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Abstract. We study the spatial discretization, in a fully discrete scheme, for the numerical
solution of a model problem for the neutron transport equation in an infinite cylindrical domain.
Based on using an interpolation technique in the discontinuous Galerkin finite element procedure,
we derive an almost optimal error estimate for the scalar flux in the L2-norm. Combining a duality
argument applied to the above result together with the previous semidiscrete error estimates for the
velocity discretizations, we also obtain globally optimal error bounds for the critical eigenvalues.
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1. Introduction. We consider a fully discrete scheme for the numerical solution
of the stationary, isotropic, one-velocity neutron transport equation in an infinite
cylindrical domain in R

3 with a polygonal cross section Ω. The restriction to the
one-velocity case means that the velocity domain is assumed to be the unit sphere
S2 ⊂ R

3. The cylindrical symmetry reduces the problem to R
2 by projecting along

the axis of the cylinder. Thus we study the neutron transport equation in a bounded
polygonal domain Ω ⊂ R

2 with the velocity space being the unit disc D ⊂ R
2.

We analyze the discontinuous Galerkin finite element method, with piecewise
linear trial functions, for the space discretization, by means of a quasi-uniform trian-
gulation of the space domain Ω with the mesh size h. In order to obtain sharp error
bounds, we use embedding relations between Sobolev and Besov spaces and interpo-
late up to the maximal available regularity of the exact solution. For this method we
give an L2 error estimate for the scalar flux of order h1−ε and a globally optimal error
bound for the largest (critical) eigenvalue of order h3−ε. Our motivation has been to
improve the previous convergence rates of [1]. For the approximate solutions of the
hyperbolic problems with the discontinuous Galerkin method, an L2 error estimate
of the form

‖ϕ− ϕh‖L2(Ω) ≤ hs−1/2‖ϕ‖Hs(Ω)(1.1)

is optimal; see [7]. This requires that the exact solution ϕ is in Hs(Ω) (where
Hs(Ω), s > 0 is the usual Sobolev space and for noninteger s, Hs(Ω) is defined
by the interpolation; see [5]). Loosely speaking, this means that ϕ has s derivatives
in L2(Ω). Since, for the neutron transport equation the exact scalar flux is at most
in H3/2−ε(Ω) (see [9]), by (1.1) a convergence rate of order O(h1−ε) is sharp. How-
ever, as a consequence of embeddings, our final rate of convergence will be of order
O(h1−ε′) with ε′ > ε. As a completion of the semidiscrete analysis of [4] we continue
using the Besov space norms in here, although it might be possible to obtain exact
optimal rate of convergence O(h1−ε) by using Hölder space techniques of [9].
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S-412 96 Göteborg, Sweden (mohammad@math.chalmers.se).

1299



1300 MOHAMMAD ASADZADEH

As for the fully discrete eigenvalue estimates, we combine our results here with the
semidiscrete error estimates of [1] and [4] for the discretization of the velocity domain
D by the discrete ordinates method. The latter method is based on using an N -point
Gaussian quadrature in the radial variable and a uniform M -point quadrature rule
in the angular variable. For the fully discrete scheme, we obtain an error estimate of
order (N−4 +M−2+ε1) + h3−ε′ for the largest (critical) eigenvalue.

Problems of this type have been studied in various settings by several authors.
The slab geometry Ω ⊂ R and velocity space [−1, 1] were considered by Pitkäranta
and Scott [10], where Lp and eigenvalue error estimates have been carried out for
both semidiscrete and fully discrete schemes. The two-dimensional geometry, Ω ⊂ R

2

and velocities in the unit circle S1 were considered by Johnson and Pitkäranta [8]
and Asadzadeh [2]. In [8] semidiscrete and fully discrete schemes were analyzed in
L2, whereas [2] contains Lp, 1 ≤ p ≤ ∞, and eigenvalue estimates for the discrete
ordinates method.

In Asadzadeh [3] the discrete ordinates method was studied, in L2, in a fully three-
dimensional setting Ω ⊂ R

3 and velocity space S2. In Asadzadeh [1] and Asadzadeh,
Kumlin, and Larsson [4] the geometry is the same as in the present work. In [1], as in
[8], L2 error estimates are proved for both semidiscrete and fully discrete problems. In
[4] the semidiscrete problem is studied in the L1-norm, which is the most relevant norm
from a physical point of view, since the scalar flux represents a particle density. Also,
because of the limited regularity of the exact solution, error estimates in the L1 norm
for eigenfunctions yield the sharpest error bound for the eigenvalues. However, in
our case here, i.e., for the spatial discretization, based on the finite element method,
the L2-norm is more suitable. For instance, in estimations in L2, using a duality
argument, the error introduced by the interpolant of the exact solution coincides with
the L2-projection which, in combination with the error for the scalar flux, gives error
estimates for the critical eigenvalues sharper than that of the optimal L1 case. This
improves the convergence rate for the eigenvalues (which, in general, is the same as
that for the scalar flux) more than three times (O(h3−ε′)) as that we obtain for the
pointwise scalar flux (O(h1−ε′)).

The remainder of the paper is organized as follows: in section 2 we introduce the
model problem and drive the governing integral equation. Section 3 contains some
previously known error estimates for the velocity discretizations and the embedding
relations which are relevant to our purpose. In section 4 we give error estimates for the
space discretization and prove the main result, Theorem 4.1. Our concluding section
5 is devoted to a duality argument leading to globally optimal eigenvalue estimates.

2. A model problem. We shall consider the following model problem for mono-
energetic transport of neutrons in an infinite cylindrical media Ω̃ ⊂ R

3: given the
source function f and the coefficient λ, find u(x, µ) such that for µ ∈ S2,

µ · ∇xu(x, µ) + u(x, µ) = λ

∫
S2

u(x, η)dη + f(x) for x ∈ Ω̃,

u(x, µ) = 0 for x ∈ Γ̃−µ ,
(2.1)

where µ · ∇x =
∑3

i=1 µi(∂/∂xi). The problem corresponds to the case of an infinite
cylindrical domain with the isotropic source and scattering. Here λ is a real parameter
and u(x, µ) is the density of neutrons at the point x ∈ Ω̃ moving in the direction
µ ∈ S2 = {µ ∈ R

3 : |µ| = 1}. The boundary condition is specified on the inflow
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boundary:

Γ̃−µ = {x ∈ Γ̃ : µ · n̂(x) < 0},

where Γ̃ is the boundary of Ω̃ and n̂(x) is the outward unit normal to Γ̃ at x ∈ Γ̃.
We assume that the cross section Ω of the cylinder Ω̃ is a bounded convex polyg-

onal domain in R
2 with the boundary Γ. Assuming also that the source term f

is constant along the axial direction of the cylinder we may project the integro-
differential equation (2.1) on the cross section Ω to obtain for µ in the unit disc
D = {µ ∈ R

2 : |µ| ≤ 1},

µ · ∇xu(x, µ) + u(x, µ) = λ

∫
D

u(x, η)(1− |η|2)−1/2dη + f(x) x ∈ Ω,

u(x, µ) = 0 for x ∈ Γ−µ := {x ∈ Γ = ∂Ω : µ · n̂(x) < 0},
(2.2)

where Γ−µ is the inflow boundary of Ω with respect to µ, with n̂(x), this time, being

the outward unit normal to Γ at x ∈ Γ and µ · ∇x =
∑2

i=1 µi(∂/∂xi).
We introduce the scalar flux U defined by

U(x) =

∫
D

u(x, µ)(1− |µ|2)−1/2dµ.(2.3)

Now consider the following hyperbolic partial differential equation: given g ∈
Lp(Ω), 1 ≤ p ≤ ∞, find w(x, µ) such that for µ ∈ D \ {0},

µ · ∇w + w = g in Ω,

w = 0 on Γ−µ .
(2.4)

The solution of this problem is given by

w(x, µ) = Tµg(x) =

∫ d(x,µ)/|µ|

0

e−sg(x− sµ)ds,(2.5)

where Tµ is the solution operator and d(x, µ) is the distance from x ∈ Ω to the inflow
boundary in the direction −µ:

d(x, µ) = inf{s > 0 : (x− sµ/|µ|) /∈ Ω}.
Let g = λU + f ; then, using equations (2.4) and (2.5), our model problem (2.2) has
a solution of the form

u(x, µ) = Tµ(λU + f)(x), x ∈ Ω, and µ ∈ D;(2.6)

consequently, we have the following integral equation, for the scalar flux U :

(I − λT )U = Tf,(2.7)

where

Tg(x) =

∫
D

Tµg(x)(1− |µ|2)−1/2dµ.

T is an integral operator with weakly singular kernel, i.e., T : Lp(Ω) → W 1
p (Ω), 1 ≤

p ≤ ∞ (see [1, Lemma 1.1] or [6]). In particular, T : Lp(Ω) → Lp(Ω) is compact. Thus
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(2.7) is a Fredholm integral equation of the second kind, hence if λ−1 /∈ σ(T ), where
σ is the spectrum of the operator T , then there is a unique U ∈ Lp(Ω), 1 ≤ p ≤ ∞,
satisfying (2.7).

Remark 2.1. Here are some restrictions strongly affecting the error analysis.
i) We know that the scalar flux U (no matter how smooth the given data f is)

has a limited regularity; in fact, we have at most U ∈ H3/2−ε(Ω), 0 < ε << 1; see,
e.g., [9].

ii) In the error analysis it appears that singularities arise from small r = |µ|
values as well as from the closeness of the directions of the velocity variable µ to the
directions of the sides of the polygonal domain Ω. Therefore we split the discrete
velocity directions into the so-called “good ones” (many) and “bad ones” (a few) so
that each split part contributes to the same order of convergence.

Throughout the paper ‖.‖ will denote the L2(Ω)-norm and C is a positive con-
stant not necessarily the same at each occurrence and independent of all the involved
parameters, unless otherwise explicitly stated.

3. The preliminaries.

3.1. The semidiscrete problem. We introduce the semidiscrete analogue of
the model problem (2.6): given a function f , find un(x, µ) such that for µ ∈ D,

un(x, µ) = Tµ(λUn + f)(x) for x ∈ Ω,(3.1)

where Un is the quadrature approximation of the scalar flux U , i.e.,

Un(x) =
∑
µ∈∆

un(x, µ)ωµ ∼=
∫
D

u(x, µ)(1− |µ|2)−1/2 dµ,

with ∆ = {µ1, µ2, ..., µn} being a discrete set of quadrature points µi ∈ D, i = 1, ..., n,
with the corresponding positive weights ωµ, µ ∈ ∆. We assume that ∆ has an even
number of points by letting both µ and −µ ∈ ∆. We have n = MN , where M is
an even number of (equidistributed) discrete points on the unit circle and N is the
number of Gauss points on [0, 1], chosen according to the special quadrature structure
below. Using (3.1), we obtain the following semidiscrete analogue of (2.7): find Un,
such that

(I − λTn)Un = Tnf,(3.2)

where Tng(x) =
∑

µ∈∆ ωµTµg(x). For convenience we introduce the notation

n̄ = min(M,N).

If λ−1 /∈ σ(T ) and n̄ is sufficiently large, then (I − λTn) is invertible and (3.2) has a
unique solution Un ∈ L2(Ω); see [1, section 4]. We construct a quadrature rule∫

D

v(µ)(1− |µ|2)−1/2 dµ ∼=
∑
µ∈∆

v(µ)ωµ,(3.3)

where we use the polar coordinates µ = rµ̂(ϕ), µ̂(ϕ) = (cosϕ, sinϕ), and rewrite the
discrete set ∆ as

∆ = {rkµ̂(ϕj)}N M
k=1 j=1, ωkj = AkWj ,
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with

ϕj =
2πj

M
, Wj =

2π

M
, j = 1, ...,M,

rk = sin θk, Ak = α(sk)− α(sk−1), k = 1, ..., N,

where α(r) = −√1− r2 and θk and sk are certain points satisfying

θk ∈
[
(2k − 1)π

4N + 2
,

2kπ

4N + 2

]
, sk ∈ (rk, rk+1), s0 = 0, sN = 1;

for further details, see [1]. Then we have the following semidiscrete error estimates.
Proposition 3.1. Assume that λ−1 is not an eigenvalue of T . For each ε1 > 0

there is a constant C such that, for sufficiently large n̄,

‖U − Un‖L1(Ω) ≤ C

[
1

N4
+

1

M2−ε1

](
‖U‖L1(Ω) + ‖f‖W 1

1 (Ω)

)
,(3.4)

and for en := (T − Tn)(λU + f), there is a constant C such that for M ∼ N ,

‖en‖L2(Ω) ≤ Cn−1/2‖λU + f‖H1(Ω).(3.5)

The estimate (3.4) is the main result of [4] and (3.5) is the matter of Lemma 4.3
in [1].

3.2. Some function spaces. Below, for the convenience of the reader, we re-
call the definitions of some function spaces and also include the embedding relations
between them which are frequently used in our error analysis.

For k a nonnegative integer, Hk
p (Ω) is the usual Sobolev space with the norm

‖f‖Hk
p (Ω) and the corresponding seminorm |f |Hk

p (Ω):

‖f‖pHk
p (Ω) =

∑
|α|≤k

‖Dαf‖pLp(Ω), |f |pHk
p (Ω) =

∑
|α|=k

‖Dαf‖pLp(Ω), p ≥ 1.

For s ∈ R, consider the generalized Sobolev space Hs
p(R

n) with the norm

‖f‖Hs
p

= ‖F−1{(1 + | · |2)s/2Ff}‖Lp
,

where F denotes the Fourier transform. By Hs
p(Ω), s ∈ R, we simply mean the

following restriction of Hs
p(R

n) to Ω:

‖f‖Hs
p(Ω) = inf

Gf
‖g‖Hs

p(Rn), Gf = {g ∈ Hs
p(R

n) : g|Ω = f}.

In what follows and if necessary, we think of a function in Lp(Ω), p ≥ 1, Ω ⊂ R
n,

as being defined on R
n (extended by 0 on R

n \ Ω). We write Lp = Lp(R
n), Bs

p,q =
Bs
p,q(R

n), etc., although the final results refer to Lp(Ω), Bs
p,q(Ω). The justification for

this is the existence of continuous linear extension operators

Hs
p(Ω) → Hs

p(R
n), s ∈ N, 1 ≤ p <∞

for the bounded Lipschitz domains Ω, see Stein [11, Theorems 5 and 5’, p. 181]. For
p = 2, the notation ‖ · ‖s, s ∈ R, is the usual Hs-norm over the domain Ω or R

n,
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which is obvious from the context. We shall use embedding relations and interpolation
properties between the generalized Sobolev spaces Hs

p , s ∈ R, and Besov spaces
Bs
p,q, s ∈ R, 1 ≤ p , q ≤ ∞, with the norm

‖g‖Bs
p,q(Ω) =

∑
|α|≤[s]

‖Dαg‖Lp(Ω) +
∑
|α|=[s]

(∫ 1

0

(
t[s]−sωp(Dαg)(t)

)q dt
t

)1/q

(3.6)

for q ∈ [1,∞] and s > 0, where [s] denotes the integer part of s and

ωp(ϕ)(t) = sup
|η|≤t

‖ϕ(·+ η)− ϕ(·)‖Lp(Ωη,l)
, Ωη,l =

l⋂
j=0

{x : x+ jη ∈ Ω},

where l = [s], and with the usual modification for q = ∞; see [5] and [12]. In our
case we have [s] = 1 and we shall concisely denote Ωη,1 by Ωη. The definition (3.6)
remains true for both bounded and unbounded domains of the cone type, and Ω being
a convex polygonal domain satisfies this property. For simplicity, we may drop Ω from
the relations below knowing that they hold for both R

n and the Lipschitz domains Ω
in our case, i.e., for p = 2 > 1. Besov spaces are interpolation spaces satisfying(

Hs1
p , Hs2

p

)
θ,q

= Bs
p,q , s = (1− θ)s1 + θs2, 0 < θ < 1(3.7)

for s1 < s2, Hs2
p ⊂ Hs1

p , and

Hs2
p ⊂ Bs

p,q ⊂ Hs1
p , s1 < s < s2.(3.8)

(3.6)–(3.8) hold for weighted norms as well. We recall the Sobolev embeddings

Bs
p,1 ⊂ Lp1

, s− n

p
≥ − n

p1
,(3.9)

Hs
p ⊂ Bt

q,p, s− n

p
≥ t− n

q
, 1 < p < q <∞.(3.10)

Moreover, for s ∈ R, ε > 0, 1 < p <∞, 1 ≤ q1 ≤ q2 ≤ ∞, we have

Bs+ε
p,∞ ⊂ Bs

p,1 ⊂ Bs
p,q1 ⊂ Bs

p,q2 ⊂ Bs
p,∞ ⊂ Bs−ε

p,1 .(3.11)

Finally, for arbitrary domain Ω ⊂ R
n and if 1 < p < ∞, 1 ≤ q ≤ ∞, s > 1/p, then

we have the trace inequality

‖ · ‖
B
s−1/p
p,q (Γ)

≤ ‖ · ‖Bs
p,q(Ω).(3.12)

For further details, see [5] and [12]. We shall use the above relations for the parameters
n = 1, 2, q = 1, and p = 2 except when applying (3.10), where q is replaced by p > 1.

4. The fully discrete problem. We denote by {Ch} a family of quasi-uniform
triangulation Ch = {K} of Ω indexed by the parameter h, the maximum diameter of
triangles K ∈ Ch. We introduce the finite element space

Vh = {v ∈ L2(Ω) : v|K is linear,K ∈ Ch}
and define a discrete solution operator Th

µ : L2(Ω) → Vh approximating Tµ by the
following discontinuous Galerkin finite element method for (2.4):

∑
K∈Ch

[
(µ · ∇uh + uh, v)K +

∫
∂K−

[uh]v+ |µ · n̂|dσ
]

=

∫
Ω

gvdx ∀v ∈ L2(Ω),(4.1)
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with

(u, v)K =

∫
K

uvdx, ∂K− = {x ∈ ∂K : µ · n̂(x) < 0},
[v] = v+ − v−, v±(x) = lim

s→0±
v(x+ sµ), x ∈ ∂K,

where n̂ = n̂(x) is the outward unit normal to ∂K at x ∈ ∂K and uh− = 0 on Γ−µ .
Now, let us formulate the following fully discrete analogue of (2.6): given f , find

uhn(·, µ) ∈ Vh such that

uhn(·, µ) = Th
µ (λUh

n + f), µ ∈ ∆,(4.2)

where Uh
n is the totally discretized scalar flux, Uh

n =
∑

µ∈∆ uhn(·, µ)ωµ. Equation (4.2)

is equivalent to the problem of finding Uh
n ∈ Vh such that

(I − λTh
n )Uh

n = Th
n f,(4.3)

where Th
n : L2(Ω) → Vh is defined by Th

n =
∑

µ∈∆ Th
µωµ.

For λ−1 /∈ σ(T ) and max(h, 1/n̄) sufficiently small, (4.3) has a unique solution
Uh
n ∈ Vh; see [1, section 5]. In this section our main concern will be the estimates

of the L2-error for the scalar flux for the fully discrete problem (4.3), i.e., ‖U − Uh
n‖.

This error, as a result of combining the semidiscrete L2-error (3.5) with our estimates
of this section, is of order O(h1−ε′ + n−1/2). The parameters h and n will be related
according to the following compatibility conditions:

h−1(n) ∼ √
n =

√
MN, and M ∼ N.(4.4)

As we shall see in the proof of Lemma 4.1 below, without this condition the contri-
bution of the “bad directions” (cf. Remark 2.1 and also splitting (4.9) below) to the
spatial error will not be of the desired order of ∼ h. Otherwise we could, instead of
(3.5), use improved semidiscrete L2-estimates similar to (3.4) of the L1 case in [4]
and, for more consistent estimates, make the contribution to the L2-error from the
spatial and velocity discretizations both of the same order of magnitude O(h1−ε).

Our main result is the following theorem.
Theorem 4.1. Assume that λ−1 /∈ σ(T ). Let U and Uh

n satisfy (2.7) and (4.3),
respectively. Then there is a constant C such that for sufficiently small h (large n̄)
satisfying (4.4), for any small ε and ε′ satisfying 0 < ε < ε′, and for g ∈ H3/2−ε(Ω),

‖U − Uh
n‖ ≤ C| log h|h1−ε′‖g‖H3/2−ε(Ω),

where g = λU + f .
To derive the relevant estimates we shall use the following two results.
Proposition 4.1 (cf. [7]). Given g ∈ L2(Ω), there is a unique uh(·, µ) = Th

µ g(·) ∈
Vh satisfying (4.1). Moreover, there is a constant C independent of g, µ, h, and Ω such
that

|||(Tµ − Th
µ )g|||µ ≤ Chs−1/2|Tµg|s, s = 1, 2,(4.5)

|||Th
µ g|||µ ≤ C‖g‖,(4.6)

where

|||v|||µ =

[
‖v‖2 + h

∑
K

‖µ · ∇v‖2K +
∑
K

∫
∂K

|[v]|2|µ · n̂|ds
]1/2

,(4.7)
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‖v‖K = (v, v)
1/2
K .

Proposition 4.2 (stability; cf. [1]). For g ∈ L2(Ω) we have

‖µ · ∇Tµg‖+ ‖Tµg‖+

[∫
Γ

(Tµg)
2|µ · n̂|dσ

]1/2

≤ C‖g‖.(4.8)

We shall also need the following splitting of ∆ in two sets:

J ′δ =

{
µ ∈ ∆ : γ(µ) = min

k
(| sin(µ, Sk)|) ≥ δ ∼ 1

M
, k = 1, 2, ..., P0

}
,

Jδ = {µ ∈ ∆ : µ /∈ J ′δ},
(4.9)

where {Sk}P0

k=1 are the directions of the sides of Ω and P0 is the number of sides of
Ω. Note that, because of our special radial quadrature rule, we have |µ| < 1/N for all
µ ∈ ∆. Now, we show by the following two lemmas that, since the number of elements
in Jδ is very few when compared with those in J ′δ, the weighted sum over µ ∈ Jδ, the
“bad directions,” is not worse than the one over µ ∈ J ′δ, the “good directions.”

Finally, the proof of Theorem 4.1 is based on these lemmas.

Lemma 4.1. There is a constant C such that for g ∈ L2(Ω),

∑
µ∈Jδ

ωµ‖(Tµ − Th
µ )g‖ ≤ Ch‖g‖L2(Ω).

Proof. By the L2-stability estimate resulting from (4.6)–(4.8), we have that

∑
µ∈Jδ

ωµ‖(Tµ − Th
µ )g‖ ≤ C


∑
µ∈Jδ

ωµ


 ‖g‖L2(Ω) ≤

C

MN
P0N‖g‖L2(Ω) ≤ h‖g‖L2(Ω),

where we use the compatibility condition (4.4) and the fact that for γ(µ) ≤ π
M , Jδ

contains at most NP0 elements, where P0 is the number of sides of Ω.

Lemma 4.2. For any ε and ε′ satisfying 0 < ε < ε′ << 1, there is a constant C
such that for g ∈ H3/2−ε(Ω),

∑
µ∈J′

δ

ωµ‖Tµg‖H3/2−ε′ (Ω) ≤ C| log δ|‖g‖H3/2−ε(Ω).

Let us postpone the proof of this lemma and first show that Theorem 4.1 follows
from Lemmas 4.1 and 4.2.

Proof of Theorem 4.1. We have, using (2.7) and (4.3), that

(I − λTh
n )(U − Uh

n ) = (T − Tn)(λU + f) + (Tn − Th
n )(λU + f) := en + ehn.

According to a stability estimate (see [1, Theorem 5.1]), if λ−1 /∈ σ(T ), then for
sufficiently large n, (I − λTh

n )−1 : L2(Ω) → L2(Ω) exists and is uniformly bounded.
Thus we have

‖U − Uh
n‖ ≤ Cλ

(‖en‖+ ‖ehn‖
)
.
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Now, we replace, on the right-hand side of (4.5), |Tµg|s by ‖Tµg‖s and interpolate
using θ = 1

2 − ε′, 0 < ε < ε̄ < ε′ << 1, ε̄ = (ε + ε′)/2, in a weighted form of (3.7),
which also interpolates in powers of h, to obtain

‖ehn‖ =

∥∥∥∥∥∥
∑
µ∈∆

ωµ(Tµ − Th
µ )g

∥∥∥∥∥∥ ≤
∑
µ∈Jδ

ωµ‖(Tµ − Th
µ )g‖+

∑
µ∈J′

δ

ωµ‖(Tµ − Th
µ )g‖

≤ Ch‖g‖+ Ch1−ε′ ∑
µ∈J′

δ

ωµ‖Tµg‖B3/2−ε′
2,1

≤ Ch‖g‖+ Ch1−ε′ ∑
µ∈J′

δ

ωµ‖Tµg‖3/2−ε̄ ≤ C| log h|h1−ε′‖g‖H3/2−ε(Ω),

where we have also used (3.8) and Lemmas 4.1 and 4.2. Thus (3.5), with the com-
patibility condition (4.4), gives the desired result.

In the proof of Lemma 4.2 we use the following result.
Lemma 4.3. There is a constant C such that for g ∈ Hs(Ω), s = 3/2− ε, and for

any ε′ satisfying 0 < ε < ε′, we have∫ 1

0

t1−s
′
ω2

(
∂

∂xi
(Tµg)

)
(t)

dt

t
≤ C

|µ| ·
1

γ(µ)
‖g‖Hs(Ω), i = 1, 2,(4.10)

where s′ = 3/2 − ε′, γ(µ) = minj | sin(µ, Sj)|, and Sj are the directions of the sides
of Ω.

Proof of Lemma 4.2. Since we have at most g = (λU + f) ∈ H3/2−ε(Ω), therefore
s is at most 3/2− ε and it suffices to show that for any ε′′ satisfying 0 < ε < ε′′ < ε′,∑

µ∈J′
δ

ωµ‖Tµg‖B3/2−ε′′
2,q

≤ C| log δ|‖g‖
B

3/2−ε′′
2,q

,(4.11)

since then, by the embedding relation (3.8),∑
µ∈J′

δ

ωµ‖Tµg‖3/2−ε′ ≤
∑
µ∈J′

δ

ωµ‖Tµg‖B3/2−ε′′
2,q

≤ C| log δ|‖g‖
B

3/2−ε′′
2,q

≤ C| log δ|‖g‖3/2−ε.

To prove (4.11) we use the definition (3.6) of Besov space norm with q = 1 and write

‖Tµg‖B3/2−ε′
2,1

=
∑
|α|≤1

‖Dα(Tµg)‖+
∑
|α|=1

(∫ 1

0

t1−s
′
ω2 (Dα(Tµg)) (t)

dt

t

)

= ‖Tµg‖+ ‖D(Tµg)‖+

∫ 1

0

t1−s
′
ω2 (D(Tµg)) (t)

dt

t

≤ C

(
‖g‖+

1

|µ| ‖g‖
)

+
C

|µ| ·
1

γ(µ)
‖g‖Hs(Ω) ≤

C

|µ| ·
1

γ(µ)
‖g‖Hs(Ω),

where in the first inequality above we use the stability estimate (4.8) and Lemma 4.3.
Now multiplying both sides by the positive weights ωµ and summing over all µ ∈ J ′δ,
and using the fact that by our choice of the quadrature rule |µ1| = minµ∈∆ |µ| > 1/N ,∑N

i=1
Ai

|µi| ≤ C (see [1, proof of Lemma 6.1]),

∑
µ∈J′

δ

ωµ
|µ| ·

1

γ(µ)
≤ C

(
N∑
i=1

Ai

|µi|

)2π

M

∑
γ(µ)>δ

1

γ(µ)


 ∼ C| log δ|,
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and we obtain the desired result.
Remark 4.1. i) Below we consider the first partial derivatives of Tµg. Recall that

Tµg(x) =

∫ d(x,µ)/r

0

e−sg(x− sµ)ds,
∂d

∂µ
= r, and

∂d

∂ν
= r

ν · n̂
µ · n̂ ,(4.12)

where ν ∈ S1 is any unit vector which is not parallel to the direction of µ; see [1]. By
an orthogonal coordinate transformation we may assume that µ = (µ1, 0), |µ| = r, and
ν ⊥ µ. This is for notational convenience in ω2(

∂
∂xi

(Tµg(x))), i = 1, 2, and singles
out the most singular term, i.e., the one corresponding to i = 2; see below. Using
(4.12), since µ is parallel to the direction of the x1-axis, we have

∂

∂x1
(Tµg(x)) =

1

µ1
e−d/rg(x̄) +

∫ d/r

0

e−s
∂

∂x1
g(x− sµ)ds,(4.13)

where x̄ = (x− dµr ) ∈ Γ. Further, ∂d
∂x2

= sin(µ,n̂)
µ̂·n̂ , i.e., ∂(d/r)

∂x2
= sin(µ,n̂)

µ·n̂ , hence for the

partial derivative of Tµg(x) with respect to x2, we have that

∂

∂x2
(Tµg(x)) = e−d/rg(x̄)

sin(µ̂, n̂)

µ · n̂ +

∫ d/r

0

e−s
∂

∂x2
g(x− sµ)ds.(4.14)

The geometry of the domain imposes singularities in ψ(x̄) := sin(µ̂,n̂)
µ·n̂ stopping further

differentiations, (ψ ∈ H1/2−ε(Γ)). Besov spaces are employed to perform fractional
derivatives. The cost, as we saw in the proof of Lemma 4.2, is that in the embedding
procedures between Sobolev and Besov spaces we lose a small power of h of order
O(hε

′−ε). The same result is obtained using the K-method of interpolation based
on a splitting of ψ(x̄). Since the whole calculation can concisely be done by Besov
space techniques, we skip the tedious task of finding the appropriate splits in using
the K-method.

ii) Recalling (4.13) and (4.14), we observe that ω2

(
∂
∂xi

Tµg
)

(t), i = 1, 2, contains

differences of translations in g, d, and ψ. Below, in the proof of Lemma 4.3, we
estimate some of these terms gaining a factor of |η|p ≤ tp, p ∼ 1, in order to make
the integration in (4.10) possible, whereas some other terms, integrated as in (4.10),
will be in the form of a Besov norm for g.

Proof of Lemma 4.3. To begin with, we use the same coordinate transformation
as in Remark 4.1. It suffices to estimate the contribution from the less regular term,
i.e.,

ω2

(
∂

∂x2
Tµg(·)

)
(t) = sup

|η|≤t

∥∥∥∥ ∂

∂x2
(Tµg) (·+ η)− ∂

∂x2
(Tµg) (·)

∥∥∥∥
L2(Ωη)

,

since the other term will be similar and dominated by this one. Now denoting sin(µ̂,n̂)
µ·n̂

by ψ(x̄) = ψ(x2) in (4.14), and using the notation ∂
∂x2

[ϕ]η := ∂
∂x2

ϕ(x+ η)− ∂
∂x2

ϕ(x),
we get

∂

∂x2
[(Tµg)(x)]η =

(
e−d(x+η ,µ)/rg(x+ η)ψ(x2 + η2)− e−d(x ,µ)/rg(x̄)ψ(x2)

)

+

(∫ d(x+η ,µ)/r

0

e−s
∂

∂x2
g(x+ η − sµ) ds−

∫ d(x ,µ)/r

0

e−s
∂

∂x2
g(x− sµ) ds

)

:= F + J .
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Further, we can write F and J as

F =e−d(x+η ,µ)/rg(x+ η) [ψ(x2 + η2)− ψ(x2)] + e−d(x+η ,µ)/rψ(x2) [g(x+ η)− g(x̄)]

+
[
e−d(x+η ,µ)/r − e−d(x ,µ)/r

]
g(x̄)ψ(x2) := F1 + F2 + F3

and

J =

∫ d(x+η ,µ)/r

0

e−s
∂

∂x2
[g(x+ η − sµ)− g(x− sµ)] ds

+

∫ d(x+η ,µ)/r

d(x ,µ)/r

e−s
∂

∂x2
g(x− sµ) ds := J1 + J2.

Below we shall estimate each of the terms Fi, i = 1, 2, 3, and Jl, l = 1, 2, separately.
Now we use a new transformation of coordinates

x = Pj + ξ1µ̂+ ξ2τ̂j , 0 ≤ ξ1 ≤ Bj(ξ2), 0 ≤ ξ2 ≤ Lj ,

where Pj is an endpoint of Sj and τ̂j = (cosϑj , sinϑj) is tangent to Sj . Thus d(x, µ) =

ξ1, d(x+η, µ) = ξ1 +η1, and since the area element is dx = | sinϑj |dξ = |µ·n̂|
|µ| dξ, thus

we have, using the Hölder inequality, with p̄ = 1+ τ , for τ being small and 1
p̄ + 1

q̄ = 1,
that

‖F∞‖2L2(Ωη) ≤
∫

Ω

e−2d(x+η ,µ)/rg2(x+ η)|[ψ]|2 dx

≤ C

∫ diamΩ

0

e−2(ξ1+η1)/r dξ1

∫
Γ

g2(x+ η)|[ψ]|2 |µ · n̂||µ| dξ2

≤ C

r

∫ diamΩ

0

e−2(ξ1+η1)/r dξ1

(∫
Γ

[ψ]2p̄|µ · n̂|
)1/p̄(∫

Γ

g2q̄|µ · n̂|
)1/q̄

,

where [ψ] denotes the jump ψ(x2 + η2) − ψ(x2), which is zero except on a finite
number of intervals of length ≤ 2|η|, and we have used x+ η ∈ Γ. Thus, using
Sobolev embedding (3.9), the trace theorem (3.12), and the relation (3.8), we obtain

‖F1‖L2(Ωη) ≤
C√
r
‖[ψ]‖L2p̄(Γ)‖g‖L2q̄(Γ) ≤

C√
r
‖[ψ]‖L2p̄(Γ)‖g‖

B
1
2
− 1

2q̄
2,1 (Γ)

≤ C√
r
‖[ψ]‖L2p̄(Γ)‖g‖

B
1− 1

2q̄
2,1 (Ω)

≤ C√
r
‖[ψ]‖L2p̄(Γ)‖g‖H1(Ω).

For the corresponding estimate for F2, we have, using a similar argument as above,
that

‖F2‖2L2(Ωη) ≤
∫ diamΩ

0

e−2(ξ1+η1)/r dξ1

∫
Γ

|g(x+ η)− g(x̄)|2
∣∣∣∣ sin(µ, n̂)

µ · n̂
∣∣∣∣
2 |µ · n̂|

|µ| dξ2

≤ C

|µ|minj |µ · n̂j |2
∫

Γ

|g(x+ η)− g(x̄)|2|µ · n̂|

≤ C

r2γ(µ)2

∫
Γ

|g(x+ η)− g(x̄)|2|µ · n̂| dξ2.

For the estimate of F3 we note that, by the geometry, for a convex polygonal region
Ω ⊂ R

2, |d(x+ η , µ)− d(x , µ)| is larger when x̄ and x+ η belong to the same side
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Sj of Ω and the maximum occurs for x+ η being the tangent point of one of the two
lines parallel to Sj , with the circle of radius |η| centered at the point x. This implies
that, on each side Sj ,

|d(x+ η , µ)− d(x , µ)| ≤ |η|
| sin(µ, Sj)| =

|η|
|µ̂ · n̂j | ,(4.15)

where n̂j is the outward unit normal to the side Sj . Moreover, using the identity

|e−a − e−b| = |e−|a−b| − 1| × e−min(a,b),

with a = d(x + η , µ) and b = d(x , µ), and letting ρj := r| sin(µ , Sj)|, since we have

that |e−|η|/ρj − 1| < C |η|
ρj

, then by (4.15) and a similar argument as in the estimate

for F1, we may write

‖F3‖2L2(Ωη) ≤ C
∑
j

∫ diamΩ

0

|η|2
r2|µ̂ · n̂j |2

e−
2
r min(ξ1+η1,ξ1) dξ1

∫
Sj

g2ψ2|µ̂ · n̂j | dξ2

≤ C
|η|2

r2γ(µ)2
‖g‖2L4(Γ)‖ψ‖2L4(Γ).

Further, using (3.9), (3.12) with p = 2 and (3.8),

‖g‖L4(Γ) ≤ C‖g‖
B

1/4
2,1 (Γ)

≤ C‖g‖
B

3/4
2,1 (Ω)

≤ C‖g‖H1(Ω),

‖ψ‖L4(Γ) ≤ C‖ψ‖
B

1/4
2,1 (Γ)

≤ C‖ψ‖H1/4+ε(Γ),

and since ψ ∈ H1/2−ε(Γ), then

‖F3‖L2(Ωη) ≤
C|η|
rγ(µ)

‖g‖H1(Ω).

Now it remains to consider the contributions from the J -terms. For J1 we use the
definition of ωp(·) and thus have the estimate

‖J1‖L2(Ωη) ≤ C

∥∥∥∥ ∂

∂x2
g(·+ η)− ∂

∂x2
g(·)

∥∥∥∥
L2(Ωη)

≤ Cω2

(
∂

∂x2
g(·)

)
(t).

To estimate J2 we use a similar technique as in the estimate of F1 and write, using
also the estimates (4.8) and (4.15),

‖J2‖2L2(Ωη) ≤
∫

Ω

[∫ d(x+η,µ)/r

d(x,µ)/r

e−s|∇g(x− sµ)| ds
]2

dx

≤ C|η|2
r2γ(µ)2

‖∇g‖2L2(Ω) ≤
C|η|2
r2γ(µ)2

‖g‖2H1(Ω).
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Thus, summing up, we have that, for q = 1,

∫ 1

0

t1−s
′
ω2(Tµg(·))(t)dt

t
≤ C

rγ(µ)

(∫ 1

0

t1−s
′
sup
|η|≤t

|η| dt
t

)
‖g‖H1(Ω)

+
C√
r

(∫ 1

0

t1−s
′
sup
|η|≤t

‖[ψ]‖L2p̄(Γ)

dt

t

)
‖g‖H1(Ω)

+
C

rγ(µ)

∫ 1

0

t1−s
′
sup
|η|≤t

(∫
Γ

|g(x+ η)− g(x̄)|2 dΓ
)1/2

dt

t

+ C

∫ 1

0

t1−s
′
ω2

(
∂

∂x2
g(·)

)
(t)

dt

t
.

(4.16)

Now let s̄ = s′−1, i.e., s̄ = 3/2−ε′−1 = 1/2−ε′; then by the definition of the Besov
norm, ∫ 1

0

t1−s
′
sup
|η|≤t

‖[ψ]‖L2p̄(Γ)

dt

t
= ‖ψ‖Bs̄

2p̄,1(Γ) ≤ ‖ψ‖Bs̄+ε̄
2p̄,2(Γ) ≤ ‖ψ‖H1/2−ε(Γ),

where the first inequality is based on the Besov embeddings (3.11) and the second
one on the embedding (3.10), since here s − n

p ≥ t − n
q of (3.10) is equivalent to

s − 1
2 ≥ s̄ + ε̄ − 1

2p̄ , which gives, with s̄ = 1
2 − ε′ and 1/p̄ = 1 − 2ε̄, (p̄ = 1 + τ), a

regularity requirement for ψ of order s ≥ 1
2 − ε′ + ε̄ + ε̃. Thus taking, for instance,

ε̄ = ε̃ = 1
4ε
′, we need to have ψ ∈ H

1
2− 1

2 ε
′
, which is the case. Similarly,

∫ 1

0

t1−s
′
(∫

Γ

|g(x+ η)− g(x̄)|2dΓ
)1/2

dt

t

=

∫ 1

0

t[s̄]−s̄
(∫

Γ

|g(x+ η)− g(x̄)|2dΓ
)1/2

dt

t

≤ ‖g‖Bs̄
2,1(Γ) ≤ ‖g‖

B
s̄+1/2
2,1 (Ω)

≤ ‖g‖H1(Ω).

Finally, by the definition of the Besov norms, the last integral in (4.16) is dominated
by ‖g‖

B
3/2−ε′
2,1 (Ω)

. Thus

∫ 1

0

t1−s
′
ω2(Tµg(·))(t)dt

t
≤ C

rγ(µ)
‖g‖

B
3/2−ε′
2,1 (Ω)

,

and the result is followed by using the embedding relation (3.8).

5. Duality and eigenvalue estimates. In studies of the transport equation,
the criticality condition of a multiplying system is specified by the largest eigenvalue,
λ−1, that makes (I − λT )−1 singular. Therefore, in the solution of the transport
equation, the eigenvalue, as a global quantity, is of interest. Below we shall see, by
means of a weak norm estimate of the scalar flux, that the eigenvalue can be found
more accurately than the pointwise scalar flux. Observe that the kernel of the integral
operator T is symmetric and positive; see the representation of T in [1, relation (1.9)].
Hence T is self-adjoint (on L2(Ω)) and thus has only real eigenvalues. Furthermore,
by the Krien–Rutman theory, its largest eigenvalue is positive and simple. Our main
result in this section is the following theorem.
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Theorem 5.1. Let κ and κhn be the largest eigenvalues of the operators T and
Th
n , respectively. Then for any ε > 0 and ε1 > 0 there are constants C = C(ε1, κ) and

C(Q) = C(ε, κ,Q) such that, for sufficiently large N and M and sufficiently small h,
we have

|κ− κhn| ≤ C

(
1

N4
+

1

M2−ε1

)
+ C(Q)h3−ε,(5.1)

where Q is an arbitrary quadrature set.
The first term on the right-hand side of (5.1) follows from a semidiscrete result

of [4].
Proposition 5.1. Assume that M is even and let κ and κn be the largest eigen-

values of T and Tn, respectively. Then, for any ε1 > 0, there is C = C(ε1, κ) such
that, for N and M sufficiently large, we have

|κ− κn| ≤ C

(
1

N4
+

1

M2−ε1

)
.(5.2)

The above assumption on the number of angular quadrature points M (even)
makes the quadrature set ∆ symmetric in the sense that µ ∈ ∆ implies that −µ ∈
∆. Then it follows that Tn is self-adjoint (see, e.g., [2, Lemma 2.1]), and thus its
eigenvalues are real, which is crucial in the proof of (5.2).

Proof of Theorem 5.1. It remains to estimate |κn − κhn|. Let us consider the
discrete ordinates method to be exact and the fully discrete method, i.e., the space
discretization, to be approximate. We have discrete ordinates

Un =
∑
µ∈Q

ωµu
µ, uµ(x) = uµn(x, µ),

and the fully discrete approximation

Uh
n =

∑
µ∈Q

ωµu
µ
h, uµh(x) = uµnh(x, µ),

where Q ⊂ D is an arbitrary n-point quadrature set. The fully discrete scalar flux is
found by solution of the following bilinear finite element equation: find

Uh
n ∈ Vh = {v : v|K ∈ P1(K) ∀K ∈ Ch}, Ω = ∪K,

such that

Bµ(uµh, v)− λ(Uh
n , v) = (f, v) ∀v ∈ Vh,

where Bµ(uµh, v) is the usual bilinear form associated with the fully discrete transport
equation

µ · ∇uµh(x) + uµh(x) = λ
∑
µ∈Q

ωµu
µ
h(x) + f(x).

Now for µ ∈ Q, let ψµ(x) be the solution of the corresponding dual problem:

−µ · ∇ψµ(x) + ψµ(x) = λΨn(x) + σ(x) in Ω×D,

ψµ = 0 on Γ+
µ = {x ∈ Γ : µ · n̂(x) > 0},
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where σ is a given data and

Ψn(x) =
∑
µ∈Q

ωµψ
µ(x).

The solution ψµ may be found by solving the bilinear equation

Bµ(w,ψµ)− λ(w,Ψn) = (w, σ) ∀w ∈ Vh.(5.3)

Substituting uµ − uµh by w and using (5.3), we compute

(Un − Uh
n , σ) =

∑
µ∈Q

ωµ(uµ − uµh, σ) =
∑
µ∈Q

ωµ(w, σ)

=
∑
µ∈Q

ωµ [Bµ(w,ψµ)− λ(w,Ψn)] .

Replacing w with uµ − uµh we obtain

(Un − Uh
n , σ) =

∑
µ∈Q

ωµ


Bµ(uµ − uµh, ψ

µ)− λ


uµ − uµh,

∑
ν∈Q

ωνψ
ν






=
∑
µ∈Q

ωµ
[
Bµ(uµ − uµh, ψ

µ)− λ(Un − Uh
n , ψ

µ)
]
.

Now replace ψµ by ψµ − ψ̃µ, where ψ̃µ ∈ Vh is the interpolant of ψµ. Then we will
have

(Un − Uh
n , σ) =

∑
µ∈Q

ωµ

[
Bµ(uµ − uµh, ψ

µ − ψ̃µ)− λ(Un − Uh
n , ψ

µ − ψ̃µ)
]
.

Observe that we have not limited the quadrature set to just “good” directions. Thus
the constant used below is a function of the quadrature set itself, so that, using
Theorem 4.1,

(Un − Uh
n , σ) ≤ C(Q)[h1−ε′h2 − λh1−ε′h2] ≤ C(Q)h3−ε′ .

If, for example, σ ≡ 1, then

(Un − Uh
n , σ) =

∫
(Un − Uh

n ) dx ≤ C(Q)h3−ε′ ,

i.e.,

‖Un − Uh
n‖L1(Ω) ≤ C(Q)h3−ε′ ,(5.4)

which is almost optimal, since h1−ε′ is almost optimal for the scalar flux and h2 is
optimal for the interpolant. (5.4) can be compared with

‖Un − Uh
n‖L2(Ω) ≤ Ch1−ε′ ,(5.5)

confirming our remark on suitability of the L1-estimates for the scalar flux.
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A similar estimate can be found for the eigenvalue κn using the same technique
as in the proof of Theorem 6.1 in [4] or an estimate of the form

|κn − κhn| ≤ C
[
|((Tn − Th

n )Φ,Φ)|+ ‖(Tn − Th
n )Φ‖2L1(Ω)

]1/2
≤ C(Q)h3−ε′ ,(5.6)

where Φ is the (normalized) eigenfunction corresponding to the largest eigenvalue κn
(see [10]), and (5.1) will follow from (5.2) and (5.6).

Remark 5.1. We have, using Theorem 4.1, that

|κn − κhn| ≤ Ch1−ε′ ,(5.7)

where κn and κhn are the largest eigenvalues of Tn and Th
n , respectively, n is the

number of discrete points on the unit disc, and the constant C is independent of the
quadrature set. Combination of (5.2) and (5.7) gives

|κ− κhn| ≤ C

(
1

N4
+

1

M2−ε1 + h1−ε′
)
.(5.8)

Comparing (5.1) with (5.8), we see that, in order to have the contributions from
the spatial and angular errors to the global eigenvalue error be of the same order of
magnitude, it is necessary to choose different compatibility relations h = h(N) and
M = M(N) in these two approximations. Similar results hold for a two-dimensional
problem with the cylindrical domain Ω̃ replaced by Ω ⊂ R

2 and the velocity space D
replaced by S = {µ ∈ R

2 : |µ| = 1}.
Acknowledgments. I wish to thank the reviewers for several useful comments.
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