelling, the Fokker-Planck equation can be written as

Jo+8-ViJ— ool =0gabJ,, = o(1+ 22327, (1.13)
where V| = (8/dy, 8/0z) is the transversal gradient and, for the moment
a= ('t +ab") =301+ 2242 +1), B= (z, —8oz(1+ 22)3/2) .
Thus trying to, deterministically, derive the Fermi equation in two dimensions, i.e.
Jp +2Jy =0Jzz, (1.14)

from its Fokker—Planck counterpart, would lead to considering additional, annihi-
lating, approximations as ao = 0, and

{8~ (2,0) and y=(1+ 22)%/? x 1} <= (20,2%) =~ (0,0).

This means that because of the forward-peakedness of the scattering associated
with the small angle approzimations, loosely speaking, we may interpret the Fermi
equation as a consequence of yet another asymptotic behavior of the Fokker—Planck
equation as (o, z) — (0,0), so that one can take (zo, 2%) ~ (0,0). This is a nearly
rarefied model describing, e.g. a photon path with negligible collision effects which
may be simplified to J; = 0, i.e. free particles flowing in the z-direction.

In a forward-peaked scattering for the Flatland (2-D problem) version a particle
at the position (xg,0), moving in the z-direction, after undergoing a collision would
move in the direction of the straight line y = tan()(z — zo). For small 6-values,
because of the forward-peakedness, we may use approximations: sinf ~ 6 — 63/6,
and tan @ ~ 0 + 6%/3. Then one possible study of the Fermi equation (1.14) would
be through Fourier techniques which is also considered by Jette in Ref. 17.

For a partial remove of the degeneracy we may assume that, Jyy =~ J... We
shall use a somewhat more involved assumption: That there are constants C; and
C5 such that

k ke k
oJ 6J<C§_J

Cr k=1,2. (1.15)

Then a nondegenerate approximation for Eq. (1.7) would be as follows:
L) =Jy+B8-ViJ—eA1J=0, (1.16)

where ¢ & Co/2 = Cow/4,C = (C1 + C2)/2, Ay = 8%/0y? + 02/822, is the
transversal Laplacian operator, and from now on 8 = (2,0). In our studies below A
is given by (1.11) corresponding to the Fermi equation, extensmns to the Fokker—
Planck case (1.12) are straightforward, but lengthy (see our a priori error analysis
in Ref. 3 involving such extensions), and therefore are omitted.

e
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2. Outline and Preliminaries

We shall use high accuracy and good stability properties of the streamline diffusion,
(SD), Galerkin finite element method, also studied in Refs. 2 and 3, based on:

(a) A space-velocity discretization based on piecewise polynomial approximation
with basis functions being continuous in z; = (y, z) and discontinuous in z.

(b) A streamline diffusion modification of the test function giving a weighted least
square control of the residual R(J") = L(J") of the finite element solution .J h,

(c) Modification of the transport cross-section oy = 20 so that, in the critical
regions, a more diffusive equation is obtained through modifying ¢ as

£z, 1) = max(e(s, ), L hR(T*)/ |V LI, eah(z, 21)¥/2) 2.1)

where h is a total mesh-size and ¢;, 1 = 1,2 are sufficiently small constants. For
the original degenerate problem £ is defined by replacing € by ¢ in (2.1). With a
simplified form of the modified/artificial transport cross-section given by

¢ = max(e, c1h), (2.2)

the SD-modification (b) may be omitted. The a posteriori error estimate (also
underlying the adaptive algorithm) is, in the case of discretizing in the transversal
variable (y, z) = z only, basically as follows:

lénlle < C°CHIETR?R(IM) o, (2.3)
where &, = J — J", with J being the solution of (1.16) with ¢ replaced by ¢ and
e=J—Jh=J -+ (T -J") =é+én. (2.4)

Note that J — J is a perturbation error caused by changing ¢ to & in the contin-
uous problem (1.16). Further C? is a stability constant and C" is an interpolation
constant. In the simplified case (2.2), the error estimate (2.3) takes the form

lenllq < C°CHIRR(T) e - (2.5)

The adaptive algorithm is based on (2.3) and seeks to find a mesh with as few
degrees of freedom as possible such that for a given tolerance TOL> 0,

C*C|e"*h2R(JM)| o < TOL, (2.6)

which, through (2.3), would Lo-bound ép,. To control the remaining part of the error,
ie.é=J— J we may adaptively refine the mesh until £ = ¢, giving J=J, or
alternatively approximate é in terms of £ — €. To approximately minimize the total
number of degrees of freedom of a mesh with mesh-size h(z,z1) satisfying (2.6),
typically a simple iterative procedure is used where a new mesh-size is computed
by equi-distribution of element contributions in the quantity C*® Ci|lE~1R2R(JM)||q
with the values of £ and R(J") taken from the previous mesh.

’Q
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The structure of the proof of the a posteriori error estimate (2.6) is as follows:

(i) Representation of the error é, in terms of the residual R(J") and the solution
1 of a dual problem with éx as the right-hand side.
(ii) Use of the Galerkin orthogonality to replace 1 by 1 — ¥, where ¥ is a finite
element interpolant of .
(iii) Interpolation error estimates for ¥ — U in terms of certain derivative Dt of
1 (in our case &y, or €A 1) and the mesh-size h.
(iv) Strong stability estimate for the dual solution 1 estimating D%1 in terms of
the data ép of the dual problem. '

Below we specify the steps (i)—(iv). We let I, := Iy X I, and recall that J
satisfies

Jo4+pB-ViJ—eAJ=0, inQ,

j(O,:L‘J_)=f(:L'_1_), forz, €1, (27)
Jo(z,y,£20) =0, for (z,y) € [0,L] x I, .
J(0,+y0,2) =0, for z €Ty,

with Ty = I~ N {z = 0}, where I~(M) = {x e T = 9Q : f-n(x)<0(>0), =
(1, 8)}, and similarly, 0 = {(z,y, £20) }U{(z, £yo0,0)}. Observe that problem (2.7)
is nonlinear because & depends on J". Hence, in particular, & depends on z leading
to control of some crucial terms, in the stability Lemma 4.3 below, which otherwise
are not estimated in a natural way. To deal with £,-contributions we shall consider
below some additional angular symmetry assumptions, e.g. (2.15).

Suppose now that J" € Vs, where Vi C Ly(Q) is a finite element space, is a
Galerkin type approximate solution satisfying )

Jh4 3.V Jh—eAL T =R, inQ,
JM0,) = fn, inl, (2.8)
Jh=0, onT;, and JF=0, onTO,

where f}, is a finite element approximation of f and the residual R satisfies Galerkin
orthogonality relation

/Rvdwdwlzo, Vv EVh. (2.9)
Q

Let us also assume that in the approximation procedure the total inflow of particles
is preserved, i.e. ’

/ Jhln-Blsz/ Jin - B|dT, (2.10)
Iy rs

where T7 := '™\ {z = 0}, is the side-inflow boundary and (2.10) is referred as
side-inflow consistency. Observe that in both our continuous and discrete model
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problems (2.7) and (2.8), primarily, we may assume
Jlps = thr; =0, ’ (2.11)

then, there is no guarantee that “after-collision and/or reflected” particles would
obey the same boundary condition as (2.11).

In the sequel and to avoid multiple-indices, we shall refer to all approximated
functions with alternate sub- or super-index h. Subtracting (2.8) from (2.7) gives
the following equation for the error é® = J — Jh:

Leh=egh+pB.Vieh—eAeh=—R, inQ,
e 0,)=f—fn, in I, (2.12)
éh=0, onT;, and é"=0, onI?,
We now introduce a dual for the problems (2.7), (2.8) or (2.12) as
{ﬁ*T/J =—Ys—B-Vip—EéA1p=¢", inQ, (2‘.13)
=0, on It and 1, =0, onT?,

Recall that the degenerate equation corresponds to replacing in (2.7)-(2.13),
B-Vi,Al, and ¢ by 28,, 8, and ¢, respectively, then we have the following
version of the dual problem (2.13):

L¥p= —py — 2ipy — Epyy = &M, in Q
{ A ’ (2.14)

»=0, on It and ¢, =0, onI0,
Note that, in (2.14), ¢ is obtained from (2.1) by replacing € by o. We shall keep
using the notation € for both degenerate and nondegenerate cases, € or ¢ version will

be obvious from the context. Now, for simplicity, we assume the following weighted
angular symmetry,

/ (pw)(20) drdy = / (pw)(—20) dx dy, VYw e Ly(Q). (2.15)
IxI, I x

v

Integrating by parts and using (2.15) with w = (£é"), and w = ¢,é", we have

_(éhaé(PZZ)Q = —(ézég’(p)Q + (ézéh’(pz)Q - (éé’;z, ‘P)Q ’ (2'16)

where we have also used the boundary conditions ¢, = é* = 0, on I'°. From (2.14)-
(2.16), we get the following error representation formula:

1M = (@, £%0)g = /Q & (—~pa — 2y — Es) d s

= (Le", 0)o — / hol3=y dydz — /I ) 2holi= dzdz
Ex z

I,

5
- (ézég’ QD)Q + (ézéh’ SOZ)Q = ZIi : (2'17)

i=1
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Below we identify each term I;, i =1,...,5, more closely. We have that
I = (Leh,p) = —/ Redzdz, .
Q
The incident boundary conditions give

I=- / &L, Yo(L,") daL + /I &(0,)(0,-) dz1 = fr (f -~ fu)pdaL,

4

while the outflow boundary conditions, i.e. ¢ = éh =0, on I't imply that

zo 0
I; = —/I {/0 zéhcplgz?i“yo dz +/ zéhyp A dz} dz
T —20

= /Im /Ozo 2" (—yo)p(—v0) — /Im /_020 2€" (yo)p(yo) = /r— eholn - f|dr,

where n is the outward unit normal defined at the boundary and, for the sake of
generality, we have not used the assumption (2.10) yet. Thus summing up we get

e = — / Ropdx+ / eholn - B|dT — / £.ehpdx+ / tehp dx.  (218)
Q r- Q Q
We use Galerkin orthogonality (2.9) and write
/ Redzdr, = / R(p = Pryp)dzdz) = / (R —PrR)(¢ ;Pth) dzdz, ,
Q Q Q

where Pp, : La(Q) — Vy, is the La(Q)-projection. By Cauchy—Schwarz inequality we
may estimate the boundary integral term in (2.18) as

‘ /_ ehpln- B dT < (/F_ léhlzin.[ﬂdl“)l/z % (/P_ o2 - Bl dr)l/z |

Now using an interpolation error, with a symmetry assumption @yy = ¢zz
inherited from (1.15), of the form

1620 — Prp)llg < C'lléALpllq = Cllépszlle, (2.19)
together with a strong stability estimate for the dual problem (2.14) of the form
lépzzllq < CllEtla . (2.20)
we get that
- / Redsds, < C°CH 2~ (R~ PaR)llallele (2.21)
Q

To estimate the boundary integrals we recall the Ly tracé theorem

w3000 < Crllullza@lulwi@>

and also the inverse estimate

lvllwa) < CinvllP 0l o) »




A Posteriori Error Estimates for the Fokker—Planck and Fermi TA7

where W is the usual Sobolev space consisting of functions having their derivatives
up to order r in Ly, u and v are sufficiently smooth functions and ¢ R, d=2,3
is a bounded Lipschitz domain, see Refs. 1 and 11 for details. Applying the trace
theorem and inverse estimate to ¢ and Q we get using (2.19) that

/F_ lel?In - Bl < Cllellelielwz @) < Clle — Pagliolly — Prellwy @)

< Clen(p — Pro)@llE™ (0 = Puo)lw; @)
< CC&(Ci)2“éhHQ”é"‘lhsAlw”Q,

where C depends on the trace theorem and inverse inequality constants. Recalling
(2.1) we have that & > h3/2 and therefore £-1h3 < h3/2 < 2. Hence

7R A sl ~ 1R lo < epaslo < Ol o.
Thus
[ lePin-glar < cer ey, 2:2)
-

At this moment we need to invoke (2.10), (note that if there were any feasible
information on behavior of the secondary particles at the inflow boundary then we
would have been able to continue without using (2.10)), identifying the boundary
integral .

| ePim-gar = [ 15~ fiPim-plar. (2.23)
r- T

It remains to estimate I4 and I5, where there is no orthogonality relation, such as
(2.9), available. Now we assume, for a sufficiently small constant ¢ < 1, that

Vi€ <céhlt, (2.24)

and let C = sup(éh ')/ inf (éhT1), (works for the case corresponding to & ~ O(h)
in (2.2), as well), then by (2.24) and the inverse estimate we have

(€282, @)ol < csup (ErT7) InT e IRR ALl < cClle|ép.: < cCCo et
X

the choice of C is for moving éh7" in and outside the norms (see also proof of
Lemma 5.2 below), and c is chosen so that cCC® < 1/8. Estimating I, in a similar
way we finally get

. 4 . 1.
€282, 0)al + (628", 2)al < Z[1E"]12. (2.25)

Inserting (2.21)—(2.25) in (2.18), and using a kick-back argument we obtain

. 1/2
1e*lq < C |[Ih?e™ (R — PaR)llq + (/F_ If - fh|2|n-5ld1‘> - (2.26)
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Thus we have estimated the error in terms of the residual and the incident boundary
error and have a complete control over all the involved constants (note that C=
C(c,C,Cr, Cinv, C%,C"), depends on the constants in the inverse estimate, trace
theorem, stability estimates, interpolation estimate and energy variation. All these
are, assumed, theoretical constants not effected by our approximation procedure).
The estimate (2.26), which is an analogue of (2.3), is appropriate in the present
setting with R satisfying the Galerkin orthogonality relation (2.9) and f being a
sufficiently smooth approximation for the product of § functions at the incident
inflow boundary.

A general Galerkin method for (1.10) or (2.7), to be studied below, does not
have exactly the form (2.9) with R € L2(Q) and therefore below the projection .
P, will not enter into the error estimates in a concrete way as in (2.26), but a
corresponding form to be derived would be, essentially, as follows:

le*lq < C(le*hA DY 1T g + [1h0aT" @) (2.27)

where ’D?L’ , is the second-order difference quotient operator in 1, Oy is the first-
order difference quotient in z and hy and h are the transversal (in z1) and
convective (in x) step-size functions, respectively. The norms on the right-hand
side of (2.27) are naturally corresponding to interpolation terms |2 AL T q, (if
& = Ch) and ||hJ,||q related to piecewise polynomial approximations.

We have now outlined the basic ideas in the proof of the a posteriori error
estimate (2.3) which rely on the Galerkin orthogonality relation (2.9) and the strong
stability (2.20) of the dual problems (2.13) and (2.14). Our main focus will be to
derive the strong stability estimate (2.20) and interpolation error estimates for the
dual problem.

Remark 2.1. The strong stability (2.20) should be compared with the nonvalidity
of a weak stability estimate for (2.13) and (2.14) of the form

lple <Clle"lq,  with p=1, or e, (2.28)

corresponding to the Lo-instability phenomenon, related to the lack of absorption,
discussed above. However, since ¢ = 0 on a part of the boundary (T'F), with positive
measure, we may derive a weak variant of (2.28) (with p replaced by £p) using
Poincaré inequality, (see Lemma 2.2 of Ref. 3). We note that in (2.20) the derivative
ALp ~ @, of the dual solution is Ls-controlled (with the factor £) in terms of
|é"||q, whereas La-control of ¢ itself as in the estimate (2.28) is not possible to
achieve in general. For the a posteriori error control, using the strong stability
estimates of the type (2.20) (with derivative control only), it is necessary to use
Galerkin orthogonalities.

To motivate for removing degeneracy through introducing ¢ and also the role
played by the artificial viscosity £ in the error estimate (2.3) we notice that the
corresponding sharp a posteriori error estimate for elliptic problems is

le"lq < ClIR*R(IMlq - - (2:29)
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The estimates (2.3) and (2.26) may be viewed as a variant of (2.29) where the
ellipticity introduced, by £, in the hyperbolic problem is compensated by the
multiplicative factor 71 in (2.3) and (2.26). '

In conclusion: A posteriori error estimates for numerical schemes may be viewed
as special cases of a general stability theory controlling the effect on the solutions
resulting from nonvanishing residuals. The perturbations in the finite element
method corresponding to certain orthogonality relations make the q posteriori error
estimates possible in cases where a general perturbation argument would fail.

3. The CSD-Method for the Pencil Beam Equafions

Welet0=zp<z1 < - <2Ny < zn+1 = L be a sequence of discrete collision sites
in the z-direction with the corresponding intervals I? = (Tn,Znt+1) and discrete
steps fin = Tny1 — T For each n let 7, = {7,} be a partition of It = {z,} x
I., (I. = I x L)), into edge-to-edge triangular elements 7o (in the sequel we
suppress 7 from 7, ), with corresponding mesh functions hi- € € 1(Im) such that for
some positive constant ¢; independent of n,

(hfgh,f(zl), for a:lET)/\(clhfg/dxl, 767;), Vn, (3.1)

where A, is the diameter of 7. Further, we assume that there is a constant A\
independent of n and h, such that
IVibplzeuny <X, ¥n. (3.2)

Now for each n we define the slab S,, = I x I , and a local mesh-convection velocity
Bn € [C(Sn)]? satisfying, for some sufficiently small constant c2,

1Bn(z, 1) — Bn(z, )| < colz — 2'| /B, =4, thel,, zelr. (3.3)

Note that in general 3,, will be an approximation of Bls,- Let on = an(7,7,)
be the characteristic curve corresponding to 3, defined by

d

(7)) = @ 0n(@51)), sy

djan(wazl) ﬂn(waa (:E CL'J_)) RS y (34)
an(Tn,Z1) =17, z, el .

Since 8 = (2,1) is independent of z, we may assume that 8, = Bn(Z.) and rewrite
(3.4) as

on(Z,%L) =1 + (T — 20)Bn(ZL), for zell. (3.5)

The approximate particle path (Z, o (Z, %)) is a straight line-segment with slope
Bn(Z L) starting at (z,,Z, ). In this setting (z,21) and (Z,Z.1) are acting as local,
(on S,,), Euler and Lagrange coordinates, respectively. Since £ is not constant, our
local non-oriented (%, Z, ) coordinates, although close, are different from the global
Lagrange coordinates.

’!
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Now we introduce the local coordinate transformation F, : S, — S, defined by
(z,21) = Fn(Z,ZL) = (F,0m(%,Z1)), for (Z,Z1) € Sp. (3.6)
Denoting the Jacobian with respect to Z, by V1 (= A), we have from (3.5) that
Vion(ZZ1) =1+ (T —20)V16n(ZL), (8.7)
with I being the identity operator. Now by the inverse function theorem the
mapping Fy, : Sp, — Sy, is invertible if
Fnl|V LBn|lLeerp) < €, - (3.8)

for some sufficiently small positive constant ¢. The condition (3.8) is guaranteed by
our assumption (3.3) on fp, ensuring that the approximate particle paths satisfying
(3.4) do not cross in Sp.

Remark 3.1. The above approach, initially, is constructed to give a locally con-
trolled approximate velocity field, therefore for our model problem, with |3| <
(1 + 23)1/? (giving a total control of the quantity corresponding to the velocity
field), the coordinate change may seem to be unnecessary. However, we need to
be convinced that the approximation procedure do not introduce particle path
crossings, otherwise the discrete model would allow additional collisions than those
modelled by the continuous case making the model problem inadequate. A some-
what less involved B3, would be sufficient to carry out the analyses in here. We
have chosen the above general framework in order to have an algorithm which is
applicable to the related nonlinear problems, such as Vlasov—Poisson, as well.

For a given function v : S, — S, we associate a function v : S, — Sy, by setting
9(Z,z.) =v(z,x1), where (z,z1) = Fn(Z,Z1), - (3.9
and vice versa. Now let
Iy ={z1€0(}):n(z1)-B<0}, and Iy =T"NS5y,
we now define for p > 0 and g > 1, the function spaces
Wh={veCI}):v|, € Py(r),VTE€Tn, v=0, on Iy, vtz =0, Vn},

Vn=1{0€C(Sy): 0(Z,%1) Z(a) —z)Yw;i(ZL), Wiew, ¢
=

Vn = {’U € C(Sn) : 'U(:I?, ‘E-L) = ﬁ(iij-l-) ) (z’ ml) = fn(E’fJ—)} H
VY ={ve LyQ) : v|s, € Vn, for n=0,...,N},

where P,(7) denotes the set of polynomials of degree at most ¢ on 7 and h denotes
the global mesh function defined by a direct product as

h(z,z.) =Hhz)®hi(xL), (z,2L) € Sn.
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Note that the function v € V may be discontinuous across the discrete z-levels z,,,
to account for this fact we use the notations

Vi = Aiig})i v(zn + Az) and  [vp] =0} —o™.

We shall below seek an approximation J” of the exact solution J for (1.10), in
the space Vi = V, by using the streamline diffusion (SD)-method defined as follows:
Find J* € V), such that for n = 0,1,...,N,

(2489l vt ot - Va0t T @)= [ ebum,
— (ErIL,ve)n + (T2 vy )y — (Jhvdp = (M o)nst,  VYoe Vu,
where J(0,-)_ = f;. Further
& = max(e, CthR(J*) /(IV LJ*| + Cy), Cah),
or
€ = max(e, CLR*R(J*)/(|J*| + Cy), Csh?)
with
R(I®) = T2+ B VLI + |[J0)| /By = [R ()] + [Ra(J™)], on S,
with [J?] extended to S, as constant along the characteristic curve on(Z,%1).

Moreover C;, i = 1,2, 3 are positive constants, 3/2 < v < 2 and recall that

(v,w)=/v'wdwdxl, (v,w)nz/ vwdzrdzr, ,
Q S

n

(v, w), = /Il V(Tn, )W (Ty, dz, (v, w)l‘; = /F; vw|n - B|dr.

Note that in general the finite element approximation for the hyperbolic type
problems would substantially benefit, gain improved stability estimates and con-
vergence rates, from the streamline modification. The studies, e.g. in Ref. 2 for
the Vlasov—Poisson equation and Refs. 13 and 18 for fluid problems and conserva-
tion laws are some examples demonstrating this phenomenon. In the pencil beam
problems, however, the convection velocity f, of the mesh is either identical or
sufficiently close to the velocity field 3, therefore the streamline modification in the
SD-method above may be omitted, i.e. kK = 0.

"Below we shall concentrate on the study of the following simplified CSD-method:
Find J* € V, such that for n = 0,1,..., N,

(T2 4 B VLT )+ (T2, (50), ) — / e[z

I7xI,

+ (I v ) — (T2 vp)p- = (PP vy, Voe V. (3.10)

)y(

Vil
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Equation (3.10) with é = Ch corresponds to a first-order accurate upwind
scheme, studied for the fluid problems, with classical artificial viscosity € = Ch.
Note that in our SD-method with & = Ch the é-term dominates the x-term and
therefore, (even without using the, forward-peaked, properties of the pencil beams -
arised in the convection velocity By, in the previous paragraph), we may take k = 0,
justifying (3.10).

Note further that there are two z | -discretization meshes associated to each Tp-
level I7: the mesh Tn associated to Sy, i.e. the “left-face mesh” on the slab Sn, and
T = {Fac1(@n1 X T);T € Tr-1}, i.e. the “right-face mesh” on the slab Sp—1, Te-
sulting from a direct transport, along the characteristics, of the previous “left-face
mesh” T,—1. If 7, is not too distorted, it is possible to choose T, = 7T, corre-
sponding to no remeshing at n, while remeshing would correspond to Tn # T, -

Too many remeshings would affect the construction of an efficient numerical
scheme. Actually, in the final estimates, the “remeshing frequency” appeared as a
multiple of the convergence rate, we return to this issue in Sec. 5 (Remark 5.2).
Finally, the existence of a unique solution to SD-method as well as CSD-method
(3.10) is due to a contractivity assumption and the Lax—Milgram lemma,; see Ref. 11
for details. ‘

4. Stability and Interpolation Estimates

In this section we shall consider the CSD-method (3.10) for (2.8) and give a
corresponding error representation formula together with interpolation and strong
stability estimates, in some weighted Lo-norms, for the dual problem (2.14). In
energy depending problems, forward peakedness in energy would result in small
energy diffusion which can also be represented by a small diffusion term in z and

* y (energy depends on = and y) justifying (2.13). However, estimates for (2.13) are

easier than those for (2.14), they are obtained in the same way, and therefore are
omitted.
Dealing with discontinuities in z 1, from now on, we shall use the notation

N
(v,w)g = Z/ vwdzdz,, for w|s,, wls, € L2(Sn), Vn. (4.1)
n=0"""

Compared to the outline in Sec. 2 the main difference, as we shall see below, will
be the additional contributions from jumps on slab-to-slab edges. Because of the
presence of the jump terms, there is a structural similarity between CSD and the
discontinuous Galerkin method with the advantageous efficiency shown, e.g. in the a
priori estimates in Ref. 3.

4.1. Error representation: The dual problem and Galerkin
orthogonality

The error representation is now obtained by multiplying the dual problem (2.14)
by é", integrating over each Sp, integrating by parts and finally summing over n,
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N

: Héh||2Q = Z(éha —Pg — 2Py — é(»Dzz)n

n=0

P = {(éﬁ + BV 1E", Q)nt((E8)z, ¢2)n+ /P _étln- Bldr — ([J, wg)n}
= Z {(ja: +8- V_Lj'"éjzz, ‘P)n_(ézzj + 2€zjzv ‘P)n‘*’/ (éj)z<P|?ZO}

n=0 InxI,
g N
" _Z{(J£+:3'VJ-Jha‘P)n,+ ((é*]h)z,‘ﬂz)n}

n=0

+ XIE {[amomBlar+ (o1}

where, in the second line, we have used the boundary condition ¢, = 0, on I in
partial integration with respect to z and, in the third line, the angular symmetry

condition (2.15) with the weight function w = (&J). Now recalling (2.7) and using
a suitable interpolant ® € Vp, of ¢, we get

N
112 = S {(E+B- VLI ® = @)n + (€T")2; (2 = 9)2)n}

n=0
N A~ A
+ Z{(ézzJa B — ) +2(¢:J,2 — @)n}

n=0

N
+2 {/F_ JH® — @)ln - BldT + ("], (@ — w)’i)n} -
n=0 \/Tn
By an identical manipulation leading to (2.16), this time using (2.15) with w = £,J,
and letting J = é* + J", we have
(Eon T0)a + 262, )0
= —(&:J,p)a + (G0 0)a
= (&8 0o — TN p)a + (Gl 0o + (T2 0)es  (42)

recall that (-,-)q is now defined by (4.1). Inserting (4.2) in the error representation
formula, (after summation over n), and combining with (6J"),, we may write

M3 = —(E:8" (@ — @)2)q + (6282, 2 —p)o + (6272, — ¥)e
+(']:£L —l-ﬂ-V_LJh,@—(p)Q + (éJ:';(‘I)‘(p)z)Q

N N
+ 3 =) + D ([T, (2= 9))n

n=0 n=0

= [+ IT+III+IV+V +VI+VII. (4.3) i

.‘“
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The idea now is to estimate ¢ — ® in terms of é" using a strong stability estimate
for the solution ¢ of the dual problem (2.14), (works equally well for (2.13)).

4.2. Inierpolation estimates for the dual solution

We shall now define our interpolant ® € Vj of ¢, appeared in (4.3). We start
with defining the Ly-projections Py, : Lo(IT) — W, and 7, @ Lo(IF) — La(IR),
respectively, by .

/(ﬁnw)vdmL=/ pvdry, YveEW,, Vn, (4.4)
I m :
and
/(Trncp)vda;=/ pvdz, YveP,(I7)NLy(I}), Vn. (4.5)
In Ir

Now we define ®|g, € V, by letting
O =Pp7ing = TnPrn®, (4.6)
where ¢ = ¢|g, and the coordinate transformations (3.6) and (3.9) are used. Hence
Pugp(z,21) = (Pap(Z,))(@L)  and (T, 21) = (Fn@(21))(Z),

with Z and Z, acting as parameters in P, and 7,, respectively. Defining P,, and
Tn by

Prnp(Z,81) = Pnp(2,81), Tp(Z,2L)=7np(Z,2L), for (Z,21) € Sn,

and using the same parameter convention as above, we can alternatively write
(4.6) as

O = Pompp =1 Pry, (4.7)
where ¢ = ¢|g, and ® = ®|g,. We finally define P and 7 by setting
(Po)ls, =Pnl@ls.),  (10)ls. = mnlpls,)
and extend (4.7), to define ® € V as follows:
® =Prp =7Pyp. (4.8)
Below we split the interpolation error ¢ — ® by writing
p—2=(p—Pp)+Plp—mp), (4.9)

so that the errors of projections are separated, and then estimate the contribution
from each projection, separately.
First let us once again recall (4.1), and some frequently used notations:

lollLwrsy =€ss sup llo(@, oy, el = el rain)) -
0<xz<L

ﬂ
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Further, for R € Lo(Q) we write R =RA, R =RA where A(Z,%,) = A (Z,Z1),

for (Z,Z1) € Sn, with An, the Jacobian of Z; — an(Z, :I:J_), ie. A, = Vs,
Finally, we define the discrete transversal averaging space, Y, associated to (1.15),
- _ 8k ak
= v M _ = 1 2 4.
V {vEVh 57|~ o | s k } (4.10)
the transversal é-weighted discrete Laplacian Ai - V= Vby
(AL jw,v)g = —(EViw,Viv)g, VveV, (4.11)

and the following &-weighted discrete second derivatives,

[ g:l” ] / he, (4.12)

and D? 1w = D> " hw, where [ﬁ—] denotes the jump across 47 in the normal
denvatlve Ow/dn,; =n, - Viw, where n; is the exterior unit normal to .

In the rest of this section we shall focus on deriving the strong stability and
some interpolation estimates, leaving the overall estimates for I-VII to the next
section.

D2 w(z, L)l = |divi (EV1w)|r +max

Lemma 4.1. Suppose (2.24) is valid, further assume |Vihi| < ¢, and |&] <
cé miny, k1, for some small constant c. Then, there is a constant C such that for
R € Lx(Q),

(R, — Pp)al < CllET WA — P)Rloliépz:lle (4.13)
(€72, (¢ = Pp)z)al < Cllhipi,hJ"llQllészlQ- (4.14)

Proof. We change to (%, %, )-coordinates and write using (4.1) and the Galerkin
orthogonality,

N —_—— —
(R0 —Ppla =D / RA(P — Pnp)dT dT
N
=> /S (I — Pp)RA(P — Pnp) dz dZ ).

N
< 31T~ Pa)RA|ls, 18— Pals. - (4.15)

n=0
Further, with @y, € Vp = f)l s,., being the standard nodal interpolant we have
16— Paflis. < 16— @nlls. < CIRADLAIS, < ClIRT Gell3, » (4.16)
with

~ 1/2
”9522“2'“ = {Z/ (‘F_’f}i)z dz dﬂ_u_} < C“‘Pzz”Sn, (4'17) .
T JIgxT

*II!]
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where the lost inequality follows from the fact that (3, is piecewise smooth and
the Jacobian A, satisfies C™! < A,(Z,Z.) < C,n=0,1,..., N, for some positive

constant C. The estimate (4.13) follows by combining (4.15)—(4.17).
To prove (4.14) as in the previous estimate we shall first transfer to (Z,Z.)

coordinates and write accordingly

N
ETE, (¢ —Pp)2)a =Y / ETERN (@ — Pu@)sA  Andada
n:

= Z/ (Z/ (ETPAN)(Z,31) (P — Prd):(, au)dau) dz .
(4.18)

Now we approximate the inner sum in (4.18) as

Z/ (:1: 517_|_)((p Pn‘P) (1’ J?J_) dz,
1 aS ThE—I\ie = NS (= A e =\ e
~ ZZ/TH(SV—LJ An )(-’B’CUJ.)VJ.(SD—'PnQD)(I,:E_L) dz |

1 el mp e o=
=1 Z/T divy (VL J"ASY) (2,51 ) (Pr@ — $) (%, %1 ) dZ).

) Z ( m:;fn l] / hrn) he (& — Pr)lor, (3) (4.19)

where we have used the symmetry assumption (4.10) and integration by parts.
Inserting (4.19) into (4.18) we get using (4.12) that

N
(€ to-Poral <33 [ (Z [ Do 7o dm) .
+Z/ Z(/ D% f’”lnldm-Ihr(¢—75n¢)(i)|afn|dm) dz .

n=0
By the well-known interpolation estimate for the Lo-projections Py : L2(Q) —
Vn and Py, : Le(I1) = W, we have

Z/ (95 - ﬁn@)Q dz, + Z(QB - ’pn(ﬁ)z]arnhrﬂ

< CIRAD p @ (@ M isqrn) < ClIB B22 (3, )13, 0, » (4.20)

where we have used the trace estimate and also evaluated D2 iy h(p(a:, ) and

consequently @zz(Z,-) on each trlangle T, separately. Note that D¢ Th = ef)i b

— =

- i
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thus, using (4.18)—(4.20), with A, L transferred to the first terms, and transforming
back to (z, z 1)-coordinates, we obtain the desired result. . O

Corollary 4.1. Let h L and € satisfy the conditions in Lemma 4.1, then

€770 - Py)ql < ClIRI DY h T qllép.so, (4.21)
I(&28" (¢ = Py).)o| < CleMlalépszlq, (4.22)
(€283, 0 = Py)q| < Clle*lollépeslq, (4.23)

where C = C(c,C) and c and € are introduced in Sec. 2 to derive (2.25).

Proof. Using (2.24) and an inverse estimate, we derive the first estimate (4.21)
in an identical way as (4.14). Further (4.22) and (4.23) are derived likewise (2.25),
using the inverse estimate, (2.24) and the same techniques as in the proof of (4.14).
The details are omitted. : ' O

Lemma 4.2. Assume that hn ~ O(1), and |éz] < cmin,, B8, hold with ¢ being a
sufficiently small constant. Then, there is a constant C such that for R ¢ Ly(Q),

IR, Py — m0))q| < OllA(I - mPRIgles + 8- V.ipo
+Cmin{||hige1/3(1 - PR 1. (2,18 el (a)
Ihee™2(1 — PR qlle1/2, e},

where C' = C(c,C) and o(z,2,) = |(B - Bn)(ZL)| ~ G(12 = za[), on S, Vn, with
G being a small, positive and smooth, function on R, '

Proof. Once again, changing to characteristic coordinates (z,z, ), and using the
Galerkin orthogonality we have :

N
3" (RA, P — )

n=0

N A
Z/ RP(@ — #p) dx
n=0"YSn

(R, Pl — mp))g| =

N A
Z/Sn (I - ®)RP(p — Q) dx

n=0

N _
S T~ 7)PR s, 17 1@~ 7g)lls.,

n=0
N . dG
SCY (I -mPR|s, | 2| (4.24)
n=0 Sn

where a usual interpolation estimate was used in the last inequality. Now we have
dp — —_—
a5 = P T B Vi =5 T Vi 4 BB Vie,
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and thus
“—:” <|pa+B-Viols. +Bn—5) Vigls, -
S—n,

Replacing in (4.24) and changing back to (z,z ) )-coordinates we get

(R, P —m¢))ql < ORI —m)PRll (lpz + 8- Vivla +loVielle) . (4.25)

Now since |¢;| ~ V1|, the desired result is easily obtained from (4.25) and the
proof is complete. O

Recall that, as outlined in Sec. 2, our basic tools of estimations are strong
stability estimates for the continuous dual problem associated with the Galerkin
orthogonality of the finite element method. So far our estimates have been, basically,
relying on the Galerkin orthogonality. To continue we need to invoke the strong
stability, as well. And it is in using this second tool where we are forced to assume
a transversal symmetry assumption described below:

4.3. Strong stability of the continuous dual problem

To be able to control the remaining terms on the right-hand side of (4.3) we need
stability estimates for the continuous dual problem (2.14), (stability of (2.13) is
easily followed). These estimates will be the essential tools in deriving a posteriori
error estimates. To derive stability estimates we shall use the transversal covective-

balance condition:
/ £p? / Epl. (4.26)
Q Q

The physical relevance of condition (4.26) for the pencil beam equations depends
upon the forwad-peakedness assumption used to derive the Fokker—Planck and
Fermi equations in the sense that: For these equations, (the charged particles have
peaked kernel about both a zero energy transfer and a zero direction change),

the scattering angle 6 is assumed to be small justifying approximation of the

type sinf ~ tan#, discussed in Sec. 1, leading to assumption (1.15). Actually
(1.15), being valid for k = 1,2, is stronger than (4.26), (see also (4.10)). And
while the assumption (1.15) removes the degenerateness of the continuous problem,
the condition (4.26) is sufficient for our purpose in the weak (variational) form.
We want to emphasize that, in our estimates, the advantage of peaked kernel on
the energy variable is not used nor the derivation of equations of this paper con-
sider it. Our results are for the degenerate problem (2.14) under the assumption
(4.26), they imply, automatically, the estimates for the problem (2.13) as special
cases. _

Considering (4.26), we have the following crucial result:
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Lemma 4.3. Suppose (4.26) is valid and that (1+s)é+e,(t +&.) <r(é; + 2éy),
for some parameters 0 <71,8,t<1. Then, e.g. forr=s=1¢= 1/4,

loe + 26l + 13- ey 2ullg + |2, g + /2 1
1/2 »
Hleela+ ([ @din-g ar) " <ceetq.

Proof. We multiply the main equation in (2.14) by —(pz+5-V LP) = —@, — 2y
and integrate over Q, to obtain :

—/ "oy + 2py) dx = / Pz + 2¢y)? dx +/ €022(pz + 2p,) dx . (4.27)
Q Q Q
Integrating by parts and using the boundary condition ¥z =0,0nTI'", we have

/éﬂozz(ﬁoz+zﬂoy)dx=/ é(Pzz(Pac dx‘f‘/Qéz‘Pzzﬁoydx
Q ' Q

= —/ (Pz(épa:)z dx+/ éﬁomsoz iz?z()
Q I, xI,

-/Q(Pz(ézsoy)zdx+/ I éz‘Py‘Pz :::?zo .

z X1y

=—/ ézgazgozdx—/ EQr g, dx
Q Q

€220y, dx — / Epy, dx — / €20,y dx
Q Q

S~

£o, , £ 0 ,
2%(<€z)da:d:cl /QQzay(goz)d:cda:_L

.o\o\o

éz@z(‘pz + ZSOy) dx — / é(,OyQDz dx
Q

€
=~ [ S )~ 2(0,00))
I,
é 1,, .
L 5o ) + JROREPEN
Iy xI, 2 Q 2
- / €202(ps + 2¢p) dx — / Epzpy dx
Q Q
£ , € 4 ~ 1, <\ 2
2= | seiL)dei+ | Zon.fldr+ 5 (Eat2éy)p2 dx
I 2 ) 02

€ é R 1
“/ 5905 dx—/ 5902 dx—/ 53903 dx‘z/(‘f’m"‘m‘)"y)z dx.
Q Q Q " Q |
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Inserting in (4.27) and using (4.26), we thus have

. € é ~
— [ otz 2 lest 2ol = [ Gzt [ Solin-plar
Q I, r-
4316990y - [ 262 = [ 25— Tle+ 0P
2 O Jo2mF JoaTv o 4lTE T
‘“”éz‘Pz“?Q

3 1 R ~
= Ses+ 0l +5 [ &tin-Blar
4 2 Jpo
1oz oate 2 1 A 2
+5M108-VE sl — 5 | Epz(l)dzy
2 2J, 7°

—/ é(pidx—/ é202 dx. (4.28)
Q Q

Invoking the boundary conditions in (2.14), (i.e. the fact that in our problems ¢ = 0,
on I't, implies ¢, (L) = 0), we get

3 1 . ~ 1, .~ .
et apl+g [ eetin- Bl + 71(5- vey el

R 1 a2 1z oo
<Ml + Gl +oully+ [ (648~ 38-9¢) 2o,
Now using the assumption on £, we may write

loz+ 204y + [ (¢2) - Blar

1,. 1., 1.~ . .
o180 P 4 e 0 + 1B V&l < 20Mh . (429)
Finally, using the original dual equation in (2.14) we also get

ezl < ez + 2pylla + 18", (4.30)

and the result follows from a combination of (4.29) and (4.30). One can easily
check that C(C®) = (v/30 + C*®), other choices of the parameters 0 < 7,s,t < 1,
give similar estimates. O

Observe that (4.29) together with (4.30) imply that the stability constant C*®
in (2.20) may be taken as C° ~ (1 ++/2).

5. A Posteriori Error Estimates

In this section we proceed to compute the estimates of the terms I-VII in the
error representation formula (4.3). To this approach below we shall combine the
interpolation estimates in Lemmas 4.1 and 4.2, Corollary 4.1 and the strong stability
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estimate in Lemma 4.3. First we note that the terms I-IIT and V, having the same
structure, may be estimated in a similar way. In particular the pairs T and IT as well
as IIT and V are of the same order of magnitude. Let now & = Pro =Py,
and split the first term in (4.3) as follows:

T=—(&8" (2~ 9).)g = (26", (Po— p),) — (26", (r=DPy).) =1 + 1,

where I is estimated in (4.22). To estimate I3, note that the trial functions are
continuous in z; and therefore in %, we use (2.24) and the inverse estimate to write

2] < | [6:2°1(P(r~ D))l dx < O, | PG~ D a.
Now using the same argument as in the préof of Lemma 4.2, and (4.29) we may
write
Il < CChal|h (I — 7Pt (s + 5. Vivllo +lelViellle)

< COmlléelallpe + 8- V.1 pllg + CCim /208 o6/, o

< 2CCiay||e" (128" | + [|6/202 |q)
where &' = C(e, C). Similarly we write

T =(:82,P0 =)o + (282, P(m — Do) = ITy 1 I,

where, also in here, I1; is already estimated in (4.23) of Corollary 4.1. To estimate
11 we use again (2.24) and the inverse estimate, this time applied to é", and write
as in the estimation for I,

IL| < 60, / ERT?EM [P (r — I dx
Q

< 20Chy €| (66| + [6/208%q)

Continuing with 7T , in the same way, we see that II1; is estimated by (4.21)
in Corollary 4.1. And, as we shall see, the ITI)-term and V3 below will lead to
the same expression with opposite signs and therefore will be canceled. Otherwise,
estimating Vo we would, simultaneously, have estimations for both III, and Vs as
well. Now we proceed by splitting the I'V-term in (4.3) as follows:

IV = (Ra,Pe — 0)q + (Ra, P(rp — 0))g = IV4 + IV, :
where
R4=R4(Jh)=Jm+ﬂ-Vth=B-VJ", on S,, V=V,.
By Lemma 4.1, using orthogonality related to the Ls-projection P, we have

V| = |(Ra, P — p)q| < Ol (1 — P)Rallolléps,
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where 7%4 = R4A. Further, from Lemma 4.2 we get that
|11V5| < O|IR(I = m)PRalllles + 8- Viglo
+ C min{||figé7/2(I — 7)PRall 1y (22 |18 * 02| L. (L) 5
Iheg2/3(I — m)PRallollE ezllQ} -
Similarly we split V' and use integration by parts, in the second term, to get

V = (&J8 (Po—@):)a + (&7, (P(rp — ¢)):)e = (€77, (Py — ¢):)o

(D] I Plrp — pla — T Plrp— o+ [ eatPmo— o)l

I xI,

=V1+Ve+V3+ Vs,

where Vj vanishes, since J? = 0 for z = +2¢, we also note that IT I, + V3 =0. Now
using the second estimate of Lemma 4.1, we have

V1| < C|IRADA LT lollép=z -

Further, by Lemma 4.2 and since P is a bounded operator we may estimate V5 as
follows:

[Va| < C|R(I — m)Dh T lolles + B Vivlle
+ Cmin{||5gg™2(I — m)DF ™| 1) 16202l Lec ()
|hog™2(I — m)D}. , " loll62¢.llo} -

For the primary particles, if we assume (2.11) then obviously V I = 0. However,
as we discussed above, a condition as (2.10) is more motivated, due to the possible
secondary collisions resulting from the reflected particles. Below we continue
estimating V I-terms: we have that

(0, ® = @)p= = (Jrs P — @)pz + (Jn, P(mo — @))p- ==V L1 + V I5.

Due to the fact that P is the Lo projection on z,, we have that VI; = (Py —

gp)[F; =0, forn=0,1,...,N. As for V I, using interpolation estimate together

with the trace inequality we get
N

V| = | (Jn, Plr — D))r=

n=0

= [(Jn, P(r — D)r; |

— |k, P(F — D)y | < /F |7 = DIWAP(F — I)p|dr

< CO|(@ = DPIA L, o5y 10l Loy

< OIWPIM ol by ooy €l Lo sy < CIRPINall L, )

Volle -
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It remains to estimate the last term VII in (4.3), i.e. the contributions from
the jumps. Here, for simplicity, we introduce the following notation:

Rn(@) = (I —Pp)J"™ /k,,  ze r, (5.1)

observe that R;; = 0 on Sy, if J,’{,; € Wy, i.e. no remeshing (or changing to finer
mesh) at 2 = z,,. Further, let

Rog = (JP™ — T /hy . on (Z,21) €S, . (5.2)
Now we give the estimate for V7T in the following lemma:

Lemma 5.1. Assume that 0, Rr1 and Ry are defined as above. Then, there is g
constant C such that

N
2 (T, (@~ 0))n

n=0

=1

2
= C’{Hf‘lhiRn llépzz | + Z(HﬁRnH lez+8-V.ig

+ minf|hge PRy 1, 1) 16/ 202 Lo (22), | P02 *ReillqlleY 2%”@])} .

Proof. We split VIT into two parts:

N N
; VII= 3 (17 (P = 0)2)n+ 3 (1, (7P — Po)})n =VII +VII,.
n=0

n=0

First, using [J?],, = T — gl p, ghin _ JM™, we estimate VIL as

N
VI =Y (Jb" —p,ghn (1 - Pr)e")n
n=0

N N
= Z(hnRﬂ ($n)+; (I - Pn)@i)n = Z(RH (xn)+; (I - Pn)hn(Pi)n .
n=0 n=0
(5.3)
Now to estimate (I — Pun)@'t, we note that
} T )
: PL(EL) = o(Z,an(z,2))) —/ a—j,go(:f:', an(Z',z,))dz’
,ji T
= <,0(i’, aﬂ(g—:,jl)) - / (903’ + B - Vl(p)(ﬁl: an(z/: i'-L)) di,?
Tn N
so that
hn‘Pi(jl) = / ‘)O(E': an(i': a—’l)) d-'i'“/ / (‘Pz + Bn - VJ_‘P)(-T,’E'J.) dz'dz .
In In Jg,

——— T
-

,Q
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Inserting this representation into (5.3) and using estimates for (I —Py), similar to
(4.13), together with the piecewise smoothness of 8, and Lemma 4.2 we get

[VIL| < C{|E7 R Rnllgllépzzllq + iR lellvs + 8- Vel

+ min(|ligg 2R | () 16/

@zllLe(z2), 1ReET*RualQllE" 2 l0)}
(5.4)
For the VII-term we write using Lemma 4.2 that

[VIL| < C{lIFR7=llellps + 8- Vele

+ min(||5og > Raa| 1, (1) 1€/ | Lec (L), 110E TP Rr2ll lI€V 2021 0)} -
(5.5)
Thus the assertion of Lemma 5.1 follows from (5.4) and (5.5). O

Finally using a kick-back argument in the contributions from the terms I and
I we summarize the estimates of this paper in the following main result:

Theorem 5.1. (A posteriori error estimates) Suppose that the assumptions in
Lemmas 4.1 and 4.2 are valid. Let J and J" be the solutions of (2.7) and (3.10),
respectively. Then, there is a constant C = C(C, C) such that

I = T*lo < C(IE7R2 (J(I — P)Ra| + |Ra1| + [Rs1| + [Rral)ll@
+ 1B — 7)PRa| + |(I — m)Rsz| + |Rez| + |Rn| + | Rezl)ll @
+ min{||igé~V2(|(I—m)PRa|+|(I—7)Rsa|+|Rr1|+| Rr2|)l| Ly (L) »

|hoe=/2(|(T—m)PRa|+|(I—m)Rsa| +|Re1| +| Rrz])ll@}) ,
where ’ﬁ,i(j) = Ri;A, Rr1 and Ry are defined in (5.1) and (5.2), respectively,
further
Ra1 = Re1 = D3 ,J", Rea=£€D3,J" and Re=Di1DyJ", onT,.
Here we have used the fact that (I — m)P = P(I — ) and the boundedness of P.
Note again that VI; =0 and Ry vanishes whenever T, = T, so that Jhr e w,.

Theorem 5.1 may~be stated 1~n a more concrete form by estimating the terms,
(I —P)Ra, (I—w)PR4, (I —7)Rs2 and (I —Pn)J™™ explicitly. First we note that
in Theorem 5.1 these terms are associated with weight functions: w = é=1h%, h or
Fipé=1/2, so that typically we need to estimate terms of the form
lwd = 8)gllz, (., L2zyys S=m, orP, and p=1, or oo,

with g replacing given relevant functions from the right-hand side of the estimate
in Theorem 5.1. To derive concrete estimates we need some assumptions on the
weight functions, (cf. Ref. 13),

|[Vw| < shlw, 6 >0 small, (5.6)
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Le. in our case for hy, [V, (671h2)| < SR (E7hS) = 0&7th, while for A, |i/| <
6hh™' = 4, and also |D, (hgé~1/2)| < Ohthoé~1/2 = §&=1/2, Thus, e.g. we have
that 26D (hy) — hy(D1&)| < 6, and hence (5.6) is guaranteed if the following
two conditions hold true:

(1 |B )
! < _ - .
|F| < min (25,(éz)1/2' +él/2,5) ; (5.7)
[V €| é
[Vihi] < e MLty (5.8)

Lemma 5.2. (The weighted Ls-projection estimates) Assume that the bounds (5.7)
and (5.8) are valid, then there is a constant C such that for sufficiently smooth g,
we have

lw(I —7)gllq < Cllwh'Digllq, lezt, (5.9)
lw(I =P)gllq < Cllwhk Dkyg|q, keZt. (5.10)

Proof. We give only the proof of (5.10), the estimate (5.9) is obtained in a similar
way. Let § be an interpolant of g, then

(T = Pglle<llwls - o+ [wPG - g)llq < Cllwls - 7)o

1/2 1/2
< (Z “w(g_g)“%z(I;xr)) <C (Z (ﬁ’rllg—ﬁ”Lz(I;xr))z>

n,T

1/2
<C (Z (@rllh’ipfgan(zng))2>

n,T

N 2\ 1/2
W
= <Z (@—Hwhil’ﬁglmum) ) < Cllwh} Dl gllq,

n,T

where we have used the fact that the assumption (5.6) applied to z; variable gives
that @, < w(z,)|, < ., with @, = ming  en, w(zy), W, = maxg, en, w(z,)
and

Nr ={7 €T :# has a common edge or vertex with T}. O

In the rest of this section we prepare for a concrete version of Theorem 5.1.
Below we shall estimate all the R;(;)-terms so that, finally, in Theorem 5.2, we can
formulate such a concrete version. To this approach, first we note that

I(T = Pp) I s, < CI(T = Po) P75, ., (5.11)
I = P)Ralls, = (I - P)(B- VI")A|s, , (5.12)
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recall that 3 = (1,8) and V = (8/0z,V1). To estimate the right-hand side of
(5.12) let J be a standard mollification of J" on the length scales (h, k1, hy), i.e.

j:LJh(a:—w',wJ_—a:’l)Xh(x’,:n’l) ', x'=(@,7)), (5.13)
where 0 < x € C§°(Q) and
/Qx(a:, z1)dx=1,  xu(z,z.) =R h]°x(h 'z, h ] zL).

Then we have that
I(T=P)(B-VT)llg < CIBIDI(B-VI)q- (5.14)

Below we shall use the following discrete convective-symmetry assumption for our
approximate solution J* € V;,, and the mollifier function J:

hizdy=hiy:, J=J" or J=J. (5.15)
Note that given a sufficiently smooth function g we have the identity
(B-V1)(hiD1g) =Di(hi(B-VLg)) —2hi .9y +zh1 yg. — higy. (5.16)

Now to estimate (5.12) using (5.14) we need to control the Ly(Q)-norm of G-
V(J* — J), and to this approach we use (5.10) and split a Taylor expansion on
z- and x| -directions. Then using also (5.15) and (5.16) we get

B-V(I* = J) = (hJo)s + (8- V1)(h1D1LT) + O(h?)
_ ~ (hJz)s +Di(hi(B-VLJ)) —hydy. (5.17)
It follows from (5.17) that
18- V(I* = D@ < (ha) 7 (hadz) + (A1) (RL(B- Vi)l
+{hodylle < 18- VIle+hidyle- (5.18)
Combining (5.14) and (5.18) and using (5.13) we have
I(T=P)(B-VI")lq < CIBIDL(B- VI)llo + (T —P)hLdylle

< C([h1DL(B-VIM)e + [hLT*]q)- (5.19)
Remark 5.1. Note that using the mollifier J is necessary to transit || - ||s, norms
to || - ||@ norms. In the continuous case a direct application of Lemma 5.2 yields to

our final weighted estimates.

Now we turn to give concrete estimates for (I —m)-terms: i.e. (I —7)PRy and
(I — m)PRs2 on the right-hand side of Theorem 5.1. Using (I —7)P = P(I — ),
boundedness of P and (5.9) in Lemma 5.2, with [ = 0, we have

lw(I —m)PRallq < Cllw(I — mRallq < Clw(B- VI")q- (5.20)
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As for ﬁsg—term, since higher derivatives are involved we need to use again the reg-
ularizing effect induced by the mollifier function J. So that using Taylor expansion
in z-direction ‘

lw(I = m)Rsalq < [[w(I —m)eDE T*lq
< lw(I = m)éD; Jllq + |lw(I - m)eD} (" — J)|q
< lw = m)éD;, @ + llw(I — m)éD} ,(hJs)llq + O(weh?)
< Cllw(I = 7)(€Dh,:T") @ + |lw(I — m)éDE (hI™)| o
< lwhe T} ll@ + whé Tk |l - (5.21)

Recalling Theorem 5.1 the relevant weights in (5.20) and (5.21) are w = A and
w = hé~1/2, respectively.

Summing up we have proved the following final and concrete version of a pos-
teriori error estimates for (2.7).

Theorem 5.2. Let J and J" be as in Theorem 5.1. Suppose further the discrete
convective symmetry assumption (5.15). Then, there is a constant C = C(C, ()
such that

lenll < C{I€™RIDL(B- VI?) @ + €7 AL T* o + B3 D3 J"||q
+|ETRIATIDL I g + IR - VI g + %2 (@ + K262 |lo
+IRDL(I)lIe- + A3 A D TP g + (B2 ") lo
+ min(||hee /2B - VI*) @ + W08 20 llq + [h%eEY/2 L, I
+[|h3 e 72D M + [|hee (3Tl
1he™2(B - VM) |1y (za) + |B20EY2 T2, || 1 (1) + 1R "2 T2 || £ (1)
+1h3 e 2D IM 1y (1) + 102 (B2 | )}
where we have used (5.14)~(5.21) and
8" = (™ — J*™) /B, on S,.

Remark 5.2. Note that in Theorem 5.2, the terms ||h3 D, (3-VJ")| o (if & = Chy)
and ||A(0zJ")|q are naturally corresponding to the terms A3 DL(Jp)|lo and
|AJz]l@ arising in pure interpolation with piecewise linear and constant func-
tions respectively. Now assuming that 7, = 7, , all contributions from Ry =
(I — Pp)J™™ /By, in particular, the critical term |é=1h4 B=1D2% Jh||g will vanish.
That is, if we take 7, to be the convected mesh from the previous z-step with
elements {on—1(Zn,Z1); T, €T}, T € Tp_1, then Ry = (I—’Pn)Jf’"/hn vanishes
and therefore é_lhih_lDi Jh-term never comes up. More generally the parameter
h~! in this term is related to how frequently we remesh. We may therefore replace
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the A~ factor by the “remeshing frequency” ;! which by (3.3) may be taken as

small as O(|V L B|) ~ 1, without getting difficulties with collapsing or too disordered

grids. Consequently, we can claim that our a posteriori error estimates in here are of
optimal order. There are other ways to control the £=1h4 A=1D?2 Jh-term by requir-
ing that the Az,-steps are not too small, but then it may be become cumbersome
to get a reasonable balance between the velocity and space discretization errors, at
least for p = 0. Finally with small o, (¢ < £%/2), i~ h2 and é = Ch, we have the
following absorbed version of our final result; Theorem 5.2

Corollary 5.1. Suppose conditions in Theorem 5.2, together with T, = 7,7, o <
€2, h~ h% and é = Chy. Then there is a constant C, as in Theorem 5.2, such
that

lenll < C{IRADL(B - VI @ + 1IR3 TM o + 1R3 D3 g + B3 (B - VJh)HQ
A T2llo + 1AL T2 @ + B3 DL (T2~ + (B3 D2 TP g + A2 (8:7™)
+ min([|h3 (8- VI")q + K Tl + 1B o + 1R2 D3 J7|q
+1P10:M e, N1BE(B - VIM L za) + 1T Laay + 1RSI N a2
IR DL I Ly (22 + P82 T™) Ly (22))} ~ ClIBLE(TM)|#

with ||h3 E(:)|# being a weighted norm equivalent to h3 (||J|| g2 + || J*|| w2

L1(Lg)

)-

Remark 5.3. With arguments similar to those leading to the proof of Theorems 5.1
and 5.2, we can derive a posteriori error estimates in || - || oo (z,,,(z, ))-norm. Then
we need to use a dual problem of the following form

—pz — 2Py — Epz, =0, in@,
o(L,) = eN+1 , on I}, (5.22)
=0, on I'f, and ¢,=0 onI?,

instead of (2.14).
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