ON THE STABILITY OF CHARACTERISTIC SCHEMES FOR
THE FERMI EQUATION

M. ASADZADEH

ABSTRACT. We study characteristic schemes for a model problem for the Fermi
pencil beam equation. The objective is twofold: (i) To design efficient and ac-
curate numerical schemes based on the principle of solving a particle transport
problem, exactly, on each collision free spatial segment combined with a pro-
jection on each collision site, from a pre collision angle and energy coordinates
(AE) to a post collision AE coordinates. (ii) To prove stability and derive a
posteriori error estimates in L2 and the maximum norms.

INTRODUCTION

The main feature in this paper can be described as follows: Consider a ho-
mogeneous infinite slab, (y,z € R), Q = (z,y,2) of thickness L, (0 < = < L).
Let z be the penetration direction of a charged particle beam, {z,} an increasing
sequence of discrete points indicating collision sites and {V,} a corresponding se-
quence of piecewise polynomial spaces on meshes {7,} on the transversal variable
z) := (y,2). Then given the approximate solution (current) J»™ € V), at the col-
lision site x,, solve the pencil beam equation exactly on the collision free interval
(2, Tny1) with the data J™™ to give the solution J™" ! at the next collision site
ZTn+1, before the collision. This is an exact transport procedure. Now one may
compute Jntl = P, JM L with P, being a projection into {V,41}, here
JMm+L is the post-collision solution at the (other face of the collision) site 1.
Thus we have a process of exact transport + projection.

The idea of exact transport + projection was first introduced by Johnson, in [11],
for the convection problems. Our goal is to extend this process to a simple case
of a pencil beam model described by: a forward-backward, convection dominated
convection-diffusion equation of the degenerate type. One may outline variety of
approaches of this type differing in the choice of piecewise polynomial spaces {V,}
(degree of polynomials, orthogonality, continuity or discontinuity) and in the pro-
jections Py, (L,-projections, 1 < p < oo, interpolation projections, etc).

Generally the exact transport problem, because of the presence of the diffusion
term, in the pencil beam equations, if solvable, is highly nontrivial. Besides, simple
projections as Lo-projection would create oscillatory behaviour in the presence of
discontinuities. This cause a serious drawback in reliability of the beam algorithms
in application, (e.g. in the radiative cancer therapy, dealing with discontinuities
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such as air/tissue and tissue/bone interfaces). To circumvent these difficulties we
present an approach leading to an exact transport solver for model cases of pencil
beam problems by characteristic methods, associated with a modified Lo-projection
improving the stability properties. Related studies of this type can be found in [2]
and [3] for Vlasov-Poisson, and Fermi and Fokker-Planck equations, respectively.

Our method is obtained through two basic modifications of a standard Galerkin
scheme: first, the test functions are modified so that to give a weighted least square
control of the residual R, (measuring how well the approximate solution satisfies the
considered differential equation locally), of the approximate solution, and secondly
artificial viscosity is added to the diffusion coefficient of the form Ch?|R(J")|, where
h is the local mesh size. We shall also consider a variant of the streamline diffusion
(SD)-method based on using trial functions which are discontinuous in the beams
penetration direction z and continuous in the transversal variable z;, = (y,2).
Orienting the incident-transversal mesh approximately along the characteristics we
get a particular SD-method suitable for convection dominated convection-diffusion
problems referred as characteristic streamline diffusion (CSD).

To construct the numerical schemes, the domain @) := I, x I, x I, is subdivided
into slabs Sy, := I} x I, x I,, with I := (z,,_1,%,), n =1,2,..., N, correspond-
ing to collision-free paths in the z-direction and I, and I, bounded symmetric
intervals representing the transversal domain of x,. FEach slab S,, has its own
incident-transversal finite element mesh 7,,. Consequently, at each collision site
T, we have two transversal meshes 72_ = ’7A'n|z" and ’7A'nJr = An+1|zn, respectively.
In general 7, # 7.+ and the passage of information from one slab to the next
is performed through a modified Ls-projection. The CSD-method performs this
modified projection along with the exact transport solutions satisfying, in model
cases, the convection equations exactly, and separately, on each slab.

An outline of this paper is as follows: In Section 1 we introduce a continuous
model problem. In section 2 we formulate the characteristic schemes for the model
problem. In Section 3 we derive L, estimates for smooth solutions. Section 4
is devoted to determine the amount of numerical dissipation introduced by the
discretizations. Section 5 concerns with the study of stability in the maximum
norm. In Section 6 we prove a posteriori error estimates underlying the adaptive
algorithm and finally in our concluding Section 7 we introduce some numerical
examples to justify smoothing properties of the new approaches. Throughout the
paper C will denote an absolute constant not necessarily the same at each accurence.

1. A MODEL PROBLEM

In this section we sketch the derivation of the pencil beam equations and intro-
duce a model problem. Detailed derivation strategy can be found in [10] relying
on Fourier techniques, [12] using spherical harmonics, and [6] based on statisti-
cal physics approaches. We start from the steady-state, monoenergetic transport
equation in a homogeneous slab Q := [0,L] x R x R, given by

(L1) w- Vah(%,0) + ot (x)p(x, ) = / ou(x,w W w)d', in QxS
52
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and associated with the boundary conditions

(1 2) { ¢(L7yﬂziw) = 07 E < 07
' $(0,y,2,w) = 5:0(1 = §d(y)d(z),  €>0,

with x = (z,9,2) € Q, w = (£,1,¢) € 52, describing the spreading of a pencil beam
of particles normally incident at the boundary (0,y, ) of the slab Q of thickness L.
Here 1) is the density of particles at the point x moving in the direction of w, oy, and
o, are total and scattering cross-sections, respectively. Assuming forward peaked
scattering, the transport equation (1.1) may, asymptotically, be approximated by
the following Fokker-Planck equation

0 2] 1 92
1. . FP_ Y q_enZ L - Y | HFP
(13 0 Vb =0 | =€)+ ] 9
where ¥ is the azimuthal angle with respect to the z-axis and
1 1
(14) o= goulx) =7 [ (1-9n x4,

is the transport cross-section for a purely scattering medium. Upon the relations
between o, o; and oy, in the asymptotic expansions leading to the Fokker-Planck
equation the absorption term o4t on the left-hand side of (1.1) associated with a
Taylor expansion of ¢ on the right-hand side would give the right-hand side of (1.3)
and a neglected remainder term of order O(o?), see [12] for the details. A further
approximation, assuming thin slab by letting

(1.5) Lxo <1,

and performing some algebraic manipulations, see [6] yields a perturbation of (1.3)
to the following Fermi equation;

wo * VxlpF = O'AWC'LpF:
(1.6) F(0,y,2,m,¢) = 6(y)8(2)d(m)6(C),  £>0,
¢F(L7 y7 z7 T’? C) = 07 f < 07

here wo = (1,7, (), where (7,() € RxR and A, = 8*/9n*+06?/0¢?. Geometrically,
the equation (1.6) corresponds to projecting w € S? in the equation (1.3), along
w = (&,1,¢), on the tangent plane to S? at the point (1,0,0). In this way the
Laplace operator, on the unit sphere, in the right-hand side of the Fokker-Planck
equation (1.3) is transfered to the Laplace operator on this tangent plane, as on
the right-hand side of the Fermi equation (1.6).

The equations (1.3)-(1.6) are formulated for the flux 1, while usually the mea-
sured quantity, e.g. in the radiation therapy applications (dose), is related to the
current function

(1.7) j=&y.

Now we consider a two dimensional version (1D-slab) of Egs. (1.1)-(1.3) leading to
the following Fokker-Planck problem, see also [3]: For 0 < z < L and —oc0 < y < 00,
find FF = BFP(z,y,0) such that

w - VepFP =0¢61,79P, 0e(—m/2,7/2),
(1.8) YIP(0,y,0) = -0(1 — cos8)d(y), 6eSi,
YFP(L,y,0) =0, 6e S,

where w = (£,n) = (cosf,sinf), S1 = {we S': £>0} and S =51\ 5.
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We use the scaling substitution

(1.9) z=tan#, 6e€ (-w/2,7/2),
and introduce the scaled current function J as:
(1.10) J(z,y,2) = j(z,y,tan™" 2) /(1 + 2°).

Note that, now z corresponds to the angular variable . Below we shall keep 6
away from the poles +7/2, and correspondingly formulate a problem for the current
function J, in the bounded domain Q = I, x I, x I, = [0, L] x [—yo, yo] X [—20, 20):

Jp + 2Jy =0 AlJ, (z,z1) € Q,
Jo(z,y,£20) = 0, for (z,y) € I, x I,
(1.11) J(z,£yo,2) = 0, on T\ {suppf},

J(07$J_) = f(xJ_)a
where Fﬂf = {(z,21) €9Q : f-n< 0}, f=(1,2,0), . = (y,2) is the transversal
variable and n := n(z,z ) is the outward unit normal to I at (2,2, ) € I". Further

we have replaced the product of é-functions (the source term) at the boundary by
a smoother Lo-function f. The diffusion operator in (1.11) is:

(1.12) A=08%/072, (Fermi),

(1.13) A- = 0/0z[a(2)0/0z (b(2)-)], (Fokker-Planck)

where a(z) = 1+ 22 and b(z) = (1 + 22)%/2. We shall study the Fermi equation.
The Fokker-Planck case follows , basically, the same idea except somewhat involved
algebraic labour and therefore is omitted. Detailed Fokker-Planck studies can be
found in [3]. We note that the transport cross section depends on energy and
therefore on the spatial variables: o = o(z,y) = o (E(z,y))/2.

The equation (1.11) is a forward-backward (z changes the sign), convection dom-
inating (o is small), convection diffusion equation of degenerate type (convection
in (z,y) and diffusion in z). A corresponding non-degenerate equation is obtained
by bifurcating the right hand side byed?/dy?J:

(1.14) ﬁ(J) =J,+8-ViJ—eA,J=0,

where ¢ &~ Co, Ay := 0%/0y® + 8%/02?, is the transversal Laplace operator, and
from now on 3 = (z,0).

2. CHARACTERISTIC SCHEMES

We focus on the equation (1.14) and introduce the change of coordinates (z,Z 1) =
(z,z1 — xfB). Then writing J(z,Z,) = J(z,z.), we can reformulate the equation
(1.14) as:

(2.1) Jy—eA,J=0, in [0,L]x1I,x I, J(0,21) = f(z1),

since g—g = B%J(:c,:m_ +z8) = g—i +B-V_.J. If £ = 0, then, recalling the boundary
data in (1.11), the solution of (2.1) is given by J(z,Z,) = f(Z.) and that of (1.14)
by

(2.2) J(z,z1) = f(zL — 2B).

Clearly the characteristics of equation (1.14) with ¢ = 0 are given by =, =
Z, +xB, x > 0, and in this case (¢ = 0) the solution J(z,z, ) is constant along
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the characteristics. Let now {z,}, n = 0,1,..., N, be an increasing sequence of
z-values with zg = 0, and let for each 0 < n < N, {7,} be a corresponding se-
quence of triangulation 7, of {z,} x I, x I, into triangles K and let V, be the
space of continuous piecewise linear functions on 7,, i.e. V, = {v € C(I; x I.) :
v is linear on K, K € T,}. Here and below C() denotes the set of continuous func-
tions on (2.

The Characteristic Galerkin method for (1.14), in the case of ¢ = 0, is formulated
as follows: For n =1,2,..., N, find J»" € V, such that

(2.3) / Jhm(z (z) ) de :/ Jn e, —hBv(zy)de), Vv €V,
I, xI, Ly

x1,
where i =z, — z,_1 and J®? = f. In other words
(2.4) Jhm = P T, g

where Py, : Ly(IyxI;) — V, is the Ly-projection defined by (P w,v) = (w,v), Vv €
Vn, where (-, -) denotes the inner product in Lo (I, xI;), and Trv(z 1) = v(z 1 —hnf).
Thus (2.4) may be expressed as ezxact transport T,+ projection P,,.

Next we formulate the streamline diffusion (SD)-method, and the characteristic
streamline diffusion (CSD) method (as a special case with oriented phase-space
mesh elements) for the equation (1.14) as follows: Forn =1,2,..., N, let 7, = {K}
be a finite element subdivision of the slab S, = I? x I, I? = (zp_1,2y), 1L =
I, x I, into elements K and let V,, be a space of continuous piecewise polynomials
on 7T, of degree at most k. For k¥ = 1 and small € the SD-method may be formulated

as follows: For n = 1,2,...,N, find Jh = Jh|g, € (H4UV,, such that

/ (J"+ 8-V J") (0 + vy + B-Viv)) dedx,

n

(2.5) + / EVLJ" - Vivdedsy + [ TP doy
S

n I,

= [ JP™tde, Wee(HWY,,
I,

where v} (z1) = lima, o+ v(z £ Az, 1), €= max(e, F(Ch*R(J")) /M), with
(2.6) R(J") = |8+ B- VLI + |[J")|/hn,  on S,

where [v"] = v} —o?, F(v) is the element-wise average of v and J is a small
parameter in general of order O(h) locally and @ = 2 — k, k small and positive.
Here h(z, ) is a continuous function measuring the local size of elements KeT,.
Further M, = max, |Jﬁ’"(m 1), is a normalization factor. Note that equation
(2.5) is nonlinear in J"|g, since £ depends on J”. By a fixed point argument using
monotonicity, it is possible to show the existence of a solution to the equation (2.5).
The streamline diffusion modification is given by (v, + 8-V 1 v) and the degenerate-
shock-capturing modification by €. Approximating 8 by piecewise constants on each
slab, the streamline diffusion modification will disappear in the CSD-method.

We now make a special choice of the finite element subdivision T = {K }of Sy
and the corresponding finite element space (4UV,, to obtain the CSD-method. Let
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Tn = {K } be a subdivision of S,, given by the prismatic elements oriented along
the characteristics

A

(2.7 Ky={(, 2. +(x—2z,)8): T € Ke€T,, eI},
where T, = {K} is a triangulation of I given above. Further, let lAin be defined by
(2.8) YV, = {0€C(Sy) : 0(z,z1) =v(xzL — (x —zp)B), v € Vn},

with V,, the space of continuous piecewise linear functions on 7, as above. In
other words V,, consists of the continuous functions 4(z, ) on S,, such that ¥ is
constant along characteristics 1 = Z, + xf parallel to the sides of the prismatic
elements K’n and o7 is piecewise linear on 7, for x = x,. With this choice the
SD-method (2.5) reduces to the following method since % +B-Vio=0ifd € V,:
Forn=1,2,...,N, find Jt = jh|5n € V, such that

(2.9) / EV M Vivdedr, + | JPondz, = [ JPhde,, Vo€V,
n I I,
where
. o]
€ =max | &, F(Ch - )/ My ), on Sp,

and h(z,z,) = hy(zL — (x — 2,,)8), where h,(z1) gives the local element size of
Tn. If now € is small, then (2.9) may be written as

(2.10) / 5VJ$" -Vivdz, + JA_’f_"v de, = Jhrydr, Yo € Va,
I I I
where & = F(Ch®|[J""]|)/M,. Writing J&"" = J"", we can thus restate (2.9) as
follows (since J™™ = T,,J""1): For n =1,2,..., N, find J*" € V, such that

(2.11) / EV JMM .V ivdr, + / Jhwdr, = / T, Jv" Ywdr,, Yv €V,
IJ_ IJ_ IJ_

where J0 = f and & = F(Ch%|J"" — T, J""1|)/M,,. Introducing the operator
P : LQ(IL) n LOO(IJ_) — V,, defined by

(2.12) (Ppw,v) + (EVLPrw,V 1v) = (w,v), Yv € Vp,

where & = F(ChZ|Ppw — w|)/ max |P,w|, and (-,-) denotes the Ly(I.)™ inner
product with m = 1,2, we can write (2.11) as

(2.13) Jhn =P, T, gL,

Obviously, P, may be viewed as a modification of the usual Ly-projection P, :
Ly(I,) — V, defined above by (P,w,v) = (w,v), Yv € V,,, obtained by adding an
artificial viscosity term with coefficient & = F(Ch2|P,w — w|)/ max |P,w|.

Note that the mesh size h, of the triangulation 7, may vary with =, (and,
evidently also, with n); it is reasonable to require that |V h,(z1)| <e¢, z, € 1,
where ¢ is a sufficiently small constant and assume that |K| ~ h,(z.), if 2, €
K € 7T,. For simplicity we assume in this note that 7, is quasiuniform so that
we may take h, constant. The extensions to the general non-uniform mesh is
straightforward.
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3. ERROR ESTIMATES FOR SMOOTH SOLUTIONS

In this section we give the standard error estimates for the characteristic Galerkin
method (CG) (2.4) and the CSD-method (2.13), in the case of a smooth exact
solution. For CSD, in this case, we may choose € = 0 in (2.12) so that (2.4) and
(2.13) indeed coincide. Our point is that using the CSD-approach we obtain sharper
results than through the standard CG-approach, as we shall now see.

Starting with error estimates for the CG-method we have for J* = J(x,,-) that
" = TP < T = PaT T

(T T~ = PpTod "7 + | PaTr "t = PuTp J™" 7|

ChallT" ey + 1777 = T,

using a standard error estimate for P, of the form [lw — Pywl|| < ChE||lw|| g2z, ),

the boundedness of P, : Ly — Ly in the form ||P,w|| < ||w|| and the fact that
[|T,w|| = ||w||. By iteration we get

ININ A

N

(3.1) [TV = TN <Y Cha T 2,y = O(NR?),
n=1

if h,, ~ h for all n and J is smooth.

The standard error estimate for the SD-method (2.5) with V,, given by (2.8) and
with £ = 0, (see [3] and [11]), states that

N 1/2
||JN _ Jh,N” + (Z ||Jh,n _ TnJh’n1||2>

n=1

(32) N 1o
< (Z ChilllJ"—IH%pm)) < CVNR?,
n=1

if J is smooth, which is clearly sharper than (3.1). To prove the estimate (3.2) for
(2.4) we note that with e®” = J»m — J" we have by (2.3) forn = 1,2,..., N,
(3.3) (e — Tt v) =0, Yv € V.

Now since ||T,,e"~1]| = ||e®™1||, we have

1 1
B4 Gl A+ gDl = Tue P
n=1

ol 1

— Z(eh,n _ Tneh,nfl’eh,n) + 5”eh,O”Z
=1
N

= Z(eh’” — Tpehn=t gn —p,Jm)

n=1
1 N N
h,n _ h,n—12 n __ n2
D R R L
= n=

where we used Eq. (3.3) with v = P,J" — J""  the fact that e/ = 0, and Cauchy
inequality. Recalling now the above standard estimate for ||.J*"—7P,,J"||, we obtain
(3.2).
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Note that the stability estimate for (2.4) underlying (3.1) and (3.2), respectively,
are as follows

(3.5) 7% <[Ifll, n=12,...,N,
N

(3.6) [T2NZ 4+ D T = T T2 = £
n=1

where (3.5) reflects that ||P,w|| < ||w|| and ||Thw|| = ||w|| for w € Ly(I, ), and Eq.
(3.6) follows by choosing v = J™" in (2.3) and noting as in (3.4) that

1||Jh,N||2 + 1 i\f: ||Jh,n -T Jh,n71||2
2 2 "
n=1
al 1 1
= DM =T T 4 I = S

n=1
The improvement using Eq. (3.6) indicates that the classical stability concept based
on (3.5) is not fully adequate. To obtain sharp results it seems to be necessary, and
also natural, to include dissipation terms in the stability estimates.

The estimate (3.2) is sharp as an estimate for ||J — J®V||; for the discontinuous
Galerkin method with piecewise linears, which corresponds to (2.4) with P, being
the La-projection onto the piecewise linears, in [3], we have shown that in general
the error ||JV — J®N|| with N = O(h™'), h = O(h), is not better than O(h*/?)
which corresponds to (3.2) with N = O(h™1).

To sum up, we get for Eq. (2.4) with the standard CG-approach , ||JVN —JbN|| =
O(Nh?), while the more careful analysis in the SD-approach gives ||JV — J»N|| =
O(VNh?). With N = O(h~'), we thus have ||JV — J»V|| = O(h) with the CG-
approach and ||JY — J"N|| = O(h*/?) with the SD-approach if the exact solution
J is sufficiently smooth, i.e. in the Sobolev space H?2.

4. NUMERICAL DIFFUSION

We shall now seek quantitative estimates for the dissipation in (2.4), i.e., the CG-
method or equivalently the CSD-method without the shock-capturing perturbation,
and in the CSD-method (2.13) with shock-capturing, i.e. £ # 0.

For Eq. (2.3) using (3.6) we have

(4.1) 7% + Dn = || £]I%,
where
N
(4.2) Dy = Z |7 — T, TR 2,
n=1

may be taken as a quantitative measure for the dissipation. Introducing 7,,V,,—1 =
{Tov : v € Vp_1}, we have T, J»"~1 € T,V,_; and to estimate Dy we are led
to estimate ||J®" — T, J»"~ Y| = ||(P, — Dw|| with w = T,,J*»"! € T, V,_1, i.e.,
the Ly-error in the Lo-projection of a piecewise linear function T, J""~' on one
mesh T,,V,, 1 onto a set of piecewise linears V,, on a different mesh. Obviously, by

standard estimates we have for w € T,,J"~! the following first order estimate:
(4.3) |(Pr = Dwll < Chpllwllar 1),
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with no standard second order counterpart since w ¢ HZ?(I.) if w € TpVp-1.
However, there is in fact a second order analogue of (4.3) available which takes the
form:

(4.4) 1(Pr = Dwl| < C (b7, + by 1)* 1AL n—awl],

where A, ,, 1 : HY(I,) = T,V, 1 is a discrete Laplace operator defined by
—(Ap_10,v) = (Vip,Viv), Yv e T,V,_1, see [4].
Inserting the estimate (4.4) into (4.2) we obtain assuming h,, < h,

N 14
(4.5) Dy<CY Z—||AL,n_1TnJh7"—1||2hn.

n=1"T
With A, = h the inequality (4.5) suggests that the dissipation in (2.4) corresponds
to adding a diffusion term of the form ch3A?% J to the continuous equation. In
particular for smooth solution it appears that (2.4) adds little diffusion as compared
to a first order upwind scheme with a corresponding continuous diffusion term of the
form ChA | J with much larger diffusion coefficient. Thus, (2.4) does not appear
to add excessive numerical diffusion unless of course we take A, small compared
to h,, so that very many Ls-projections of different meshes will be performed.
On the other hand in some sense (2.4) contains too little numerical diffusion since
oscillations may occur at discontinuities of the exact solution.

We now turn to the CSD-method (2.13) which obviously adds more numerical
diffusion than the CG-method due to modification on e-term. The stability estimate
corresponding to (4.1) in this case takes the form

(4.6) 17N> + Dy = IIfII%,
where
~ N
(4.7) Dy=Dn+2) /€|VLJ’“"|2 dz .,
n=1

where & = F(Chg|J"™ — T, J"" 1) /M,. Tt follows that the shock-capturing term
in the CSD-method corresponds to adding a viscous term of the form —div(éV L J)
to the continuous equation with & = &/h,, in S,. If the exact solution is smooth,
we expect by (4.5) to have &€ = O(h®) if h, < h and kA, = h, (a = 2), i.e. the same
amount of viscosity without the perturbation. However, close to discontinuity of
J (assuming f is discontinuous) we may have |J"™ — T, J»"~1| = O(1) at least
for n small, and then € = O(1), i.e., the shock-capturing term may add significant
additional numerical diffusion in regions of non-smoothness of the exact solution.

5. STABILITY IN THE MAXIMUM NORM

The stability, in the maximum norm, for the CSD-method being a particular
SD-method reads as follows: For a given L > 0 there is a constant C' such that if
Jhn o n=1,2,..., N satisfies (2.13), then if ,, < L we have

(5.1) 17 loo < Cllflloos

where ||v||oo =sup,  ¢7, |v(x1)|- The estimate (5.1) may alternatively be expressed
as follows

(5.2) T2 < T2, if p < ch R4,
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where k = 2 — a > 0 appears in the definition of € in (2.5), ¢ is a sufficiently small
constant, and || - ||, denotes the L,(I;)-norm:

(5.3 ol = ( | P dm)l/p, p>1.

More specifically, (5.1) follows from (5.2) by an inverse estimate letting p — oo.
To prove (5.2) the essential step is to choose in (2.11), v = m,, ((J")P~1), where p is
an even natural number, and 7, : C(I.) — V), is the standard nodal interpolation
operator, so that we get

[ Py [ e () da
I 1.

(5.4)

= / T, J* (I d ) + By,
I,

where

(5‘5) E, = / (Jh,n _ TnJh,n—l) ((Jh,n)p—l _ ﬂ_n((Jh,n)p—l)) dz | .
I,
Now by standard interpolation error estimates

(5:0)  |Bl SCF [ 1IN = DI LI T o

Iy
where ||v]|co,x = SUpP,, cx [v(x1)| on K. On the other hand we have for some
constant ¢ independent of p =2m, m=1,2,..., n=1,2,..., N,
/ EVLIM™V L (mn ((JP)P ) day
(5.7) =

C ~ _
> [ TIPS do
pJr,

For simplicity we now assume that £ is defined slightly differently compared to the
above, assuming now that M,, = 1 + ||J®"|| s,k on K € Ty, in which case |E,| is
dominated by the right hand side of (5.7) so that recalling (5.4):

(5.8) / (Jh™Pde, < / T, Jn=Y(J™ =t de ) if p<ch™"/4,
I; I,

with ¢ sufficiently small. Finally, (5.2) now follows by applying Holder inequality to

(5.8). Note that the proof of the crucial estimate (5.7) is carried out “element-wise”

and uses in an essential way that V,, consists of piecewise linears.

6. A POSTERIORI ERROR ESTIMATES

We return to the original problem and derive a posteriori error estimates. We
shall use the high accuracy and good stability features of the streamline diffusion
Galerkin method, studied in [2], based on

a) A phase-space discretization based on piecewise polynomial approximation
with basis functions being continuous in z; and discontinuous in z. (Discontinuity
in all variables are considered in [3]).

b) A streamline diffusion modification of the test function giving a weighted least
square control of the residual R(J") = £(J") of the finite element solution .J".
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c) Modification of the transport cross-section oy = 20 so that an artificial
transport cross-section &y, is obtained modifying ¢ as

(61)  &w,w1) = max (e(z,y), s hR(I")/|V LT, cah(w,21)?)

where h is a total mesh-size and ¢;, i = 1,2 are sufficiently small constants. For
the original degenerate problem £ is defined by replacing € in (6.1) by 0. With a
simplified form of the artificial transport cross-section as

(6.2) ¢ = max(e, c1h),
the SD-modification b) may be omitted. The a posteriori error estimate underlying

the adaptive algorithm is, in the case of discretizing in the transversal variable
(y,2) = x only, basically as follows:

(6.3) llénlle < C°CHllET R*R(IM) lla;
where é, = J — J", with J being the solution of (1.14) with ¢ replaced by ¢ and
(6.4) e=J-J =T -J0)+(J-J" :=é+é.

Note that J—J is a perturbation error caused by changing ¢ to € in the continuous
problem (1.14). Further C? is a stability constant, C? is an interpolation constant
and || - [| is the usual || - [|,, g)-norm. In the simplified case (6.2) the error estimate
(6.3) takes the form

(6.5) llénlllg < C*CHIAR(T™)||g-

The adaptive algorithm is based on (6.3) and seeks to find a mesh with as few
degrees of freedom as possible such that for a given tolerance TOL> 0,

(6.6) Co gt R(IM) |l < TOL,

which, through (6.3), would Ls-bound é". To control the remaining part of the
error; i.e., € = J — J , we may adaptively refine the mesh until £ = ¢, giving J = J ,
or alternatively approximate € in terms of £ — . To approximately minimize the
total number of degrees of freedom of a mesh with mesh size (z, z ) satisfying (6.6),
typically a simple iterative procedure is used where a new mesh-size is computed
by equidistribution of element contributions in the quantity C*C*||lé~"hR*R(J")||,,
with the values of £ and R(J") taken from the previous mesh.

The structure of the proof of the a posteriori error estimate (6.5) is as follows:

i) Representation of the error & in terms of the residual R(J") and the solution
1 of a dual problem with é, as right hand side.

ii) Use of the Galerkin orthogonality to replace ¢ by 1) — ¥, where ¥ is a finite
element interpolant of 1.

iii) Interpolation error estimates for ¢ — ¥ in terms of certain derivative Dt of
1 and the mesh-size h.

iv) Strong stability estimate for the dual solution 1 estimating D1 in terms of
the data éj of the dual problem.

Below we specify the steps i)-iv). Recall that J satisfies

Jo+B8-ViJ—eAJ=0, in Q,

N

(6 7) JA(O,;L'J_):f(SL'J_), for :L'J_EIyXIz,
' Jz(wayaizo) =0, for (x,y) € [OaL] X Iya

A

J(0,+yo,2) =0, for zeTy,
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with Ty =T~ N{z =0}, where ") = {x € T =0Q : f-n(x) <0(>0), f=
(1,8)}, and T is defined analogously, so that T° = {(z,y,+20)} U {(z, £y0,0)}.
Suppose now that J" € Vj, where V;, C La(Q) is a finite element space, is a

Galerkin type approximate solution satisfying

J£+B‘VJ_Jh—éAJ_Jh:R, in @,
(6.8) Jh0,-) = fr, ) in I, x I,

JV=0, onT,, and J!=0, on IY,
where fr, is a Galerkin approximation of f and the residual R satisfies Galerkin
orthogonality relation

(6.9) / Rvdrdry =0, Yv € V.
Q
We shall also use the following semi-consistency assumption:

(6.10) JMn - B|dr = / Jn - B|dr,
ry ry

where I'; :=T'~ \ {z = 0}, is the side-inflow boundary. Observe that both in our

continuous and discrete model problems (6.7) and (6.8), primarily, we may assume

(6.11) Tps = J"|p- =0,

however, there is no guarantee that “after-collision” particles would obey the same
boundary condition as (6.11). Therefore, assumption (6.10) is to ensure that: in
the approximation procedure the total inflow of particles is preserved.

In the sequel and to avoid multiple-indices, we shall refer to all approximated
functions with alternate sub or super-index h. Subtracting (6.8) form (6.7) gives
the following equation for the error é, = J = Jh:

Leh=eh + 8-V eh—éA el =R, in Q,
(6.12) eM0,-) = f — fn, in I, x I,
é"=0, onT,, and é"=0, on I,

We now introduce a dual for the non-degenerate problems (6.7), (6.8) or (6.12) as

6.1 LY=—g—f-Vig—EAig=¢" i Q,

: =0, on IT, and 1, =0, on IO
Let us, for simplicity, start to consider the original Fermi case by replacing, in
(6.7)-(6.13), B- V1, A1, and ¢ by 20y, 0.., and ¢, respectively. Then we have
the following version of the dual problem (6.13):

(6.14) { LYo =—pp —2py —Ep,, = éh: in @,

' =0, on It and ¢, =0, on IO,
Recall that, in (6.14), £ is obtained from (6.1) by replacing € by 0. We shall use
the notation € for both degenerate and non-degenerate cases, the meaning would
be obvious from the context. Further, for simplicity, we need a weighted angular
symmetry viz

(6.15) /1  (pw)(za) dady = / (ow)(=z0) dzdy,  Vw € L>(Q).

I x1I,

h

Integrating by parts and using (6.15) with w = (é"), and also w = £,é", we have

(616) _(éhaéﬂozz)Q = _(ézéga (P)Q + (ézéha ‘pz)Q - (éé’;z; (P)Q;
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where we have used the boundary condition ¢, = é* = 0, on T°. Using (6.14)-
(6.16), we get the following error representation formula.

€M% = (&", £*p)q = /Q M (—y — 2y — £ps2) dz das

=L
= (LCe, —/ gh d dz—/ dz dz
(6.17) (Le",0)q L N . w‘y_fyo
5
(5z z:‘;D)Q+(5z a‘PZ) '—ZIi'

i=1

Below we identify the terms I;, ¢ =1,...5, more closely. We have that
= (Le", ) /chdwd:cJ_
The incidental boundary conditions give

L=— / I (L) dy + / ¢"(0,)p(0, ) da = / (= Tpdas,

Iy

while the outflow boundary conditions, i.e., ¢ = 0, on I't imply that

y=v0 0 y=yo
Ig:—/ {/ cp‘ dz+/ <p‘ }dw
Yy=—Yo —20 Y=—Yo
/ / 2" (—y0)(—yo dzdw—/ / R (o) (yo) dzdx
— %
~ [ &l Alar,
-

s

where, n is the outward unit normal defined at the boundary and, for the sake of
generality, we have not used the assumption (6.10), yet. Thus

(6.18) Li+13= / éhpln - B|dT.
Hence, summing up we have
(6.19) ||éh||2 = —/ chdx—l—/ éhpn - B dT —/ ézégcpdx+/ é.éhp, dx.
Q r- Q Q
We use Galerkin orthogonality (6.9) and write
/ Redxdr, = / R(p — Pryp)drdz, = / (R=PrR)(p — Prp)dzdz,,
Q Q Q

where P, : Ly(Q) — Vp, is the Ly(Q)-projection. By Cauchy-Schwartz inequality
we may estimate the boundary integral term in (6.18) as

. . 1/2 . 1/2
/é”soln-ﬂldfs(/ Ié"l2ln-ﬂ|df) (/ «p2|n-ﬂ|dr) .
- | r—

Now using an interpolation error, with a symmetry assumption of the form ¢, ~
.2, We get the estimate

(6.20) ER*(0 = Prp)llq < C'lIEA Ll ~ C*llép=:llg,
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which together with a strong stability estimate for the dual problem (6.14) of the
form

(6.21) €=zl < C*lIé* I,
gives that
(6.22) —/ Ry dedr, < C°Clh*e™ (R — PuR)|lglle"llo-

Q
To estimate the boundary integrals we recall the Ly trace theorem, see [7],
(6.23) lull7 00 < Cllullz 0 lullivy 0
and also the inverse estimate

2 _ 2

(6.24) 1ol ) < ClIA™ 0l 0

where W is the usual Sobolev space consisting of functions having their derivatives
up to order r in L,, u and v are sufficiently smooth functions and Q has a Lipschitz
boundary, see [1] for the details. So that applying (6.23)-(6.24) to ¢ and @) we get
using (6.20)

/F_ lplln- B1dT < Cllelllgllellwig) < Clle — Prellelle — Prollwy )
< Cllgn (o — Pue)llellE™ B (¢ — Proo)llwy (o)
<CC(C))1ErlllE "R ALy,

where C' depends on the trace theorem and inverse inequality constants. By (6.1)
we have that & > h3/2 and therefore £71h® < h3/2 < &. Thus

e W .sllg < e WAL pllg = [lEps:llg < C*lletllg-
Hence

; b 112
(6.25) [ e 8ldr < or(ceci e,

At this moment we need to invoke (6.10), (note that if there is a feasible informa-
tion on behaviour of the secondary particles at the inflow boundary then we may
continue without using (6.10)), identifying the boundary integral

(6.26) /F_ |éh|2|n-B|dF=/roIf—fhlzln-BldF-

It remains to estimate Iy and I, where there is no orthogonality relation, such as
(6.9), available. Now we assume, for a sufficiently small constant ¢ < 1, that

(6.27) |V . €| < céh ',

and let C' = sup(éh7")/inf(éhT'), (works for the case corresponding to é ~ O(h)
in (6.2), as well), then by (6.27) and the inverse estimate we have

n ny — 1A PN N = N
(€et 9ol < esup (eny ) I etlint Avell < eCllet llép| < eCC?llet ',
X

the choice of C is for moving éhll in and outside the norms, and c is chosen so
that cCC*® < 1/8. Estimating I5, in a similar way we finally get

. A R 1,...2
(6.28) (€262, 0)ql + (626", ¢2)q| < leehll :
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Inserting (6.22)-(6.28) in (6.19) and using a kick-back argument we end up with

y 1/2
620 1Ml < € |02 R=PuRlg + ([ 1 = fuPim- Bl ar) }

where C = C(c, C,Cr,Co, C?). Thus we have estimated the error in terms of the
residual and the incident boundary error and we have a complete control over all
the involved constants (note that C being a theoretical constant is not affected by
our approximation procedure). The estimate (6.29), which is an analogue of (6.3),
is appropriate in the present contest with R satisfying the Galerkin orthogonality
relation (6.9) and f being a sufficiently smooth approximation for the product of
incident Dirac ¢ functions at the boundary.

We have now outlined the basic ideas in the proof of the a posteriori error
estimate (6.3) which rely on the Galerkin orthogonality relation (6.9) and the strong
stability estimate (6.21) of the dual problems (6.13) and (6.14).

Remark 6.1. The strong stability estimate (6.21) should be compared with the
non-validity of a weak stability estimate for (6.13) and (6.14) of the form

(6.30) lollg < Cllétllg, with p =1, or o,

corresponding to the Lo-instability phenomenon, related to the lack of absorption.
However, since ¢ and ¢ = 0 on a part of the boundary (I'"), with positive measure,
we may derive a weak variant of (6.30) (with p replaced by ép) using Poincare
inequality, (see [3], Lemma 2.2). We note that in (6.21) the derivative A ¢ ~ ¢,
of the dual solution is La-controlled (with the factor £) in terms of ||é"|| - Whereas
Ly-control of ¢ itself as in the estimate (6.30) is not possible to achieve in general.
For the a posteriori error control, using the strong stability estimates of the type
(6.21) (with derivative control only), it is necessary to use Galerkin orthogonalities.
To motivate for removing degeneracy through introducing £ and also the role
played by the artificial viscosity € in the error estimate (6.3) we notice that the
corresponding sharp a posteriori error estimate for elliptic problems is

(6.31) 1€l < ClIR*R(T")llo-

The estimates (6.3) and (6.29) may be viewed as a variant of (6.31) where the
ellipticity introduced, by €, in the hyperbolic problem is compensated by the mul-
tiplicative factor £ in (6.3) and (6.29).

In conclusion: A posteriori error estimates for numerical schemes may be viewed
as special cases of a general stability theory controlling the effect on the solutions
resulting from non-vanishing residuals. The perturbations in the finite element
method corresponding to certain orthogonality relations make the a posteriori error
estimates possible in cases where a general perturbation argument would fail.

7. NUMERICAL EXAMPLES

To justify the advantageous behaviour of the characteristic streamline diffusion
(CSD) versus characteristic Galerkin (CG) we present, through some simple nu-
merical examples, the smoothing effect of a usual modified SD method compared
to the standard Galerkin (SG) method (these are more general compared to char-
acteristic versions): (i) We consider a semi-streamline diffusion (SSD) approach by
interpreting = as being a time variable and perform different time discretizations
of I, by backward Euler (BE), Crank-Nicolson (CN) and discontinuous Galerkin
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(DG). (ii) We combine these time discretizations with both SG and SSD methods
for the discretization of I, . The implementations are performed over two different
initial conditions: Maxwellian and modified Dirac approximating our data: the
Dirac § function.

We split the problem into two steps. First we discretize the two dimensional do-
main I, = I, x I, by means of piecewise linear approximation cG(1), and establish
a mesh there in order to obtain a semidiscrete solution and subsequently we apply
one of the three schemes, BE, CN or DG to step advance in the x direction. Our
c¢G(1) basis functions have the form, ¢; = a1y + asz + as.

In some special cases (for instance, for € = e(z) := o(x)/2, see [8], [9] and [10])
the closed form exact solution of (1.11) is given by,

V3 a[a(y/z)—3(u/2)2427)/(ea)
(7.1) J(z,y,2) = ke i

This allows us to draw some limited comparisons in terms of the actual error. In
addition to being a limited case, (7.1) also displays singularities near the origin
which, (although removable), makes it difficult to numerically implement as is.
Obviously the final solution depends on initial conditions and therefore it is not
correct to compare (7.1) with the solutions we obtain numerically since the under-
lying initial conditions were not the same to start with. For instance we can not
numerically provide an initial data of the form of a Dirac § function. We therefore
use two different types of computable initial conditions, each approximating the
Dirac ¢ function, in the L; sense, for comparison purposes. Through these exam-
ples we also ascertain how strongly can differences in initial conditions affect our
estimates on convergence established for CG and CSD, see [5] for further details on
implementations.

More specifically in Figures 1 and 2 below we consider Dirac and Maxwellian
data and look at slices of the domain () and the differences between the “exact”
and approximate solutions over all three cases of time discretization schemes. The
computational parameters that are used rely on the theoretical results presented
in previous sections. For instance € must be chosen to be small and given such a
choice we take h? < e < h, also § ~ h. The Figures 1 and 2, were produced for
values of € = .05 and h = .1. In these examples the value of J is taken as § = h/2,
and the time increment as k := h = h2. For further studies in this direction we
refer to [5]. In Figure 1, the superiority of the SSD is more obvious when the data
is non-smooth. Even for a highly smooth “initial data”, such as Maxwellian (viz
Figure 2), the smoothing effects of SSD over SG are clearly pronounced, especially
for the discontinuous Galerkin approximation of I,.

We conclude that: For this type of problems using modified SD approaches,
such as SSD and CSD, the oscillatory behaviour of the Galerkin schemes and Lo
projections are substantially improved.

In tabels 1 and 2 below we show some convergence rates for the actual error,
ep, := J — Jy, performed over four different initial data: modified Dirac, hyperbolic,
Maxwellian, and cone functions, approximating our data, the d-function. These
estimates are in a weighted Ly norm defined by

3 1/2
lellz, = (3 S Il S 0?) ™,
k=1

Ti
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Dirac initial cond.(h = .1) Differences between finite elements used. (Sol. vs. nodes)
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FIGURE 1. Galerkin vs. Semi-Streamline elements for Dirac initial
condition at h = .1 for the slice, -1 <y <1 at z = —.9.
Dirac Hyperbolic Maxwellian Cone
Time discretization for x e}, —e3, e, —e3, ey, —e5, €1 — €ap
Backward-Euler 13.63-1.806 .064-.013 .123-.042 .115-.047
Crank-Nicolson 13.73-1.814 .065-.014 .122-.041 .115-.047

Discontinuous Galerkin ~ 13.40-2.065 .064-.012 117-.043 .110-.051
TaBLE 1. Standard Galerkin discretization in z; = (y, 2)

where 7; are the triangles in the mesh and C}; denote the midpoints of the edges of
7;. In this procedure I, is identified as a time interval and is discretized by BE, CN
and DG methods, while for I; we have used SG and SSD. The implementations are
over the reference domain [0, 1] x [—1,1]? and extrapolated in the mesh parameter
h = 0.025. The step size k for the discretizations in x variable is taken in the range
h < k < 0.0005, and we have chosen § = £ = 0.005. As a result of our numerical
tests we can see the convergence of each scheme as the step size is reduced as well
as a somewhat pronounced improvement in using SSD over SG.

Finally we test the reliability of our, asymptotically obtained, pencil beam equa-
tion for the dose calculations: In Figure 3, the dose intensity (the amount of de-
posited energy per unit volume, per unit time) radiating an elliptic target is shown
at the collision site x = 0.3 and with a o4 = 0.1. This justifies, e.g that our
equation is relevant as a pencil beam model.



18 M. ASADZADEH
x 10°% Maxwell initial cond.(h = .1) Differences between finite elements used. (Sol. vs. nodes)
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FIGURE 2. Galerkin vs. Semi-Streamline elements for Maxwell

initial condition at A = .1 for the slice, —1 <y <1 at z = —.9.

Dirac Hyperbolic Maxwellian Cone
Time discretization for z e}, — e}, €1, — €5,  €ip — e €1n — €3y
Backward-Euler 13.33-1.801 .063-.014 .118-.041 .110-.045
Crank-Nicolson 13.44-1.806 .063-.015 .117-.040 .110-.045
Discontinuous Galerkin ~ 13.28-2.068 .063-.014 117-.042 .110-.049
TABLE 2. Semi-Streamline Diffusion in 2z, = (y, 2)
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