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1. INTRODUCTION

In this article we study the approximate solution for the deterministic, multidimensional
Vlasov-Fokker-Planck (VFP) system using the streamline diffusion and discontinuous Galerkin
finite element methods. We prove stability estimates and derive optimal convergence rates for
the regularized VFP system. A similar approach for the Vlasov-Poisson equation was considered
by the first author in [1]. This work extends the results introduced in [1] to the case of the
multidimensional Vlasov-Fokker-Planck system. Here we (i) include the Fokker-Planck diffu-
sion term (as a right-hand side), and (ii) add a viscosity term to the convection part.
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The Vlasov-Poisson-Fokker-Planck (VPFP) system arising in the kinetic description of a
plasma of Coulomb particles under the influence of a self-consistent internal field and an
external force can be formulated as follows. Given the initial distribution of particles fy(x,
v) = 0, in the phase-space variable (x, v) € R X R% d =1, 2,3, and the physical parameters
B > 0 and o > 0, find the distribution function f(x, v, £) for t > 0, satisfying the nonlinear
system of evolution equations

(9,f+ v+ V.f+ div,[(E — Bu)fl = oA,f, in R¥ X (0, ),
fx, v, 0) = folx, v), for (x, v) € R*,
6 x
E@x, 1) = T [ p(x, 1), for (x, 1) € R X (0, ), (1)
plx, 1) =J fx, v, 1) dv, g=+1,
Rd

\

where x € R? is the position, v € R? is the velocity, and ¢ > 0 is the time, V, = (8/9x,, ...,
0/dx,), V., = (8/dvy, ..., 3/dy,), and - is the inner product in R?. The parameters 3 and o are
assumed to be the viscosity and the thermal diffusivity coefficients, respectively, which are
related by o = BkT,/m, with k being the Boltzmann’s constant, T, the temperature of the
surrounding medium and m the mass of a particle (thus, for “normal” temperatures the physical
parameter o is very small). In our studies the parameter o is, basically, of the order of mesh size
or smaller, and decoupled from B = O(1). |#|Y"! ~ l/w, is the surface area of the unit disc in
R?. Finally p(x, 1) is the spatial density, and *, denotes the convolution in x. £ and p can be
interpreted as the electrical field and charge, respectively. The macroscopic force field E can also
be assumed to be of the form

E(x, 1) = =V(¥(x) + d(x, 1)), (1.2)

with s(x) = 0 being an external potential force, and ¢ (x, 1) the internal potential field. Then,
for @ = 1 the VPFP system models a gas of charged particles, with an external potential i,
interacting through a mean electrostatic field —V, ¢, generated by their spatial density p.
Whereas § = —1 corresponds to a VPFP system modeling particles under the effect of the
gravitational potential y.

For a gradient field, when E is divergence free and with no viscosity, i.e., for B = 0, the first
equation in (1.1), would become

o, f+ v Vf+E-V,f=0cdA,f, (1.3)

which, together, with the rest of equations in (1.1), gives rise to a simplified VPFP system. When
E is given (known), we refer to this system as the VFP system. For ¢ = 0, and with a zero
external force, i.e., y(x) = 0 and, hence, E(x, £) = —V,$(x, t), we obtain the classical
Vlasov-Poisson equation with an internal potential field ¢ (x, f) satisfying the Poisson equation

Ad(x, 1) = —Gj flx, v, Hdv = —6p(x, 1), (1.4)

Rd
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with the asymptotic boundary condition

¢(x,1) — o, ford>2, as|x] — o,
b, 1) = @(log]x|), ford=2, as |x’ — oo, (1.5)

For B # 0 (and ¥(x) = 0) we have the following (modified) version of the VPFP equation
Of+ v Vif=Vd:V,f=V, (Buf + oV, f), (1.6)

where ¢ is assumed to be the exact solution for the Poisson Equation (1.4) given by

d(x, 1) = BJ G(x — y)f(y, v', t)dydv', (1.7)

R2d

with % being the Green’s function associated with the fundamental solution of the Laplace
operator —A,.

The mathematical study of the VPFP system has been considered by several authors in
various settings. The main approach is based on controlling the behavior of the trajectories, i.e.,
the solutions of the ordinary differential equations underlying the Vlasov-Poisson equation, (see,
e.g., [2-4]). Here are some articles concerning the properties of the analytic solution for the
VPFP system: Asymptotic behavior, parabolic limit, and stability properties have been carried
out in, e.g., [5, 6]. Existence of local in time, classical, smooth solution is given in, e.g., [7], and
sufficient condition for the global existence of classical solution in three dimensions can be
found in [8]. Existence and uniqueness of smooth global in time solution for large class of initial
data are given in [9]. Large time behavior and steady state are considered in [10]. In a recent
work [11], the time-discrete variational formulations are studied by certain Kantorovich type
functionals.

Compared to the analytical studies the numerical analysis of, purely, multidimensional
VPFP/VFP system, both in theory and implementations, is much less developed. However,
certain related problems are widely considered in the literature. In this setting, classically, the
dominant part of the deterministic numerical studies have been based on the method of
characteristics, i.e., mostly the well-known particle methods developed for the Vlasov-Poisson
equation in, e.g., [12-14], and more recently in [15] with equally spaced initial data points.
Some recent studies are focused on the numerical analysis of Fokker-Planck-Landua (FPL)
models by the spectral methods, see, e.g., [16, 17], or conservative and entropy schemes studied,
e.g., in [18] for a nonlinear FPL model in three-dimensional (3D) velocity space with some
implementations, and in [19] for a space homogeneous problem with a convergence proof (to
a discrete Maxwellian) in two dimensions. As for some other related approaches: [20] discusses
the efficiency of some numerical algorithms for FPL in cylindrical geometry and presents some
test results. In [21] the authors study finite difference schemes for an ion/electron collision
operator of the Fokker-Planck type, where a semidiscrete scheme in velocity is combined with,
explicit and semi-implicit, time discretizations. Numerical implementations indicate the advan-
tage of the semi-implicit time discretization versus the explicit one. [22] considers a finite
volume scheme for the 1D Vlasov-Poisson system and, assuming W' regularity, derives a
convergence rate of order O(At"? + A'/?),
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Our goal in this article is, however, to construct and analyze finite element schemes for the
multidimensional VFP system, discretizing in space-time-velocity variables, and give optimal
convergence rates: an approach that in our knowledge is not considered elsewhere. Our
motivation is to use, as far as possible, the existing numerical strategies for the fluid problems:
The VFP system possess, formally, a similar structure as that of fluid equations and, therefore,
may be treated using finite element methods, which are more developed for the fluid problems
than the equations of gas dynamics, as, e.g., for incompressible Euler and Navier-Stokes
equations, conservation laws, or convection-diffusion equations, in [23-27], respectively.

In our studies, assuming a continuous Poisson solver of type (1.7) for the Equation (1.4), we
focus on the numerical convergence analysis of a deterministic model problem for the VFP
system in a bounded phase-space-time domain. This is a convection dominated convection-
diffusion problem of degenerate type (full convection, but only small diffusion in v) for which
we study the streamline-diffusion (SD) and discontinuous Galerkin (DG) finite element meth-
ods.

To give a general motivation (see also the final comments concluding the article) for the use
of SD and DG methods and see different aspects, to begin with, let us consider a fully
nondegenerate convection-diffusion-absorption problem: a modified version of (1.3), by adding
(I) an absorption term af on the left hand side (this may be extracted from the 8 term in (1.6)
to the price of a somewhat modified ¢), and (II) a diffusion term of order ¢ in x. The modified
problem is considered in a bounded space-time-velocity region Qr:= Q X (0, T] := Q, X Q,,
X (0, T], with both Q, C R% and Q,C R¢ being bounded domains, and associated with initial
and boundary conditions:

0,f+G-Vf+ af — cAf=S, in Qg
f(x’ v’ 0) =4ﬁ)<x’ v)’ in Q’ (1'8)
fl, v, ) =wlx, v 1), for (x, v, 1) €T X (0, T],

where G := (v, =V, ), V := (V,, V), I' := 9Q), and « and S are assumed to be smooth
functions of (x, v, £). Note that, even for smooth data S and w, the solution fto this problem is
in general not globally smooth: For ¢ # 0, the solution f will oscillate in a layer of width O(c)
at the outflow boundary of the phase-space domain Q: I'; = {(x, v) € 0Q : n(x, v) * G = 0},
where n(x, v) := (n(x), n(v)), with n(x) being the outward unit normals to 4{}, at the point x
€ 0, and n(v) the outward unit normal to 8{),, at the point v € d(),. On the other hand in the
limit case when o = 0 the boundary data w is only prescribed on the inflow boundary I';; = {(x,
v) € 3Q : n(x, v) *+ G < 0}. In this case and if w is discontinuous at p, := (X, vp) € I'g, then
the solution f will be discontinuous along the characteristic curve through p,, and for all ¢ € [0,
T). If o > 0 then such discontinuity is spread out over a layer around the characteristic of width
0(V o) (see [28] for the details).

The idea is now to construct general finite element schemes, i.e., with a mesh not oriented
along the characteristics, for problems of type (1.8) that (i) are higher order accurate and (ii)
have good stability properties without requiring the mesh size 4 to be smaller than o. Conven-
tional finite difference or finite element schemes for (1.8), usually, would satisfy only one of
these two conditions. Whereas the streamline diffusion method introduced by Hughes and
Brooks [29] satisfies both the conditions (i) and (ii). This is a Petrov-Galerkin type method,
where artificial diffusion in the, full-characteristic, streamline direction, » = (1, G) is intro-
duced by modifying the test functions from g to g + 8w+ Dg, where 8 ~ h, or (<h), and D = (9,,
V., V) is the total gradient. Then a global streamline diffusion error estimate, in approximating
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with piecewise polynomials of degree k and for f € H*"!(Q,), (for simplicity & = 1) would read
as

\/E”Vgh”Lz(QT) + \/5“('0 * gbeh”Lz(QT) + Heh”LZ(QT) = Chk+l/2||ﬂ|H"”(Qr)’ (19)

where e, := f — f,, f, is the approximate solution, and H*"'(Q,) denotes the usual, L,(Qp)-
based, Sobolev space. The corresponding error estimate for the standard Galerkin methods is

\/Euveh”Lz(QT) + ”eh”Lz(Qr) = Chk”ﬂ|l-l"+'(QT)' (110)

Comparing (1.9) and (1.10), we conclude that the streamline diffusion method improves the
convergence rate by '/ and has an improved stability due to the presence of the term \/§|w *
Qbeh||L2(QT) on the left-hand side. This is a consequence of the extra diffusion resulted from the
S-term in the test function: just consider, in a variational formulation, the contribution from the
convection term in (1.8) and the &-term in the test function, when g = f.

In the SD method the space of trial and test functions are different and the trial functions are
assumed to be continuous in x and v but may be discontinuous in time [however, for simplicity,
this discontinuity is not included in the estimate (1.9)].

In this way we have a global estimate viz (1.9). However, most problems have local behavior:
they are locally smooth our locally singular. The discontinuous Galerkin method allows jump
discontinuities across interelement boundaries in x, v, and ¢ in order to count for the local effects.
These jump terms are interpreted as derivatives, contributing to additional diffusion terms that
is of different type than the one we obtain in the SD method. More specifically, in the simplified
models, if we consider the characteristic streamline diffusion method with k = 1, i.e., approx-
imation with piecewise linear polynomials, then we can easily show that the actual extra
diffusion is of order O(h*?), whereas the corresponding diffusion added using the discontinuous
Galerkin method DG(0), corresponding to k = 0, being of order O(h) is much higher, whereas
the one added by DG(1), for k£ = 1, is of order O(h®) and, therefore, lower. Also in the DG
method the test and trial spaces are the same, which turns out to be advantageous in the error
analysis and which also gives improved stability properties for parabolic type problems in
comparison with the continuous Galerkin method. For more details see, e.g., [25, 26, 28].

Back to our Equations (1.3) or (1.6): Because of the lack of diffusion in x the boundary
conditions are imposed appropriately on I') X €, X (0, T, where I' ) = {x € 9Q), : n(x) * v
< 0}, rather than on the purely inflow boundary I' X (0, T]. Also the estimations corresponding
to (1.9) yields a control of Vo[V e, ..o, rather than Vo[ Ve,||, o, Further, because we do not
have an absorption term in (1.6), we cannot, a priori, include the term [le,|, o, in (1.9),
controlling the L,-norm of the error, in our estimates. This, however, may be done simply by
imposing a boundary condition that vanishes on a part of the boundary with a positive measure
and then using a Poincare-type estimate. We omit carrying out this trivial step. We shall focus
on (1.6), where the B term needs somewhat involved estimations. Equation (1.6) can be viewed
as a forward (backward) problem assuming 8 = B(v) and an orientation on v, e.g., for v3 > 0
(<0); v = (v, vy, v3).

Both for the streamline-diffusion and the discontinuous Galerkin methods we develop
stability estimates and derive optimal convergence rates of order O(#**'/?) for the piecewise
polynomial approximations of degree k, the mesh parameter s, and with the exact solution f
€ H" ().

As for the numerical implementations, we have studied two related simplified models: a
characteristic method (exact transport + projection), as well as a “semi-streamline diffusion
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method” (where the time variable is discretized by Backward Euler, Crank-Nicolson, or DG
method), for a 2D Fokker-Planck model (as its asymptotic limit in the form of a Fermi pencil
beam equation), in [30] and [31], respectively. Further, numerical results, considering less
simplified models, are currently under development and will be described elsewhere.

A. The Continuous Problem

Below we summarize a common theoretical framework involving stability estimates in the
deterministic case. These results are due to Lions [32] and Degond [4] and are stated for version
(1.3) (the corresponding studies for version (1.6) are similar but somewhat lengthy): given the
electric field E™(x, f) and the initial data f;, with certain regularities, find f n*+1 the solution of
the Vlasov-Fokker-Planck system, satisfying

8,f"+1+v*VXf"H+E"'va"+1—0'A,,f"+1=0, 1 11
f"+l(xa v, O) =f0(x, 'U), ( ’ )
and then compute the charge density p"*! and electrical field E"*' according to
p"(x, 1) = f " x, v, t) dv, E Y (x, t) = Cdf =F " Ny, t) dy.
R4 R4

Problem (1.11) has a unique solution f"*! satisfying, positivity, L, and L., stability estimates:

=00 et ol =t ol =16 '@l = lslle (1.12)

Note that for o = 0, Equation (1.11) becomes the classical linear transport equation, which
can be solved, e.g., by the method of characteristics, and the stability properties (1.12) are
evident.

For the linear Fokker-Planck equation:

fi+v V. f+E-V,f—0oAf=S, flx, v, 0) = fiylx, v), (1.13)

where E = (E/(x, v, t))f=1 is a given vector field and f;,(x, v) and S(x, v, t) are given functions;
existence, uniqueness, stability, and regularity properties of the solution are straightforward
generalizations of the 1D classical results due to Baouendi and Grisvard [33] for the degenerate
type equations. These generalizations as well as coupling to the nonlinear problem are due to
Lions [32] and require some regularity assumptions on the data: f;, S, and E.

Remark. We point out that the Fokker-Planck term, as a diffusive term, has smoothing effects
on the solution of the system (1.1), which for instance can not be maintained for the Vlasov-
Poisson equation lacking this diffusive part. In other words the Fokker-Planck operator —oA,f
although degenerate, provides a smoothing effect related to its hypoellipticity in the sense that
it averages in v. However, for optimal convergence rate analysis of the numerical schemes, the
desired phase-space regularity is achieved having a diffusive term in x as well. The SD scheme
generates automatically the required diffusion for our purpose.

An outline of this article is as follows. In Section 2 we present some notations used
throughout the article. Section 3 is devoted to the study of stability estimates and proof of the
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convergence rates for the streamline diffusion approximation of the VFP system. Our conclud-
ing Section 4 is the discontinuous Galerkin counterpart of Section 3.

Il. NOTATIONS AND PRELIMINARIES

The continuous problem (1.1), formulated in fully unbounded phase-space-time domain, is not
appropriate for numerical considerations. Below we restate the problem (1.1) for o > 0 and
bounded domains 0, C R? and Q, C RY, d = 1, 2, 3, as in (1.8), and associated with some
boundary conditions., With these assumptions we consider the VPFP problem of finding (f, ¢)
satisfying a VFP system, with an arbitrary outflow and homogeneous inflow boundary condi-
tions:

0f+ vV f=Vd-V,f=V(Byf+0aV,f), inQy
{f(x’ v, O) =f0(x’ 'U), in ‘Q” (21)
flx,v,1) =0, for (x, v, ©) € (T'; X Q,JU[Q, X 3Q,]) X (0, T],

where () = Q, X Q,and Q; = X (0, T}, associated with the Poisson equation

—Ad(x, 1) = f f(x, v, 1) dv, () EQ, X (0,T]:=Qp (2.2)

0

where V., ¢ is uniformly bounded and
IV.¢| = 0, as |x| — 0Q,, )3
I ={x€0Q,: nkx) v<0}, forve, (2.3)

where n(x) is the outward unit normal to 8{), at the point x € 3(),. We can show that the system
of Equations (2.1)—(2.3) admits a sufficiently regular unique solution, using a similar argument
as in the appendix in [26].

Remark. The considered model problem, studied for o # 0, would have mixed elliptic-
hyperbolic form. For the mixed type problems it is necessary to supply the boundary condition
on the whole boundary. However, the ellipticity in our model is only in v variable, which we
treat by taking zero boundary condition in £}, Therefore, the specified boundary condition is on
the inflow boundary corresponding to the hyperbolic nature of the remaining terms in the
equation.

Because we assume a continuous Poisson solver for (2.2)—(2.3), our numerical investigations
concerns the VFP system (2.1).

We recall the notation:

_ (o o ~
Vf'_(fo;vvf)—(a}””’%’a””’ﬂ)’ d—1,273’

ad d
G(f)::(vv_vxd)):(vl""7vd’_a—;¢:""’_é%)z(cl"-"GZd)'
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Note that G is divergent free:
d 2d
aG;
divG() =27+ 2

i=1 ! i=d+1

0G;
0Y—q

=0, d=123. (2.4)

Now we introduce a finite element structure on ), X Q: Let T = {7,} and T}, = {7,} denote
finite element subdivisions of (), and (), with elements 7, and T, respectively. Note that, for
nonpolygonal domains ), and (), with this discretization we create discrete space and velocity
domains, which we denote by Q" and Q”, respectively. Thus, T), = T} X T}, = {1, X 7,} = {7}
will be a subdivision of Q" := Q" X Q" with elements 7 = 7, X 7, We also let 0 = £, < t,
< ... < t,, = T be a partition of time interval I = [0, T] into subintervals I,, = (,,, t,,+1), M
=0,1,..., M — 1. Moreover, let ¢, be the cotresponding subdivision of Q7 := X [0, T]
into elements K := 7 X I, with the mesh parameter 4 = diam K and P(K) = Pi(1,) X P(7,)
X P,(I,,) the set of polynomials in x, v, and ¢ of degree at most k on K. For notational simplicity
we suppress the superscript # in Q" and Q" and, in the sequel, use ), and Q for the discretized
domains. But, to remind, we shall keep the discrete velocity domain as is: Q. Furthermore, for
piecewise polynomials w; defined on the triangulation 6, = {K} with 6, C 6, and for D, being
some differential operators, we use the notation

(Dywy, DZWZ)Q’ = E (D Wy, Dywy), Q'= U K,

ke keq

where (-, ), is the usual L,(Q) scalar product and |||, is the corresponding L,(Q)-norm.

In the sequel estimations C will denote a general constant independent of the involved
parameters unless otherwise explicitly specified.

Finally, the procedure in the error estimates can be summarized as follows: Let f denote an
approximate solution for (2.1) and decompose the error e = f — f according to

f-F=(-0H-F-IH=n-§

where II is an appropriate projection/interpolation operator from the space of the continuous
solution £ into the (finite dimensional) space of approximate solution f. Considering a suitable
norm, denoted by |||, the estimation is carried out in two steps: (a) first we use approximation
theory results to derive sharp error bounds for the interpolation error: |||/, and then (b) establish

€l = clinll, (2.5)

which rely on the stability estimates of bounding || f]| by the ||data|. The first step has theoretical
nature and is related to the character of the projection operator II, whereas the second one
depending on the structure of the constructed numerical scheme varies in the order of its
difficulty.

lll. THE STREAMLINE DIFFUSION METHOD

The streamline diffusion (SD) method is a finite element method constructed for convection
dominated convection-diffusion problems that (i) is higher order accurate and (ii) has good
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stability properties. The (SD) method was introduced by Hughes and Brooks [29] for the
stationary problems. The mathematical analysis for this method, as well as for the discontinuous
Galerkin method, are developed for, e.g., 2D incompressible Euler and Navier-Stokes equations
by Johnson and Saranen [26], for multidimensional Vlasov-Poisson equation by Asadzadeh [1],
for hyperbolic conservation laws by Szepessy [27], and Jaffre et al. [25], for advection-diffusion
problems by Brezzi et al. [23], and also recently, in adaptive setting, by Houston and Siili [24].

In this section we study the SD-method for the VFP system given by (2.1) with the trial
functions being continuous in the x and v variables but may have jump discontinuities in z. We
let

Vi={g €EHy: gl € P7) X P(I,); VK=17XI,ESG}, k=0,1,...,
to be the finite element space, where
M1
%o =[] HXS,), S,=QX%XI, m=0,1,...,M-1
m=0
and
Hy={g € H':g=0o0naQ}
Further, for convenience, we write
(fs n=(f 85 gl = (g &)
and
(fr@m =, o t), (80 s t))as [8ln = (8 &)n"
Also we present the jump
[g] =g+~ g-
where
g+ = l_i:)n g, vt + ), for (x, v) € Int Q, X Q" rel,
g+ = l_ii)n‘ glx +sv,v,t+s), for (x, v) € 9Q), X QF, te ],
and the boundary integrals

(fer 810~ = j f+g+(Gh *n) dv, (frs g+>1“,; = J' (f+r 84)r- dv,
-

I
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and

<f+’ g+>Ff = f <f+9 g+>F‘ dV,

1
with G" := G(f") defined above [see also (3.1)] and
I'={x,vyel=00Q,xQ":G"n<0} 90, 1= 9O\,

where n = (n,, n,) with n, and n, being outward unit normals to 80, and 9%, respectively.
Note that we can split the boundary of O as

I'=060,%X0,)UQ,x30,)U (00, xQ,):=TIUlul;,

with the obvious notations for I';, i = 1, 2, 3. Now since I'” is characterized by G'n= n,*
v+mn, V. <O0and |V, — 0, as |x| — 9QF, thus, ignoring T’y (the singular part of the
boundary) of measure zero, '~ would actually coincide with I"; defined in (2.3). Below, for the
sake of generality, we shall carry out the estimates keeping all the boundary terms as long as
possible.

Note further that for two vectors V| and V', we shall use V', V¥V, := V| - VV,.

A. Stability
The discrete variational formulation for problem (2.1) reads:

find f" € V, such that form =0, 1,...,M — 1, and for all g € V,,
(fi + GUMVf" = Vi (By™), g + hig, + G(f)VE)w + o(Vof", V.g)n
= ho(A,f", &+ GV + <f/1ra 8idm — <fljr’ g+>1‘,; = <fh—, gt (3.1)

We use the discrete version of (2.4):
div G(f") = 0, (3.2)
and, for a given appropriate function f, define the trilinear form B by

B(G(); f. 8) = (fi + GAVS, g + h(g, + G(f")Vg))o, + o(V.f. Voo,

— ho(A,f, g+ G(fMVE) g + 2 ([f) 84w + (fer 8+)0 = (fur 817

and the blinear form K by

K(f, 8) = (V(Buf), g + h(g, + G(f")Vg))o.
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Note that both B and K depend implicitly on f” (hence, also on k) through the term G(f").
Moreover, we define the linear form L as

L(g) = (fo, &+)o-
Using this notation, we can formulate the problem (3.1) in the concise form:
find f* € V, such that ~ B(G(f");f", ) — K(f",g)=L(g) Vg€V,  (33)
We shall derive stability and convergence estimates for (3.3) in the triple norm:

M—-1

1
el = 5 | 201V .8lly, + 18l + 15 + 2 1Lg1l5 + 2alg, + G(FM Vgl

m=1
+ J g*|G" n|dvds|.
X1

Lemma 3.1. We have that
VgEH, B(G(f":g.8) =5 llglP
Proof. Using the definition of B we have the identity

| M—1

B(G(f": g, 8) = (8n 8)or T 2 (8] 8:)w T (84 8200 — (84 8001y + (G(fM) + Vg, &)o,
m=1
— ho(dg, &+ G(f)Vg)g, + ollVugly, + hllg, + G(fM)Vellg,  (3.4)

Integration by parts gives that

M-1 1 M-1
(8 &or+ 2 (8], 8dm + (84s 84Do = 3 [Igliﬁ g+ X I[g]li}- (3.5)

m=1 m=1

Using Green’s formula and (3.2) we have also
h 1 2 h 2 h 1 2| h
(G(f") Ve 8la = (gvgir-=75 | &(G'-mdv—| G -mdv=51| ¢ |G" | dv.
a0 r- a0
(3.6)

By the inverse inequality and assumption on o we get

hol(Bg, 8+ G()V8)ol =5 (olV.sl, + Rllg, + GUMVslle) =5 llell®. 3.7
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Now the proof follows from (3.4)—(3.7). u

Lemma 3.2. For any constant C; > 0 we have for any g € ¥, that

1 M
lelz, = | = lg. + G(FVglfy, + 2 lg-I2 + ¢ G" n| dvds|he".  (3.8)
Cl m=1

AOXTI
The proof is the same as that of Lemma 3.2 in [1].

B. Error Estimates

Let " € V, be an interpolant of f with the interpolation error denoted by n = f — 7" and set
&= f" — " so we have

e=f-f'=mn-¢& (3.9)

The objective in the error estimates is to dominate |||£]]| by the known interpolation estimates
for ||m||. Our main result in this section is as follows.

Theorem 3.3. Assume that f* € V, and f € H**1(Qp), with k = 1, are the solutions of (3.3)
and (2.1), respectively, such that

VAL + 1G] + [[Vn].. = C. (3.10)
Then there exists a constant C such that

lLf = £l = CRE 2 £l o (.11

In the proof of Theorem 3.3 we shall use the following two results estimating the forms B
and K.

Lemma 3.4. Under the assumption of Theorem 3.3 and with f", €, and m defined as above we
have that

~ 1
B(G(1): £, &) = BG(": 7", &)l = g llell* + ¢ f |G+ n| dvds + bl

a0 x1

M

+ 2 -+ hllnllo, + Vnllor? | + Clléll, + InlloEll, + Chllello, + lmllg,?. (3.12)

m=1
Proof. Using the definition of n we may write

B(G(f); f, & — B(G(f"); f*, & = B(G(f"); m, & + B(G(f); f, &)
—B(G(f";f, &) =T, +T,—T,.
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Now we estimate the terms T, and T, — T, separately. For the term T; we use the inverse
inequality and assumption on o to obtain

(o
GI(an’ va)QTl = o-”an”QT”vanQr = Chkl”nHZQT + 3 “Vu‘SHZT (313)
8

and

hol(Am, & + G(f)VE)g| = halAmllgllé + G(f)Véllg, = Clnllolé + G(fIVEl,

h
= Ch™'[lnlg, + g lI& + GUMVElR,. (3.14)

Then integrating by parts, using (3.2), a similar argument as in the proof of Lemma 3.1 and the
fact that Q" is bounded with zero boundary condition we get

M—1

(n + G, €+ h(& + GV + 2 (], O + (M4s E)o = (M £y

= _(T” g’ + G(fh)Vg)QT + <7)—’ g~>M - 2 <’f)~’ [§]>m + J T’§|Gh ' nl dvds
m=1 QX!

+ h(n, + G(fVn, & + G(f")VEg, (3.15)

which together with (3.13) and (3.14) gives

QxI m=1

1 M
T =g €l + CU n?|G" n|dvds + k7Yl + 2 In-f, + Al + G(fh)anlzgr}
a
(3.16)

To bound the last term on the right-hand side of (3.16), we use some basic properties of the
solution of the Poisson equation together with the definition of G and derive the estimate

IG(f") = G(Nlla, = Cllf = £'lor = CUligllg, + IImllen),
which gives
I+ G Vle, = Inlle, + IGDINV 1, + CIVal-(gle, + nlle). (317

To estimate the term T, — T, we follow a similar argument as in [1] and get

T, = Tl = ClEllg, + Inllo)IVS Iléllg, + ChllElg, + Imllg)*IVFIE + § AllE + G(FM Vel
(3.18)
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Now combining the estimates (3.16)—(3.18), using assumptions of Theorem 3.3 and hiding
the term éh”g, + G(f)V4p, in the triple norm the proof is complete. .

Lemma 3.5. Under the assumptions of Theorem 3.3, we have
K(f" & = K(f, & =5 ll€ll” + cllelz, + ch 'l
Proof. Using the definition of ¢ and m, we have the identity
K(fha 6) - K(f9 g) = K(g, g) - K(n; g) = Kl - KZ‘

Below we bound the terms K; and K,, separately. For the first term using the vanishing boundary
condition on 30" we have

Kl = (Y, (Bvg), &+ (& + G(f)VE) o
= |(Bdé + Bu- V£ &+ h(§ + G(fNVE),,

d
= |B 5 lglle, + Bah(§, & + G(f")VE)g, + Bh(oV.E & + G(f1)VE)o,

h
= CBllél, + ?—6 & + G(M)VElG, + CAIV &l (3.19)

The term K, is estimated using the integration by parts, inverse inequality and boundedness
of Q" according to

[Ko| = (Y, (Bum), &+ h(& + G(f)VE)o
= Bl(V,* (vm), &)g, + h(V,* (vn), & + G(f)VE)o

1
= Bl(um. V.8 + {417, (omlf + 15 6+ GUMvel
h
= B (5 onllo) 17 o) + -l + 1 16 + G el |

h h
= B(E V£l + Cnlinl, + 16 16 + G(f“)vgllé,)- (3.20)

Combining the estimates for K; and K,, recalling the assumption on 8 and hiding the terms of
the form All¢, + G(f")V4p, and AV 4. in [|&]?, the proof is complete. .
Now using Lemmas 3.3 and 3.4 the proof of Theorem 3.3 is straightforward.
Proof of Theorem 3.3. The exact solution f satisfies

B(G(f); f. &) — K(f. g) = L(g) Vg EV,

so that by Lemma 3.1 and some algebraic labor we get
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LIENP = B(G(f™s f" = F*, & = L(&) + K(f", & = B(G(f"™); ", &)
= B(G(f); f, & — B(G(f"); ", & + K(f", & — K(f, §:= AB+ AK. (3.21)

Now we use Lemmas 3.4 and 3.5 to bound the terms AB and AK, respectively. Further,
estimating [|€]3,, and ||n[[3, by Lemma 3.2 with sufficiently large C, and also using (3.21), we
obtain

m=1

M M
llgl* = ¢ j | G" n|dvds + h7'lfy, + 2 n-f + Al + 2 1€-Ln .
dQXI m=1
Finally, by a Gronwalls type estimate, proceeding as in [1] the proof is complete. .

IV. THE DISCONTINUOUS GALERKIN METHOD
A. Stability
In this section we use trial functions that are polynomials of degree k = 1 on each element K
of the triangulation and may be discontinuous across inter-element boundaries in time, space,
and velocity variables.

To define a finite element method based on discontinuous trial functions, we introduce the
following notation: if £ = (¢, o, . - - » {a)» d = 1,2, 3, is a given smooth vector field on {2 we
define for K € %, the inflow (outflow) boundary with respect to £ as

K _ (O ={(x, v, 1) € 0K : n(x, v, 1) + n(x, v, 1) Llx, v, 1) < 0(>0)}, 4.1

where (n, n) := (n,, n,, n,) denotes the outward unit normal to 0K C Q. Further, for k = 0
we define, for d = 1, 2, 3, the function spaces

W, =1{g € L,(Qy) : 8|K € Py(K); VK € 6},
WZ ={we [Lz(QT)]d : W‘K € [Pk(K)]d§ VK €%}

To derive a variational formulation, for the diffusive part of (1.1), based on discontinuous
trial functions, we introduce the operator R: W), — W¢ defined in, e.g., [23]. More precisely,
given g € W, we define R by the following relation

(R(8), Wor = — 2, J > J[[gl]nv' wldv  YweW;],

TxX I TeX I e€%y e

where we denote by €, the set of all interior edges of the triangulation T}, of the discrete velocity
domain Q" Moreover, for an appropriately chosen function y, we define

X + XeXI
0 =" md Dd=x- K
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where x** denotes the value of y in the element 75 having e € €, as the common edge with
r,. Hence, roughly speaking, [x] corresponds to the jump and (x)° is the average value of y in
the velocity variable.

Next for e € €, we define the operator r,: W, — W/ to be the restriction of R to the elements
sharing the edge e € €,, i.e.,

(re(g)s W)Qr= - 2 f

TeX

f [gln,- (W) dv, VwEW,.

Xl ¥V e
One can easily verify that

E r.,=R on T, (4.2)

eCat,Néy

for any element 7, of the triangulation of ). As a consequence of this, we have the following
estimate:

IR@Ik=y 2 @l (4.3)

eCat,N%y

where 7, corresponds to the element K and y > 0 is a constant depending on d.
Now, since the support of each r, is the union of elements sharing the edge e, we can
evidently deduce

2@l =2 2 el (4.4)

e€%y KE®) eCoTNEy

Using these notations, we are now ready to formulate the variational formulation for the
discontinuous Galerkin approximation of (2.1) as follows:

find fhE W, such that form = 0,1,...,M—1 andforallg € W,
h h

(fi+ G(fMVF" = V(Buf"), g + hig, + G(fNV))g + 2 f [f")g.In, + G" | dv
0K-(G)

Ke%),

+ O-(vah’ Vug)Qr + O-(vah9 R(g))Q7 + U(R(fh)! Vug)Qr + )\U E (re(fh)’ re(g))Qr

eEG,

- hU(Avfh9 gl + G(‘fh)Vg)Qr = 09 (45)

where [u] = u, — u_, with u,. = lim,_,o.u((x, v) + G(f™s, t + 5), A > 0 is a given constant,
f(x, v, 0) = fy(x, v), and in IK_(G); G := G(f.
To proceed we define the discontinuous Galerkin trilinear form B, by
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Bog(G(f): f. 8) = (fi + G())VS, g + h(g, + G(f")V8))g, + a(V.f. Vuger

Ke4,

+ 2 J [ﬂg+|”r +G" nl dv—ho(A,f, & + G(fh)Vg)QT + <f+, 8+>0
IK-(G)'

+ A0 2 (1), (@)gr + 0V, f, R())g, + o(R(f), V.80,

e€éy

and the bilinear form K as in the streamline diffusion method, i.e.,

K(f. 8) = (V(Buf), g + h(g, + G(f")Vg))g,

Note that again both Bj,; and K depend implicitly on £ (hence, also on /) through the term
G( fh). Moreover, we define the linear form L as before

L(g) = (fo, g+)o-
Now we can formulate the problem (4.5) in the following concise form:
find f" € W, such that  Bpo(G(f"); f", &) — K(f*, g) = L(g) VgeEW, (4.6)
We shall refer to (4.5) or (4.6) as the DG-scheme.

We derive our stability estimate and prove convergence rates for the DG-scheme (4.6) in the
triple norm

1
gl = 5 | 201V.gl, + 20 2 llr(g)llg, + 2Alle: + G(F")Vella, + leli + lals

€€y

+ > J [g}2|n,+G"-n|dv+j
aK-(G)’

g}|G" n| dv ds},
ke a0 X1
where 0K_(G)' = K_(G)\Q X {0}.
Lemma 4.1. There exists a constant a > 0 independent of h such that
VSEW,  Bu(G(f"); g g = aflgl
Proof. Using the definition of By and (4.4), we have that

Bpo(G(f"; 8, 8) = lglh + 2 | (8 &)k + (G(f")Vg, ) + J [glg+In, + G" | dv
3K-(G)'

KEB),

+ hllg, + G(fVell — ho(A.g, g + G(f"Ve)x + oi|V.ellk + 20(V.8, R(g))k

+A0 D, ||re(g)||§(} = >T.
i=1

eCoT,NEy
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Now we estimate the terms T, . .., Ty, separately. Integrating by parts we get

4

1
zn=z{1gm+|gia+ S [ o |
i=1 K- (G)'

KEy a0 X1

g°|G"n| dv}.
Using (4.2) and (4.3) we deduce for some &€ > 0, that

’ 1
St=zo S P«—mwﬁm—;w@mk+A s numm}
i=7

Ke%, eCat,Neéy

KESB), eCat,NEy

ZUE[U—QWM%%A—Q S M@ﬂ'

As for the term Ty, we use an estimate similar to (3.7) to obtain

2
)

hol(A.g, g+ G(fVe)el = dllg
where 0 < 8 < 1 — &. Finally T is estimated in a similar way as in (3.17). Combining the
estimates for 7, i = 1,..., 9, and taking & = min[l — & — 6, A — (v/e)] [which is positive
for (y/A) < e <land 0 < 8 <1 — ¢], the proof is complete. .
Lemma 4.2. For any constant C; > 0, we have for g € W,

1 M
lelle, = | & s + G(F)Vellg, + 2 lg-I + > J [g)*|G" n| dv
m=1 K- (G)"

KEB),

+j g’|G"+ n| dv ds |he“™,
801

where
AK_(G)" ={(x, v, t) € 3K_(G)' : nJx, v, 1) = 0}.
The proof is similar to that of Lemma 4.2 in [1], and, therefore, is omitted.

B. Error Estimates

We use the same notation as in the SD-method with " € H(Q,) denoting the interpolant of the
exact solution f.
The main result of this section is the following error estimate.

Theorem 4.3. Assume f" € W, and f € H**'(Q) N W*H1(Q,), with k = 1, are the solutions
of (4.6) and (2.1), respectively, such that for n = f — f",
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V£l + 16l + [Vl = €. 4.7

Then there exists a constant C such that
Ilf= sl = cr*,

To prove this convergence rate, we shall need the following results.

Lemma 4.4. Let u € L*(Q, X I, H'(Q,)) with A u € LXQy), and let w € W, Then

u
EJ fwm=2f Zwaww.
KE®), X I v Xy Xl e€¥y e

ATy

Proof. The regularity of u implies that V,u * n, is continuous across the inter-element
boundaries. Hence, we have

> f J w ;: = > J > j[w*nj-vuu+ +wn, - V,u’]

KE®G), Ty v T X Iy X1 e€€, ¢

Vou" +Vu V" + V,u~
ZEJ Ejpmplﬁ_iﬂm}JLTlﬁ

TxX I

Xl €€60 Ve

- f s j Dl (V.0

T XDy X e€éy e

and the proof is complete. L]

Lemma 4.5. Under the assumptions of Theorem 4.3, we have with C < 1, that

Bog(G(f): £, & — Bog(G(f"): ", &) = CllélP + ch' + € f |G nl dvds + h”|nf,

Q4 XTI
+ 2 [l | + Cller + Imlloléler + ChllEll, + imlle)”.
m=0

Proof. Once again by the definition of the interpolation error n we may write

Bpo(G(f); f &) — BDG(G(fh);]?h, o= BDG(G(fh); 6 + Bpo(G(f)i f &) — BDG(G(fh);f? 3]
=T,+ T, — Ts.

To estimate the term T, — 75, we proceed as in the proof of Lemma 3.4 [cf. (3.18)]. For the
term 7, we have



FINITE ELEMENTS FOR VLASOV-FOKKER-PLANCK 491

T =(Mu O+ > | (n,+ GV, £+ (& + G(fHVE)k

KEB,

+ J [n)éiIn, + G" n| dv — ha(A,n, & + G(f")VE, + a(Von, Vb
IK-(G)'

+ A D, (rn), r®)x + o(R(n), Vi + a(V,m, R(e:))x} =25, (4.8)

€Sy
Thus, we need to estimate S;, 1 =< i = 8. For the term S; we have
ISII = |77+l(2) + |§+lg (4.9)

Integration by parts leads to an estimate for S, + S,

+

IS, + 8y =

> J n-[£]|n, + G"-n| dv
K -(G)'

KE®),

j n_£_|G"n|dvds
A+ X1

To bound the first term on the right-hand side above, the crucial part is to estimate a term of the
form

T= 2 J n_[&]|G" - n| dv.
AK-(G)"

KE®,

To this approach using Cauchy-Schwartz inequality, we have for 8 > 0 that

C
IEED) j i [1GH nldv+ 8 3 J (PG ndv,  (4.10)
AK-(G)" 3K~ (G)

KEB), K€%,

where the last sum can be hidden in [|¢]* and the first sum is estimated below

> f [n-I|G" nldv=|nfz X J’ IG’“nlzvarJ dv
kel Jox_(G) K€ | Jok_(c) 0K-(G)"

=d > (el GUMk + cr], (4.11)

KES),

where d = 1, 2, 3. Further, the interpolation error 7 satisfies

Il = CA** ']l f s 1.0 (4.12)
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Hence, by (4.10)-(4.12) and by assumptions of the lemma, we obtain
1
7] = et + = [l (4.13
1

where C, is a sufficiently large constant. So that using once again the Cauchy-Schwartz
inequality, we obtain for S, + S5 the estimate

1 M
|&+MSCW“+5mewJ W|G* - nldvds + C X |l
1

004X m=1

The terms S, and Ss are estimated as in Lemma 3.4. Moreover, from the definition of operators
R and r, and from the fact that 7 is a continuous function we can easily deduce that S¢ = 0 and
S, = 0. Thus, it remains to estimate the term Sg. To this end we use (4.3), (4.4), the inverse
inequality and assumption on ¢ to obtain

Sd= 3 alv.aldr@le= S (colvali+ o k@)

Ke%, KEB),

= Ch7lnl3, + Coo 2, r(Ol, (4.14)

e€éy

where, as above, C; is taken to be large enough. T, — Ty is estimated in a similar way as in
Section 3. Finally combining the estimates for the terms T and T, — T3, we obtain the desired
result. L]
Now we are ready to prove our error estimate.
Proof of Theorem 4.3. From the definition of B, and Lemma 4.4, we deduce that the
exact solution f satisfies the variational formulation

Bpo(G(f); f.8) — K(f, 8) = L(g) Vg €W,

So using Lemma 4.1 and some algebraic labor, we get

allEl? = Boo(G(f"); £ = F'. &) = L(&) + K(f", & — Boa(G(f"); ", &)
= Bpa(G(f); f, &) — BDG(G(fh);fhv &+ K(fha & — K(f, 13 := AB + AK.

Here the term AK is similar to the one given in the SD-method and, therefore, is estimated
in an analogous way as in the proof of Lemma 3.5. Furthermore, a bound for the term AB is
given by Lemma 4.5. Note that the coefficients are chosen in a way that the contribution to [|£][*
on the right-hand side is dominated by «f|&]*>. Now moving all these contributions to the
left-hand side, we complete the proof by a similar argument used in the proof of Theorem 3.3.®

Conclusion and Final Comments

Two finite element schemes, the streamline diffusion and discontinuous Galerkin, are analyzed
for the Vlasov-Fokker-Planck system, which is interpreted as a convection dominated convec-
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tion diffusion problem of degenerate type. The stability properties of convection dominated
problems cause the standard Galerkin finite element method to be nonoptimal compared to
interpolation. To improve stability is often obtained at the price of decreased accuracy. For
example, increasing artificially the diffusion term (e.g., by simply adding oA, f to the Fokker-
Planck term and then setting o ~ 8 ~ h) will increase the stability of the Galerkin method, but
may also decrease accuracy and prevent sharp resolution of layers mentioned in the introduction.
Thus, the objective is to improve stability without a significant reduce of the accuracy.

To circumvent accuracy reductions, while enhancing the stability of the standard Galerkin,
one may introduce two modifications on the test functions connected to the residual so that: the
modification (1) introduces weighted least square terms increasing stability through least
squares control of the residual and modification (2) introduces artificial viscosity based on the
residual, which adds to the stability by introducing an elliptic term with the size of the diffusion
coefficient or viscosity, depending on the residual with the effect that viscosity is added when
the residual is large. Both modifications improve stability without a strong effect on the
accuracy.

In general, SD strategy is based on these kind of modifications. However, for this study we
do not need to involve the residual based modifications and to obtain higher order accuracy, we
simply assume sufficiently regular data and let 8 in the streamline diffusion test function g + dw
- Pg to be of order h.

In the SD-method the test and trial function spaces are different and the test functions are
continuous in space and velocity domains and may be discontinuous in time. In the discontin-
uous Galerkin test and trial function spaces are the same (this has some advantages in the
analysis) and there are allowed discontinuities across the interelement boundaries in space,
velocity, and time. Therefore, jump discontinuities are introduced presenting a different, and
extra, diffusion term which is a further source of enhancing of the stability.

For both, SD and DG, schemes we derive optimal convergence rates of order O(
provided that the exact solution fis in the Sobolev space H “*1(Q,), where h is the global mesh
size and k is the order of approximation polynomial. The corresponding error estimate for the
standard Galerkin is only of order O(h*). This study is unifying the convergence theory for the
SD and DG finite element methods for some fluid- and gas-dynamic problems. See, e.g., [23,
26-28].

Some simple and special cases of our model problem are implemented in [30] and [31]. These
models, although simple, are good examples supporting the theory. Further, numerical consid-
erations are currently under development.

k+1/2
R,
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