TMA372/MAN660 PARTIAL DIFFERENTIAL
EQUATIONS
COMPUTER ASSIGNMENT 1

1. PURPOSE

The purpose of these exercises is

1) to help you better understand the basic differential equation mod-
els used in the course. In particular, we study the roles played by the
different terms in the differential equations and the signs and sizes of
the coefficients;

2) to help you understand how well a finite element solution approxi-
mates the solution to a PDE and where and why there can be problems.
The idea of adaptivity and the structure of an adaptive algorithm are
also important. In particular, we shall see that adaptivity and local
mesh refinement can compensate for local non-smoothness of the solu-
tion, i. e., by using local mesh refinement it is possible to get the same
accuracy as if the solution were smooth;

3) to let you solve a “real world” problem or, at least, taste solving
such problems, by constructing or completing adequate mathematical
models and then simulate the real world phenomena on the computer
using an adaptive finite element program.

Remember that the emphasis should be put on getting a feeling for
the equations and their behaviour. As for the “real world” problems,
they’re not at all fixed, rather, you are encouraged to make up your
own application or modify one of the suggested.

You are expected to hand in a brief report on these exercises in order
to obtain bonus points. What I want is only some notes on what you
have learned when working through this assignment. When you need a
figure to explain what you mean, include it, but otherwise leave it out.
For the “real world” problems, though, a somewhat more complete
description of the problem and how you solved it is requested.

2. MODEL UNDERSTANDING—AN EXCURSION

2.1. A general second order equation model. We will study the
second order differential equation

—D(d(z)Du) + ¢(x)Du + a(lzc)u = f(z), forz € (0,1),
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together with the boundary conditions
—dDu+ku=¢g or u=g atz=0,

and
dDu+ku=g or u=g atz=1.

This equation models diffusion type problems. The terminology used
here will be that of what we in general think of as diffusion, namely
transport of some chemical substance, but you can apply the model to
e. g. heat conduction problems as well. The first term in the equation
models the diffusive process, and the quantity

—dDu(x)

is the diffusive flux. The coefficient d(z) is the diffusivity. The second
term is the convective transport, where ¢(z) is the flow velocity. The
third term represents absorption of the species and the term on the
right hand side is a source term.

The boundary conditions can also be written

+dDu = k(u — g)

which might be physically more intuitive. The flux over the boundary
is proportional to the difference between the solution at the boundary
point and some exterior quantity. Here k (the proportionality constant)
is a transfer coefficient.

2.2. AAFEM. The tool used to study this equation will be the MAT-
LAB program AdFEM. AdFEM is a finite element program that uses
piecewise linear elements and adaptive mesh refinement to find an ap-
proximate solution to the equation described above. You can download
the program from
http://www.math.chalmers.se/~mohammad/pdel_lab/labl/adfem.zip

To unzip the files, use ‘unzip’ (on UNIX machines) or some version
of ‘pkzip’ (on DOS-based machines).

The program is started with the command >> adfem in MATLAB.
You will be asked to give the coefficients in the model, the boundary
conditions etc. The program will then try to solve the problem, refining
the mesh if necessary, and present the solution in a plot together with
the residual and the meshsize.

If you want to change the problem you can type e. g. >> convec-
tion=’1-.5%x’ followed by >> solve and AdFEM will try to solve
the problem with the new convective velocity. The other coefficients are
called diffusion, absorption and force. Check the routine adfem.m
to find the variable names for changing boundary conditions, domain,
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tolerance etc. Be sure to get the type correct, i. e. check if you should
give a string or a numerical value.
For a more extensive AAFEM manual, see
http://www.math.chalmers.se/~mohammad/pdel_lab/labl/adfem.ps
(PostScript version), or
http://www.math.chalmers.se/~mohammad/pdel_lab/labl/adfem.pdf
(PDF version).

2.3. The excursion. What will follow are four different sets of equa-
tion coefficients which are intended to show how the diffusion and the
convection influence the solution. The absorption and source terms will
not be considered here. There are also some questions and hints given
to help you ‘see’ the different phenomena. In the next section there
are also some questions concerning the numerics, the error and the
adaptive routines. Read those questions before doing the simulations.

First, we will study the diffusivity. Solve the problem with d(z) = 1,
c(xz) = a(z) =0, f(x) = 1 and take the boundary conditions to be of
Dirichlet type and homogeneous (= 0), i. e., take u = 0 at both z = 0
and x = 1. Why does the solution look like this? How can we inter-
pret the boundary conditions? If we change to homogeneous Neumann
conditions at both ends, what happens? How do we now interpret the
boundary conditions? Finally, change to the inhomogeneous Neumann
condition u'(1) = —1 (keep u'(0) = 0). Is this solution unique?

Next, change the boundary conditions back to homogeneous Dirich-
let type, change the diffusivity to

d(z) = 0.01 + z*
(type >> diffusion=’0.01+x"4’) and put
f(z) = sin(40 * z).

Now, near z=0 the diffusivity is small and near z=1 it is larger. How
will this influence the solution? What can we say about the role of the
diffusivity?

Change the diffusivity back to 1 and set >> force=’1/x’. Here we
have a source that is singular at the left end point of the interval. Why
does this not cause any problems in the solution when we have such a
large diffusivity?

We will now add some convection to the equation. Let d=0.02, set
>> convection="1’ and change the source back to 1 (>> force="1").
Why does the solution look like this? (Hint: What happens if you set
d=0, is the solution compatible with the boundary conditions? Com-
pare with Problem 18.5 on page 459 in the book.)
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2.4. Error and Adaptivity. There are two main questions that you
need to think about here. The first is how close to the exact solution
it is possible to come with this numerical method, and the second is
how do I choose my mesh in order to get as close to the exact solution
as [ want to in an efficient way.

To answer the first one, you should study the relation between the
solution and the residual. Where is the residual large and what does
the solution look like there? (What is the residual?) If you haven’t
done the preparatory exercises, you may need to take a look at them.
The theory behind this is given in Chapter 5 in the book.

The answer to the second one can be found in the relation between
the residual and the meshsize, e. g. how large is AR(U)? If you don’t
want to figure it out for yourself, you can read Section 8.2.3 in the
book.

3. APPLICATIONS

Choose one of the following, or make up your own.

3.1. Heat Conduction Through a Wall. A wall consists of three
layers: the core of the wall is 25 cm of isolation material with heat
conductivity 0.024 W/(m K) and on each side of this core, there is a 3
cm layer of wood, heat conductivity 0.14 W/(m K). What is the heat
flow through the wall if the inner temperature is 73, = 21° C and the
outer temperature is 7,,; = —10° C.

The solution procedure can be split in the following way: a) Derive
the boundary value problem

—(d(z)u'(z)) =0, —-1<z<1; u(-1)=gy u(l) =g,

where all quantities are dimensionless.
b) Solve the equation by hand when

d(z) = €(1+ (Bz)*)

and use this to check that the program is correct and gives the right
answer. It is always a good thing to check a program on an easy but
non-trivial model problem.

¢) Solve the given problem using AAFEM. (Hint: The routine diff
in MATLAB gives the difference between consecutive components in a
vector. The meshsize used is stored in the vector h and the solution

is stored in u. Use this to compute a difference approximation to the
flux.)



PARTIAL DIFFERENTIAL EQUATIONS — COMPUTER ASSIGNMENT 1 5

3.2. Time-dependent Heat Equation. Write your own finite ele-
ment code that solves the one dimensional heat equation:

o—(dz)u'(z)) =0, —-1<z<1; u(-1)=gy, u(l) =g,
subject to some initial condition
u(z,0) = ug(x)

Use the ¢G1 method in space and compare the cG1 and dG0 methods
for discretizing in time. Can you see any differences?

3.3. Time-dependent Convection-diffusion Equation. Simulate
how a pollution spreads in a flowing liquid using the MATLAB program
ibup. It can be downloaded from

http://www.math.chalmers.se/~mohammad/pdel_lab/labl/ibvp.zip

This program is similar to AdFEM, you start it with >> ibvpI.
Choose the coefficients and boundary conditions (motivate your choice)
and set the initial value to e. g. a narrow Gauss curve. Study the
influence of the diffusivity and the convective velocity. How does the
adaptivity work? You may want to go ahead in the book and read a
little in Chapter 18.



