TMA372/MAN660 PARTIAL DIFFERENTIAL EQUATIONS
COMPUTER ASSIGNMENT 2

INTRODUCTION

This assignment treats adaptive Finite Element Methods for:

e Poisson’s equation,
e Convection-diffusion problems,
e Selected applications.

To solve the problems in this assignment you are proposed to use the MATLAB
program FEMLAB. As an alternative, for most of the applications below it is also
possible to use the (somewhat simpler) PDE Toolbox in MATLAB.

The main objective is twofold. First we study the qualitative behaviour of the
partial differential equations and develop a basic understanding and intuition for
the dependence of the solutions on the coefficients in the equation. We also study
the qualitative properties of the adaptive finite element method. Next we study
mathematical modelling of real world problems using the finite element methodol-
ogy to solve the equations in our models.

1. QUALITATIVE STUDY: SOME TWO-DIMENSIONAL MODEL PROBLEMS

In all of your computations below try different visualisation options. Study in
particular the mesh refinement procedure (see e. g. page 1-19 in ”Minicourse on
FEMLAB?” or pages 3-25 to 3-26 in "PDE Toolbox User’s Guide” to learn how to
turn on adaptivity). Does the automatic mesh refinement agree with your intuition?

1.1. The Poisson equation. Elliptic equations arise in many different physics
and engineering problems, they often represent the asymptotic solution to a time
dependent problem when t — co. The simplest and most important example of an
elliptic equation is the following, which is called Poisson’s equation when ¢ =1,

-V-(cVu) = f in Q,
(1) u = 4g on FD'L'T:
0
8—Z = h on FNeu;
ou
—c% = a(u—g) on Tpge.

e Give a simple physical interpretation of the equation. What do the different
boundary conditions mean?

e Solve (1) on a polygonal domain § in the plane with the simplest choice of
data, ¢ = 1, f = 1 and the Dirichlet boundary condition g = 0 on ' = I'pj,.
Modify the domain €2, and investigate the behaviour of the solution in the
neighbourhood of convex and non convex corners. Compare with theory.

e Choose a domain and compute the solution for different right hand sides f,
change to Neumann/Robin conditions on part of the boundary. Compare
with your physical interpretation.

1



2 PARTIAL DIFFERENTIAL EQUATIONS —COMPUTER ASSIGNMENT 2

1.2. The convection-diffusion equation. The convection-diffusion equation is
a simple example of hyperbolic type problems. Hyperbolic problems typically de-
scribe transport processes and they appear in many different applications, e.g. fluid
mechanics. The convection-diffusion equation also serves as a very simple but use-
ful model problem for the Navier-Stokes equations as it inherits typical properties
such as boundary layers and rapidly changing solutions. The equation takes the
form

au+f-Vu—V-(eVu) = f in Q,
(2) u =9 on Finflowa
ou
u or m h on  Doutfiow-

Note that Dirichlet conditions must be given on the inflow part of the boundary but
on the outflow part both Dirichlet and Neumann/Robin conditions are possible. In
order to get a rough idea about the solution when the viscosity/diffusivity, €, is
small it is often useful to consider the purely hyperbolic case where € is zero and
the equation can be solved by integration along the characteristics.

e Compute! the solution on some polygonal domain (2 in a situation with

small diffusion and large convection, say € = 1 and |8| = 100. Change
the direction of the vector 3, describe the corresponding changes in the
solution.

e Consider the solution to (2) with homogeneous Dirichlet boundary data on
some polygonal domain Q vary the diffusion coefficient, study the change
towards a more elliptic equation when the diffusion is increasing and the
change towards a more hyperbolic behaviour when the diffusion is decreas-
ing.

o Investigate the different possibilities for boundary conditions. Consider in
detail the different behaviour at the outflow boundary for Dirichlet and
Neumann/Robin conditions. What is the relationship between the width
of the outflow boundary layer and the size of €? Compare with theory.

e Solve the problem with discontinuous Dirichlet data on the inflow boundary,
investigate how far this discontinuity in data propagates into the domain
for different choices of e. What can you say about the smoothing property
of the equation?

2. SELECTED APPLICATIONS

Select one of the following applied problems, or solve a problem of your own.
The objective is to solve an applied problem of interest using FEMLAB or the PDE
Toolbox, to evaluate the results obtained and draw some conclusions concerning the
nature of the exact solution and the numerical approximation. Use your fantasy and
focus on features of interest. Note that the problems are not precisely formulated.
You thus have to think of:

e An interesting real world problem.

e Mathematical modelling including for instance the choice of boundary con-
ditions and truncation of the computational domain in case of unbounded
domains.

e Computational aspects.

IFor this type of convection dominated problems you can not use the PDE Toolbox. If you
want, at  http://www.math.chalmers.se/~mohammad/pdel_lab/lab2/example.html you can
find an example of how to solve such a problem using FEMLAB.
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o Analytical aspects, seek to simplify the model so that it is possible to obtain
an analytical solution. Solve the simplified problem and think about the
extra assumptions you have made, are these realistic?

2.1. Convection-diffusion-absorption/reaction. Consider a 2d convection-
diffusion-absorption/reaction problem of the form

au+B-Vu—V-(eVu) = f,

together with suitable boundary conditions on the boundary T of Q, where u is an
unknown concentration, € = ¢(z) is a given (small) diffusion coefficient, 8 = ()
is a given velocity field, @ = a(z) is a given absorption/reaction coefficient and
f = f(z) is a given production term. Solve a convection-dominated problem of this
form for instance related to pollution control, where f is a delta-function at some
point P € Q. Determine for instance the width of the ”smoke plume” and compare
with theory.

2.2. Electrostatics. Consider the basic problem of 2d electrostatics

' (€E) = p
E = —V¢,

together with suitable boundary conditions corresponding to a part of the boundary
of Q being a perfect conductor and the remaining part being insulated. Here E is
the electric field, ¢ the electric potential, € = e(x) the dielectricity coefficient, and
p the charge density. Solve a problem of this form in a configuration of interest
for instance with the boundary containing a sharp non-convex corner. Study the
behaviour of the electric field in the vicinity of the corner and compare with theory.

2.3. 2d fluid flow. The velocity u = (u1,u2) of an incompressible irrotational
2d fluid may be expressed through a potential ¢ by u = V¢ . Coupled with the
incompressibility equation V - 4 = 0 this gives the Laplace equation for ¢:

V-(Vg)=4¢ = 0,

together with suitable boundary conditions expressing for instance that v -n = 0
on solid boundaries. Note that it is not possible to use Neumann conditions on the
entire boundary. Solve a problem of the following type, using a potential:

(a) flow through a 2d nozzle
(b) flow around a disc or wing profile

Use the gradient plot to visualize the flow.
In FEMLAB, also compute the flow by solving the incompressible Navier-Stokes
equations. Compare the results.

2.4. Membrane problem. Derive the basic equation for a membrane supported
by an elastic half space subject to a transversal load f:

-V - (Vu) + Eu = f,

together with suitable boundary conditions, where u is the vertical displacement of
the membrane, F is the modulus of elasticity of the supporting half space. Solve
a problem of this type in a configuration of interest. Derive an eigenvalue problem
describing the eigenmodes of the corresponding vibrating membrane and solve this
problem.
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2.5. Heat conduction. Consider the 2d stationary heat equation
Vq:fa q:_ﬁvua

together with suitable boundary conditions, where u is the temperature, g the heat
flow, k the heat conduction coefficient and f a given production term. Solve for
instance a problem of this form modelling a hot water pipe buried in a half space
and determine the temperature on the boundary of the half space above the pipe
using a Robin boundary condition on the surface.

2.6. Quantum physics. Consider the 2d stationary Schrodinger eigenvalue prob-
lem

h2
_ A =
5 Au + V(z)u = A,

where V is a given potential, i is Planck’s constant divided by 27 and m is the
particle mass. Give a quantum physical interpretation of the eigenvalues and cor-
responding eigenfunctions determined by this equation. Normalize the constants
and solve the problem for some suitable domain and potential. Discuss your com-
putational results from a quantum physical viewpoint.

2.7. Flow in porous media. In the simplest model of flow in porous media we
assume that the flow ¢ is proportional to the pressure gradient

q=kVp,

where k is a constant depending on the media. The pressure will then satisfy the
equation.

V-kVp =0,

together with suitable boundary conditions. Consider for example the flow under
a dam. What happens with the flow for various geometries of the dam. We may
expect that the media right under the dam will be more “dense” due to the weight
of the dam. How can you take this into account in your model.

2.8. Scattering. Consider the wave equation in two space dimensions

0%u

% —Au= f(t,l’),
make the ansatz u(z,t) = u(z)exp(iwt) to find the Helmholtz equation for 2d
acoustic scattering

Au+w’u = —e ¥ f(t,2),

Solve this problem with f = exp (iwt) corresponding to periodic forcing with a
given frequency w and suitable boundary conditions on a bounded domain 2. Let
f = 0 and consider a scatterer with boundary I' and let €2 be the unbounded region
outside the scatterer. u is the reflected field, and w is a given frequency. Solve a
problem of this form with Dirichlet boundary conditions on I' and suitable boundary
conditions (in the simplest case homogeneous Dirichlet conditions) approximating
the Orr-Sommerfeld conditions on a truncated bounded domain approximating (2.



