Mathematic Chalmers & GU
TMA372/MANG660: Partial Differential Equations, 2006—12—-18

Telefon: Christoffer Cromvik: 0762-721860
Calculators, formula notes and other subject related material are not allowed.

1. Prove the following interpolation error estimate
1f = 71 fllLwap) < Cild = a[lf"||Lecart)-

2. Prove an a priori and an a posteriori error estimate for the ¢G(1) finite element method for
—u'(z)+u(z)=f, 0<z<1; u(0) = u(1) = 0.

3. Formulate the cG(1) piecewise continuous Galerkin method for the boundary value problem
—Autu=f, x€ u=0, z€dQ\(T1UTl2), Vu-n=0, zelUly,

on the domain {2, with outward unit normal n at the boundary (see fig.). Write the matrices for
the resulting equation system using the following mesh with nodes at N;, No and N3.

Hint: You may first compute the matrices for a standard triangle-element T'.

rs "

N,

4. Consider the initial value problem (u = u(z,t))
u+Au=f, t>0; u(t = 0) = ug.
Show that if there is a constant a > 0 such that
(Av,v) > allo]l?, Vo,

then the solution u of the initial value problem satisfies the stability estimate

t 1 t
O +a [l ds <ol + - [ 1) ds.

5. Consider the boundary value problem

0
Au=0, in QCR?, gu +u=g, onI['=9Q, n isoutward unit normal to I'.

on
a) Show the stability estimate
1 1
IVull3 @ + 50l < 51191 B
b) Discuss, concisely, the conditions for applying the Lax-Milgram theorem to this problem.
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TMA372/MANG660: Partial Differential Equations, 2006-12-18. Losningar.

1. See the book or Lecture Notes; Chapter 5.

2. We multiply the differential equation by a test function v € H(I), I = (0,1) and integrate
over I. Using partial integration and the boundary conditions we get the following variational
problem: Find u € H(I) such that

(1) /I(u'v' +u'v) = /va, Vv € Hy(T).

A Finite Element Method with ¢G(1) reads as follows: Find U € V}? such that
(2) /I (U +U') = /I fv, YveVP cH;(),

where

V? = {v : v is piecewise linear and continuous in a partition of I, v(0) = v(1) = 0}.

Now let e = u — U, then (1)-(2) gives that
(3) /(e'v' +e'v) =0, YveV.
I

We note that using e(0) = e(1) = 0, we get

(4) /Ie'e = /I %%(62) = %(62)% =0.

Further, using Poincare inequality we have
llell” < lle']|>.

A priori error estimate: We use Poincare inequality and (4) to get

llel|% :/(e'e'+ee) §2/e'e':2/(e'e'+e'e) =2/(e’(u—U)'+e'(u—U))

I I I I
= 2/1 (e'(u —mpu) + €' (u— whu)) + 2/1 <e'(7rhu —U) + € (mpu— U))
={v=U—-mpu in (6)} = 2/1 (e'(u —mpu) +e€'(u— 7rhu)>

< 2/|(u = mpu)'[llle'll + 2/l — maulllle']
< 2C{|1hu"|| + 1h*w" | Hlel #r2,

this gives that
llelle < Ci{llhu”|| + [[h*"[1},

which is the a priori error estimate.



A posteriori error estimate:
llel|3: = /(e'e'+ee) < 2/6'6' = 2/(6'6' +¢€'e)
T T T
- 2/((u _UYe + (u=UYe)={v=e in (4)}
I
(5) - 2/fe _ /(U’e' +U'e) = {v = me in (5)}
I I
= /f(e —The) — / (U'(e —mpe) +U'(e — whe))
T I
= {P.I. on each subinterval} = /R(U)(e — The),
I
where R(U) := f+U" —U' = f — U’, (for approximation with piecewise linears, U = 0, on each
subinterval). Thus (5) implies that
lellz < IBR)NIR™" (e — me)
< GillhRO)[le']] < CillhRD) | [lell e 5

where C; is an interpolation constant, and hence we have with || - || = || - ||z,(r) that
el < CillARU)II-

3. Let V be the linear function space defined by
Vi :={v:v is continuousin Q, v =0, on 9N\ (I'1 UT)}.
Multiplying the differential equation by v € V' and integrating over Q2 we get that
—(Au,v) + (u,v) = (f,v), Vv e V.

Now using Green’s formula we have that

—(Au, Vv) = (Vu, Vv) — /89(11 -Vu)vds

= (Vu, Vv) — /

69\(F1UF2)
= (Vu, Vo), Yve V.

Thus the variational formulation is:
(Vu, V) + (u,v) = (f,v), YveV.

Let V}, be the usual finite element space consisting of continuous piecewise linear functions satis-
fying the boundary condition v = 0 on 992 \ (I'; UT'3): The ¢G(1) method is: Find U € V}, such
that

(n-Vu)vds — / (n-Vu)vds

I'yUl's

(VU,Vv) + (U,v) = (f,v) Yv eV

Making the “Ansatz” U(z) = 2?21 &ivi(z), where p; are the standard basis functions, we obtain
the system of equations

3
= Q Q Q

or, in matrix form,
(S+M)E=F,
where S;; = (V;, V;) is the stiffness matrix, M;; = (5, ¢;) is the mass matrix, and F; = (f, ¢;)
is the load vector.
We first compute the mass and stiffness matrix for the reference triangle 7. The local basis

functions are
2



¢1($17$2)=1—%—%; V¢1($1;$2)=—%[ i ],
¢2($1;$2)=%, V¢2($1a$2)=% [ (1) ] )
$3(w1,22) = %, Vos(21,22) = % [ (f ] .

Hence, with |T| = [ dz = h?/2,
1 1—zo
mi1 = (¢1,¢1) = / (ﬁ% dz = h2/ / (1 — T — .’172)2 dmldmg =
T 0 0

2
s11 = (Voy, V1) =/ Vo |* do = Il =1.
T

Alternatively, we can use the midpoint rule, which is exact for polynomials of degree 2 (precision
3):

2

E:

| ( ) h?
= = d JR—
mir = Gn60) = [ dido= Z«m 0+ g+3) =0,
where &; are the midpoints of the edges. Slmllarly we can compute the other elements and obtain
,[2 1 1 2 -1 -1
m= 2—4 1 2 1], s = % -1 1 0
1 1 2 -1 0 1

We can now assemble the global matrices M and S from the local ones m and s:

M1 = 8mag = ﬁhz S11 = 8s32 =4,
My = 2mys = ﬁhZ Si2 = 2812 = —1,
M3 = 2mp3 = —h2 S13 = 2823 =0,
My = 4my; = EhZ Sp2 = 4811 =4,
1
Msz = 2mq9 = Eh2,, Saz = 2819 = _17
3
M33 = 3m22 = Eh2,, Sg3 = 3822 = 3/2
The remaining matrix elements are obtained by symmetry M;; = Mj;, S;; = S;;. Hence,
8 11 4 -1 0
M="|141]|, s=|-1 14 -1
1219 1 3 0 -1 3/2

4. Multiply the differential equation by u(t) and integrate over the space domain to get

. 1d
(fiu) = (4,u) + (Au,u) > §allull2 +allull®.
Now

1,1 2 2) _ 1 2 2
1,v2e)| < 3 (P + 22ll?) = LI + <l

(7=
\/_
With e = a/2 we get
1 d . .
S + edlul® > Zllull® + 2o ul*

Integrating in time yields

t 1 t
llu@®II* = [luoll” +a/0 l[u(s)II*ds < 5/0 1£(s)II” ds.
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5. a) Using Greens formula we have that

/Q|Vu|2:/QVu-Vu:—/Q(Au)u+/6)gg—2u:/m(g—u)u,

1 1
IVullZ, @) + iz, o) = /6Q gu < lgllZ, oy 1ullZ 0y < 511911200y + 5 l1ellZ ),

In other words

which gives the desired estimate.
To show the Riesz/Lax-Milgram conditions we introduce the notation

a(u,v) = / Vu - Vv +/ wv, and L(v) :/ gu.
Q oQ X

Then a(u,v) is a scalar product with the corresponding norm ||v||, = a(v,v)'/2. For instance we
have that ||v||, =0, only if v = 0:

0=||v||i=a(u,v)=/|Vv|2+/ 1)22&/1)2, for some o > 0 = v =0.
Q Gle) Q

Further L(v) is bounded in this norm, e.g. if ||g]|ao < 00, then
IL@)| < llgllaallvllaa < llglloallv]la-
We can also apply Riesz theorem in the sense that there existes u such that
a(u,v) = L(v), Y,
and u is uniquely determined by
[lulla = llglloa-

Ou
a(u,v) = —/QAuv-i-/BQ(a—n + u)v,

Auy=0, inQ Z—Z+u:g onT.

Moreover since

we have that



