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Abstract

Place a water glass at each integer point, the one at the origin being full and
all others empty, and consider averaging procedures where we repeatedly pick
a pair of adjacent glasses and pool their contents, leaving the two glasses with
equal amounts but with the total amount unchanged. Some simple results are
derived for what kinds of configurations of water levels are obtainable via such
procedures. These are applied in the analysis of the so-called Deffuant model
for social interaction, where individuals have opinions represented by numbers
between 0 and 1, and whenever two individuals interact they take a step towards
equalizing their opinion, unless their opinions differ beyond a fixed amount θ

in which case they make no adjustment. In particular, we reprove and sharpen
the recent result of Lanchier which identifies the critical value θc for consensus
formation in the Deffuant model on Z to be 1

2
.

1 Introduction

Let G = (V, E) be a graph which may be either finite or infinite with bounded degree.
The Deffuant model [2] on G with parameters µ ∈ (0, 1

2 ] and θ ∈ (0, 1) is defined
as follows. At time t = 0, the vertices are assigned i.i.d. values, uniformly distributed
on [0, 1]. Independently of this, each edge e ∈ E is independently assigned a unit
rate Poisson process. The value at v ∈ V at time t is denoted ηt(v), and remains
unchanged as long as no Poisson event happens for any of the edges incident to v.
When at some time t the Poisson clock rings at edge e = 〈u, v〉 such that ηt−(u) = a
(meaning lims↑t ηs(u) = a) and ηt−(v) = b, we set

ηt(u) =

{

a + µ(b − a) if |a − b| ≤ θ
a otherwise

(1)

and

ηt(v) =

{

b + µ(a − b) if |a − b| ≤ θ
b otherwise.

(2)

In the case |a− b| > θ, we will speak of the Poisson clock being censored. For finite
G, the well-definedness of this process is trivial from the facts that a.s. there will be
only finitely many Poisson events in any finite time interval, and none of them will
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be simultaneous. The extension to bounded degree graphs is standard; see, e.g., [6,
Chapter I, Thm. 3.9].

This can be thought of as a model for consensus formation in a social network.
Each vertex v ∈ V represents an individual, and ηt(v) represents her belief or opinion
on some matter. The dynamics defined in (1) and (2) is a crude model for the following
phenomenon. Suppose I believe that the universe is 13.5 × 109 years old, and that I
encounter Lisa who believes the universe is 13.0× 109 years old. Her estimate sounds
not unreasonable, and she thinks the same about mine. This causes me to adjust my
estimate down to 13.4 × 109 years, while she adjusts her estimate up to 13.1 × 109

years. If instead I encounter Sarah who thinks the universe is merely 6000 years old,
then I conclude that she is nuts, a view she reciprocates, so neither of us finds any
reason to adjust our estimates. More generally, we are prone to take other people’s
opinions seriously only if they fall within some given range θ of our own.

The Deffuant model is just one among many mathematical models for social
dynamics; see [1] for a survey. In a recent paper, Lanchier [5] considers the Def-
fuant model on Z, or more precisely on the graph G = (V, E) where V = Z and
E = {〈x, x + 1〉 : x ∈ Z}. We say that the process {ηt(x)}x∈Z,t≥0 approaches
compatibility if for some (hence, by translation invariance, any) x ∈ Z we have

lim
t→∞

P(|ηt(x) − ηt(x + 1)| ≤ θ) = 1 , (3)

i.e., if any two neighboring vertices are “on speaking terms” (compatible) at time t
with a probability that tends to 1 as t → ∞. The main result in [5] supports the
intuition that the larger θ is, the easier is it for the individuals to converge towards
agreement. It states that regardless of the value of µ, the model exhibits a critical
phenomenon at θ = 1

2 , in the following sense.

Theorem 1.1 (Lanchier) Consider the Deffuant model with fixed µ ∈ (0, 1
2 ]. If

θ > 1
2 , then the model approaches compatibility. If on the other hand θ < 1

2 , then the
model does not approach compatibility.

In the present paper, I will present an analysis of the Deffuant model based on in-
voking a related but nonrandom pairwise averaging procedure on Z which I propose
colloquially to call Sharing a drink (SAD). In Section 2 I will define the SAD pro-
cedure and prove a couple of basic results on what final states can be achieved by it.
Then, after having given the basic lemma linking the SAD procedure to the Deffuant
model in Section 3 (plus some further preliminaries in Section 4), I will in Sections
5 and 6 exploit those results in order to reprove Lanchier’s result. I do not wish to
overstate the novelty of my approach, as several steps in my proofs have analogues in
Lanchier’s proof; in particular, the set of two-sidedly ε-flat points (see Definition 4.1)
will be a key quantity that is distinct from but will play a similar role here as the set
denoted by Lanchier as Ωj does in [5]. On the other hand, I would like to think that
some readers might find my approach a bit easier to digest.

Some of my conclusions go slightly further than Lanchier’s. In the θ > 1
2 case, it

will turn out that the convergence-in-probability of (3) can be strengthened to almost
sure convergence, and that the discrepancy |ηt(x)− ηt(x+1)| in (3) will a.s. drop not
only below θ, but eventually below any fixed ε > 0. Thus, I will show (still in the
θ > 1

2 regime) that for any x,

P

(

lim
t→∞

|ηt(x) − ηt(x + 1)| = 0
)

= 1 , (4)
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something we may call asymptotic consensus. Since, by the Strong Law of Large
Numbers, the spatial average of the initial configuration {η0(x)}x∈Z is a.s. 1

2 , it is
tempting to conclude from (4) that a.s. each ηt(x) will tend to 1

2 as t → ∞. This,
however, does not follow immediately from (4), because we might imagine a scenario
where {ηt(x)}x∈Z exhibits wave-like patterns on longer and longer spatial scales but
nonvanishing amplitude as t → ∞. Nevertheless, as I shall demonstrate in Theorem
6.5, the hoped-for convergence limt→∞ ηt(x) = 1

2 does hold.

2 Sharing a drink on Z

Define {ξ0(x)}x∈Z by setting

ξ0(x) =

{

1 for x = 0
0 for x 6= 0 .

(5)

We can think of having a glass at each x ∈ Z, and of the initial profile {ξ0(x)}x∈Z

as telling us that the glass at 0 is full while all others are empty. The profiles
{ξ1(x)}x∈Z, {ξ2(x)}x∈Z, . . . at all later times are obtained iteratively via a procedure
which, given the parameters x1, x2 . . . ∈ Z and µ1, µ2, . . . ∈ (0, 1

2 ], is deterministic.
The profile {ξ1(x)}x∈Z is obtained from {ξ0(x)}x∈Z by picking two adjacent glasses
and pouring some water from the glass with the higher level to the glass with the lower
level, but never more than what it takes to equalize the levels in the two glasses. This
is then iterated. More precisely, given the profile {ξi−1(x)}x∈Z and the parameters
xi ∈ Z and µi ∈ (0, 1

2 ], we obtain the next profile {ξi(x)}x∈Z by setting

ξi(x) =







ξi−1(x) + µi(ξi−1(x + 1) − ξi−1(x)) for x = xi

ξi−1(x) + µi(ξi−1(x − 1) − ξi−1(x)) for x = xi + 1
ξi−1(x) for x 6∈ {xi, xi + 1} .

This is the SAD procedure. The pairwise averaging that we perform in going from
{ξi−1(x)}x∈Z to {ξi(x)}x∈Z is of course highly reminiscent of what goes on in the
Deffuant model, but there are several differences. First, unlike the Deffuant model,
the SAD procedure postulates no stochastic model for which pairs are to be averaged,
when, and by how much. Second, the initial profile is very different. Third, the
SAD procedure has no threshold θ ∈ (0, 1) preventing averaging between sites whose
values differ by more than θ. (A fourth, but unimportant, difference is that the SAD
procedure runs in discrete time.)

Next follow some results on what kinds of profiles are achievable through SAD
procedures. The main motivation here is that they will be needed in the analysis of
the Deffuant model in Sections 5 and 6, but they strike me as somewhat intriguing in
their own right. If the restriction that µi ∈ (0, 1

2 ] is relaxed to µi ∈ (0, 1], it is trivial
to see that we would be able to achieve any nonnegative profile that sums to 1 and
that is nonzero at only finitely many sites. With µi ∈ (0, 1

2 ], the class of achievable
profiles is much more restricted. The first result concerns the case where water is
never sent to the left of 0.

Lemma 2.1 If {ξi(x)}x∈Z is obtained via a SAD procedure such that xj 6= −1 for
j = 1, . . . , i, then

ξi(0) ≥ ξi(1) ≥ ξi(2) ≥ · · · . (6)
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Proof. It suffices to show that if sites −1 and 0 never exchange liquids, then property
(6) is preserved by the steps of the SAD procedure. Assume that (6) holds for i = k−1,
and fix xk and µk. Clearly, if (6) is to fail at all for i = k, failure has to happen in at
least one of the three inequalities

ξk(xk − 1) ≥ ξk(xk) ≥ ξk(xk + 1) ≥ ξk(xk + 2) . (7)

The induction hypothesis in conjunction with µk > 0 yields

ξk(xk − 1) = ξk−1(xk − 1)

≥ ξk−1(xk) + µk(ξk−1(xk + 1) − ξk−1(xk)) = ξk(xk) ,

so the first inequality in (7) holds. The third inequality in (7) follows in the same way.
Finally, the middle inequality in (7) follows from the induction hypothesis combined
with µk ≤ 1

2 by noting that

ξk(xk) = ξk−1(xk) + µk(ξk−1(xk + 1) − ξk−1(xk))

≥ ξk−1(xk) + (1 − µk)(ξk−1(xk + 1) − ξk−1(xk)) = ξk(xk + 1) .

2

Given the assumption that ξi(x) = 0 for all x < 0, to say that {ξi(x)}x∈Z is decreasing
on {0, 1, 2, . . .} is the same as saying that it is unimodal with the mode at 0. The first
part of this survives when we drop the requirement to avoid the negative integers:

Lemma 2.2 Any {ξi(x)}x∈Z obtained via the SAD procedure is unimodal, meaning
that there exists a y ∈ Z such that

· · · ≤ ξi(y − 2) ≤ ξi(y − 1) ≤ ξi(y) (8)

and
ξi(y) ≥ ξi(y + 1) ≥ ξi(y + 2) ≥ · · · . (9)

Proof. Again induction is the way. Assume that {ξk−1(x)}x∈Z is unimodal, and fix
y ∈ Z such that ξk−1(x) is maximized for x = y. Now, for each of the cases y < xk,
y = xk, y = xk + 1 and y > xk + 1, a calculation similar to the one in the proof of
Lemma 2.1 shows that {ξk(x)}x∈Z inherits the unimodality from {ξk−1(x)}x∈Z. 2

Will the mode stay at 0 also in the more general situation of Lemma 2.2? No.
Consider the example where first 0 and 1 exchange liquids with µ1 = 1

2 , followed by
0 and −1 exchanging liquids with µ2 = 1

2 ; this results in a profile {ξ2(x)}x∈Z with
ξ2(−1) = ξ2(0) = 1

4 and ξ2(1) = 1
2 . In fact, it is not hard to construct examples to

show that the mode can move arbitrarily far away from 0.
The fact that the mode can walk away from 0 will be a bit of a nuisance in Section

6, and because of that we will need to control the height of the mode. What is the
largest possible value that can be obtained at a given location x? For x ∈ Z, define
Mx as the supremum of ξi(x) over all i and all possible SAD procedures.

Theorem 2.3 For any x ∈ Z, we have Mx = 1
|x|+1 .

All we will need in the application in Section 5 is the upper bound Mx ≤ 1
|x|+1 , but

since the exact value is within easy reach, why not do it?
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For the proof, the notion of domination between two profiles will be convenient.
For two sequences ξ = {ξ(x)}x∈Z and ξ′ = {ξ′(x)}x∈Z of nonnegative numbers sum-
ming to 1, we say that ξ′ dominates ξ, writing ξ � ξ′, if

∑∞
x=k ξ(x) ≤

∑∞
x=k ξ′(x)

for all k ∈ Z. If we think of ξ and ξ′ as probability distributions on Z, then ξ � ξ′ is
the same as the familiar notion of stochastic domination (see, e.g., [6]) between two
random variables with respective distributions ξ and ξ′.

Lemma 2.4 Suppose that ξi = {ξi(x)}x∈Z and ξ′i = {ξ′i(x)}x∈Z are exposed to the
same SAD move, i.e. ξi+1 and ξ′i+1 are obtained by picking the same pair of vertices
(x, x + 1) to exchange liquids, with the same µ ∈ (0, 1

2 ]. If ξi � ξ′i then ξi+1 � ξ′i+1.

Proof. Define, for each y ∈ Z, Si(y) =
∑∞

k=y ξi(k), and define S′
i, Si+1 and S′

i+1

similarly. We have Si(y) ≤ S′
i(y) for each y, and need to show that Si+1(y) ≤ S′

i+1(y)
for each y. For y 6= x+1 this is trivial (because Si+1(y) = Si(y) and S′

i+1(y) = S′
i(y)).

For y = x + 1 we get

Si+1(x + 1) = Si(x + 1) + µ(ξi(x) − ξi(x + 1))

= Si(x + 1) + µ(Si(x) − Si(x + 1) − Si(x + 1) + Si(x + 2))

= (1 − 2µ)Si(x + 1) + µ(Si(x) + Si(x + 2))

and similarly for S′
i+1(x + 1). Hence

S′
i+1(x + 1) − Si+1(x + 1) = (1 − 2µ)(S′

i(x + 1) − Si(x + 1))

+µ(S′
i(x) − Si(x)) + µ(S′

i(x + 2) − Si(x + 2))

≥ 0

as needed. 2

Proof of Theorem 2.3. The case x = 0 is trivial, and obviously Mx = M−x, so it
suffices to consider the case x > 0. The first task is to show that Mx ≤ 1

|x|+1 .

Fix x > 0, and suppose that m is a value that is achievable at x in a finite number
of iterations. Then there is a smallest i such that ξi(x) ≥ m is possible. Fix i in such
a way, and let {ξi(y)}y∈Z be a configuration such that ξi(x) ≥ m. We need to show
that m ≤ 1

x+1 .
As a preliminary step, we first show that in such a SAD scheme,

there will up to time i never be an
exchange of liquids between x and x + 1.

(10)

Suppose for contradiction that such an exchange happens. Then the first time j this
happens x sends liquid to x+1. Then we either have (a) that at some later time (but
no later than i) x receives liquid from x + 1, or (b) not.

Scenario (a) requires that ξk(x+1) > ξk(x) at the first time k ∈ {j, j+1, . . . , i−1}
at which x+1 is about to send liquid to x. By unimodality (Lemma 2.2), this implies
that maxy∈Z ξk(y) is attained to the right of x. But since the height of the mode is
decreasing in time it must be at least m at time k, but in order to attain such a value
to the right of k we must have had ξl(x) ≥ m at some time l < k. This contradicts
the choice of i, so scenario (a) is impossible.

Suppose on the other hand that scenario (b) happens, and consider modifying the
SAD procedure by replacing the move of liquid from x to x + 1 at time j by a “null”
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move (i.e., say, an exchange between two empty glasses), and otherwise making the
same moves as in the original SAD procedure. Write

{ξ′j(y)}y∈Z, {ξ′j+1(y)}y∈Z, . . . , {ξ′i(y)}y∈Z

for the resulting levels in the modified procedure. Since we are in scenario (b), the
liquid sent to x + 1 at time j in the original procedure is lost to the set of sites
{. . . , x − 1, x} forever, and it follows by induction over k that ξ′k(y) ≥ ξk(y) for all
y ≤ x and all k ∈ {j, j + 1, . . . i}. In particular ξ′i(x) ≥ ξi(x) ≥ m. But the modified
procedure can be modified one step further by skipping the null move at time j and
doing all subsequent moves one time unit earlier. This yields a SAD procedure that
gives site x level at least m at time i − 1, contradicting the choice of i. So scenario
(b) is impossible as well, and (10) is established.

We move on to showing that no move is made between sites 0 and −1 in the SAD
procedure leading to ξi(x) ≥ m. Suppose for contradiction that such a move happens.
The first time j this happens liquid is sent from 0 to −1. Consider (similarly as in
scenario (b) above) the modified procedure where this move is replaced by a null move
and keeping all other moves intact, and write {ξ′′j (y)}y∈Z, {ξ′′j+1(y)}y∈Z, . . . , {ξ′′i (y)}y∈Z

for the profiles resulting from this modification. We have {ξj(y)}y∈Z � {ξ′′j (y)}y∈Z,
and by iterated use of Lemma 2.4 we get {ξk(y)}y∈Z � {ξ′′k (y)}y∈Z for k = j+1, . . . , i.
In particular,

∞
∑

y=x

ξi(y) ≤

∞
∑

y=x

ξ′′i (y) . (11)

But we already know from (10) that ξi(y) = ξ′′i (y) = 0 for all y ≥ x + 1. This, in
combination with (11), implies that ξ′′i (x) ≥ ξi(x) ≥ m. Now (again as in scenario
(b)) we can modify the modified SAD procedure one step further by skipping the null
move at time j and doing all subsequent moves one time unit earlier, thus obtaining
a procedure that gives site x level at least m at time i − 1, contradicting the choice
of i. We can thus conclude that the negative axis {. . . ,−2,−1, 0} is never touched in
the scheme yielding ξi(x) = m. But that means that Lemma 2.1 is in force, so that

ξi(0) ≥ ξi(1) ≥ · · · ≥ ξi(x)

which, since
∑x

y=0 ξi(y) = 1, implies m ≤ 1
|x|+1 , and the desired inequality Mx ≤ 1

|x|+1

follows.
The next task is to show the complementary inequality: Mx ≥ 1

|x|+1 . The case

x = 0 is trivial from the original configuration, and the cases x = −1, 1 immediate
from moving the maximum amount of mass from 0 at time i = 1. So we only need to
consider |x| > 1, and by symmetry x > 1 is enough.

Fix a site x > 1, and consider the following infinite sequence of SAD moves. Never
pass any liquid outside of the interval {0, 1, . . . , x}. Instead, at each time i, pick the
y ∈ {0, 1, . . . , x − 1} that maximizes |ξi−1(y) − ξi−1(y + 1)| (with an arbitrary tie-
breaking convention), and average the levels at sites y and y + 1 with µi = 1

2 , so that
ξi(y) = ξi(y + 1) = 1

2 (ξi−1(y) + ξi−1(y + 1)).
To analyze this SAD procedure, we need the concept of energy W of a profile

{ξi(y)}y∈Z, defined by

W (i) = W ({ξi(y)}y∈Z) =
∑

y∈Z

(ξi(y))2 .
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Note that W (i) is nonnegative. A direct calculation shows that if |ξi−1(y)− ξi−1(y +
1)| = a and the SAD procedure selects y and y+1 to be averaged, then W (i)−W (i−

1) = −a2

2 . It follows that W (i) is decreasing in i, and if maxy∈{0,1,...,x−1} |ξi(y) −
ξi(y + 1)| exceeds some given a > 0 infinitely often, then limi→∞ W (i) = −∞, which
is impossible. Hence

lim
i→∞

max
y∈{0,1,...,x−1}

|ξi(y) − ξi(y + 1)| = 0 . (12)

Since
∑

y∈{0,1,...,x} ξi(y) = 1 for each i, (12) implies that limi→∞ ξi(y) = 1
x+1 for

each y ∈ {0, 1, . . . , x}, so that in particular limi→∞ ξi(x) = 1
|x|+1 , and Mx ≥ 1

|x|+1 as

desired. 2

The obvious follow-up question, given the identification of Mx in Theorem 2.3, is
whether, for some i, ξi(x) can attain the critical value Mx. For x = 0 and for x = 1,
the answer is obviously yes with attainment for i = 0 and i = 1, repectively. For
x ≥ 2, the answer is no, for the following reason.

Fix x ≥ 2, suppose for contradiction that ξi(x) = 1
x+1 is attainable, and let i be

the first time at which this happens. Then, from the arguments leading up to the
Mx ≤ 1

|x|+1 half of Theorem 2.3, we have ξi(y) = 1
x+1 for y = 0, . . . , x. But on the

last move, x must have received liquid from x − 1, so that

ξi−1(x − 1) >
1

|x| + 1
,

contradicting Lemma 2.1.

3 The link between SAD and Deffuant

The usefulness of the SAD procedure for analysing Deffuant’s model arises from
the fact that in the latter, the state ηt(0) can be written as a weighted average
of {η0(y)}y∈Z, with weights given by the profile {ξi(y)}y∈Z of a carefully chosen SAD
procedure. The exact relation is as follows.

Consider the Deffuant model with parameters µ ∈ (0, 1
2 ] and θ ∈ (0, 1), and fix

t > 0. For each edge e = 〈x, x+1〉 there is a probability exp(−t) that its Poisson clock
does not ring before time t, independently of all edges. Hence there are a.s. infinitely
many edges to the left of 0 whose clocks have not rung by time t, and infinitely many
to the right. Define

Z− = max{x ≤ 0 : 〈x − 1, x〉 has not rung by time t}

and
Z+ = min{x ≥ 0 : 〈x, x + 1〉 has not rung by time t} .

The point here is that identifying Z− and Z+ reduces what happens between them up
to time t to a finite system. Given the initial states η0(Z−), η0(Z− + 1), . . . , η0(Z+)
and the rings of the Poisson clocks between these vertices up to time t, nothing else is
needed to find ηs(Z−), ηs(Z− + 1), . . . , ηs(Z+) for s ∈ [0, t]. Write N for the number
of Poisson rings not censored by the θ parameter in the interval {Z−, Z−+1, . . . , Z+}
up to time t, and write τ1, τ2, . . . , τN for the times of these non-censored Poisson rings
in reverse chronological order, so that

τN ≤ τN−1 ≤ · · · ≤ τ1 .
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For i = 1, . . . , N , define xi to be the left endpoint of the edge 〈xi, xi + 1〉 for which
the Poisson clock rings at time τi. It will be notationally convenient also to define
τN+1 = 0.

Given these Poisson rings and their locations, define the SAD procedure given by,
at each stage i = 1, 2, . . . , N , choosing vertices xi and xi +1 to exchange liquids, with
µi = µ. For i = 0, 1, . . . , N , write ξi = {ξi(y)}y∈Z for the resulting profile at stage i.

Lemma 3.1 For i = 0, 1, . . . , N , ηt(0) can be decomposed as

ηt(0) =
∑

y∈Z

ξi(y)ητi+1
(y) . (13)

In particular, ηt(0) =
∑

y∈Z
ξN (y)η0(y).

Proof. We proceed by induction over i. The base case i = 0 follows from (5) and the
fact that ητ1

(0) = ηt(0). Assuming now that (13) holds for i = j − 1, i.e. that

ηt(0) =
∑

y∈Z

ξj−1(y)ητj
(y) , (14)

we need to show that it holds for i = j as well.
In the SAD procedure, we have







ξj(xj) = ξj−1(xj) + µ(ξj−1(xj + 1) − ξj−1(xj))
ξj(xj + 1) = ξj−1(xj + 1) + µ(ξj−1(xj) − ξj−1(xj + 1))

ξj(y) = ξj−1(y) for all y 6∈ {xj , xj+1}

while in the Deffuant model we have






ητj
(xj) = ητj+1

(xj) + µ(ητj+1
(xj + 1) − ητj+1

(xj))
ητj

(xj + 1) = ητj+1
(xj + 1) + µ(ητj+1

(xj) − ητj+1
(xj + 1))

ητj
(y) = ητj+1

(y) for all y 6∈ {xj , xj+1} .

Plugging these relations into (14) yields

ηt(0) =
∑

y∈Z

ξj−1(y)ητj
(y)

= ξj−1(xj)ητj
(xj) + ξj−1(xj + 1)ητj

(xj + 1) +
∑

y 6∈{xj,xj+1}

ξj−1(y)ητj
(y)

= ξj−1(xj)[ητj+1
(xj) + µ(ητj+1

(xj + 1) − ητj+1
(xj))]

+ ξj−1(xj + 1)[ητj+1
(xj + 1) + µ(ητj+1

(xj) − ητj+1
(xj + 1))]

+
∑

y 6∈{xj,xj+1}

ξj(y)ητj+1
(y)

= ητj+1
(xj)[ξj−1(xj) + µ(ξj−1(xj + 1) − ξj−1(xj))]

+ ητj+1
(xj + 1)[ξj−1(xj + 1) + µ(ξj−1(xj) − ξj−1(xj + 1))]

+
∑

y 6∈{xj,xj+1}

ξj(y)ητj+1
(y)

= ητj+1
(xj)ξj(xj) + ητj+1

(xj + 1)ξj(xj + 1) +
∑

y 6∈{xj,xj+1}

ξj(y)ητj+1
(y)

=
∑

y∈Z

ξj(y)ητj+1
(y) ,

so that (13) holds for i = j as desired. 2
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4 Flat points

Besides Lemma 3.1, another useful tool for the proof of Theorem 1.1 and related
results on the Deffuant model is the notion of ε-flat points in the initial configuration
{η0(y)}y∈Z. Recall that, by definition, the η0(y) variables are i.i.d. uniform on [0, 1].

Definition 4.1 Given ε > 0 and the Deffuant model initial configuration {η0(y)}y∈Z,
we say that x is an ε-flat point to the right if for all n ≥ 0 we have

1

n + 1

x+n
∑

y=x

η0(y) ∈ [ 12 − ε, 1
2 + ε] .

Similarly, x is said to be ε-flat point to the left if for all n ≥ 0 we have

1

n + 1

x
∑

y=x−n

η0(y) ∈ [ 12 − ε, 1
2 + ε] .

Finally x is said to be two-sidedly ε-flat if for all m, n ≥ 0 we have

1

m + n + 1

x+n
∑

y=x−m

η0(y) ∈ [ 12 − ε, 1
2 + ε] .

Translation invariance of the random configuration {η0(y)}y∈Z guarantees, of course,
that the probability of site x being flat (in whichever of the three senses we have in
mind) is independent of x. The important point here is that the probability is strictly
positive for any ε > 0, as stated in the following two lemmas.

Lemma 4.2 For any ε > 0 and any x ∈ Z, we have

P(x is ε-flat to the right) > 0 .

Proof. The Strong Law of Large Numbers tells us that

lim
n→∞

1

n + 1

x+n
∑

y=x

η0(y) =
1

2
a.s.

Hence, for fixed ε > 0, there exists an N < ∞ such that

P

(

1

n + 1

x+n
∑

y=x

η0(y) ∈ [ 12 − ε
3 , 1

2 + ε
3 ] for all n ≥ N

)

> 0 . (15)

Fix such an N . To get from here to the statement of the lemma, we employ a technique
known in percolation theory as local modification. A coupling formulation is the
following; cf. [4, Coupling 2.5]. Let {η0(y)}y≥x and {η′

0(y)}y≥x be i.i.d. sequences of
uniform [0, 1] random variables coupled in such a way that for each y ∈ {x, x+1, . . .}
independently, the pair (η0(y), η′

0(y)) is chosen so that both η0(y) and η′
0(y) have the

correct marginal (uniform on [0, 1]), and so that

{

η0(y) and η′
0(y) are independent if y ∈ {x, x + 1, . . . , x + N}

η0(y) = η′
0(y) if y ∈ {x + N + 1, x + N + 2, . . .} .

9



By (15) we have that P(B) > 0, where B is the event that 1
n+1

∑x+n

y=x η′
0(y) ∈ [ 12 −

ε
3 , 1

2 + ε
3 ] for all n ≥ N . Also, P(C) = (2ε

3 )N+1 > 0, where C is the event that
η(y) ∈ [ 12 −

ε
3 , 1

2 + ε
3 ] for all y ∈ {x, x+1, . . . , x+N}. Since B and C are independent,

we furthermore get P(B ∩ C) > 0, and it is immediate to check that B ∩ C implies
that x is ε-flat to the right with respect to the sequence {η0(y)}y≥x. 2

By symmetry, x ∈ Z has the same probability of being ε-flat to the left as of being
ε-flat to the right, so Lemma 4.2 guarantees that also the former event has strictly
positive probability. The same result for two-sided ε-flatness follows almost as effort-
lessly:

Lemma 4.3 For any ε > 0 and any x ∈ Z, we have

P(x is two-sidedly ε-flat) > 0 .

Proof. Fix ε > 0 and consider the three events

A1 = {site x − 1 is ε-flat to the left}
A2 = {η0(x) ∈ [ 12 − ε, 1

2 + ε]}
A3 = {site x + 1 is ε-flat to the right}.

Here P(A2) = 2ε, while P(A1) and P(A3) are both nonzero by Lemma 4.2. They
are furthermore independent, because they are defined in terms of {η0(x)}x∈Z for
disjoint sets of sites. Hence we have for their intersection A = A1 ∩ A2 ∩ A3 that
P(A) = P(A1)P(A2)P(A3) > 0.

Next note that for any m, n ≥ 0 we can rewrite 1
m+n+1

∑x+n

y=x−m η0(y) as the

convex combination of three quantities 1
m

∑x−1
y=x−m η0(y), η0(x) and 1

n

∑n

y=x+1 η0(y)

that, on the event A, are in [12 −ε, 1
2 +ε], so that 1

m+n+1

∑x+n

y=x−m η0(y) ∈ [ 12 −ε, 1
2 +ε]

and x is two-sidedly ε-flat. Hence

P(x is two-sidedly ε-flat) ≥ P(A) > 0 .

2

5 The Deffuant model for θ < 1/2

Consider the Deffuant model in the θ < 1
2 part of the parameter space. With the

equipment lain down in Sections 2, 3 and 4, we are now in a position to show that
there are edges e = 〈x, x + 1〉 that are forever blocked from averaging across them.
For x ∈ Z, write Bx for the event {|ηt(x) − ηt(x + 1)| > θ, ∀t ≥ 0}.

Proposition 5.1 For the Deffuant model with parameters µ ∈ (0, 1
2 ] and θ ∈ (0, 1

2 ),
we have for any x ∈ Z that P(Bx) > 0.

Proof. Given θ < 1
2 , pick ε so that θ = 1

2 − 2ε, and define three further events D1
x,

D2
x and D3

x as
D1

x = {site x − 1 is ε-flat to the left}
D2

x = {η0(x) > 1 − ε}
D3

x = {site x + 1 is ε-flat to the right}.

Define Dx = D1
x ∩ D2

x ∩ D3
x. By arguing as in the proof of Lemma 4.3 we get that

P(Dx) = P(D1
x)P(D2

x)P(D3
x) > 0. The proposition will now follow if we can show that

Dx ⊆ Bx (16)
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so that P(Bx) ≥ P(Dx) > 0. To this end, assume Dx, and note first that ηt(x) will sit
still (i.e., ηt(x) = η0(x)) until the first time T that averaging happens across either of
the edges 〈x− 1, x〉 or 〈x, x+1〉. Hence, in order for such averaging to happen, either
ηt(x − 1) or ηt(x + 1) must exceed 1 − ε − θ = 1

2 + ε before time T .
By the SAD representation of ηt(x + 1) provided by Lemma 3.1, we can write it

as a weighted average

ηt(x + 1) =
∑

y∈Z

ξt(y)η0(y) (17)

where the weights {ξt(y)}y∈Z are nonnegative, sum to 1, and are nonzero for only
finitely many y. Before time T we furthermore have ξt(y) = 0 for all y ≤ x, so
Lemma 2.1 is in force to show that

ξt(x + 1) ≥ ξt(x + 2) ≥ · · · . (18)

Define N = max{m : ξt(x + m) > 0}, and for k = 1, . . . , N define δk = ξt(x + k) −
ξt(x + k + 1) and ck = kδk. By (18) we have δk ≥ 0 and ck ≥ 0 for each k. Since

ξt(x + N + 1) = 0, we get
∑N

n=k δn = ξt(x + k), so that

N
∑

n=1

cn =

N
∑

n=1

nδn =

N
∑

k=1

N
∑

n=k

δn

=

N
∑

k=1

ξt(x + k) = 1 . (19)

Since ξt(y) = 0 for all y ≤ x, the decomposition (17) can be rewritten as

ηt(x + 1) =

N
∑

k=1

ξt(x + k)η0(x + k) =

N
∑

k=1

η0(x + k)

N
∑

n=k

δn

=

N
∑

n=1

δn

n
∑

k=1

η0(x + k) =

N
∑

n=1

cn

(

1
n

∑n

k=1 η0(x + k)
)

(20)

Since the cn’s are nonnegative and sum to 1, the last expression is a convex combi-
nation of terms of the form 1

n

∑n

k=1 η0(x + k), each of which, on the event D3
x that

x + 1 is ε-flat to the right, is in the interval [12 − ε, 1
2 + ε]. Hence, ηt(x + 1) will never

exceed 1
2 +ε before time T , so |ηt(x)−ηt(x+1)| > 1

2 −2ε = θ for all t < T . Similarly,
|ηt(x)− ηt(x− 1)| > θ for all t < T . In conclusion, there will never be an opportunity
for site x to average with either of its neighbors, so (16) is established and the proof
is complete. 2

Next, let IBx
be the indicator function of the event Bx. The random process {IBx

}x∈Z

is translation invariant, and a factor of an i.i.d. process {Zx}x∈Z where each Zx

encodes η0(x) plus all the Poisson firings of the 〈x, x + 1〉. Any such factor is ergodic
(see, e.g., [3, p 295, Thm (1.3)]), so we have a.s. that limn→∞

1
n

∑n
x=1 IBx

= P(B0)
and limn→∞

1
n

∑n

x=1 IB−x
= P(B0). In particular, since P(B0) > 0 (Proposition 5.1),

we have the following.

Lemma 5.2 With probability 1, there will be infinitely many sites x to the left of 0
such that Bx happens, and infinitely many to the right.

11



In fact, an inspection of the proof of Proposition 5.1 shows that the same thing holds
with Bx replaced by the stronger event Dx. This observation allows a straightforward
proof of the following result.

Theorem 5.3 For the Deffuant model with θ < 1
2 , we have a.s. that for all x ∈ Z,

the limiting value η∞(x) = limt→∞ ηt(x) exists, and that the limiting configuration
{η∞(x)}x∈Z satisfies {|η∞(x) − η∞(x + 1)|} ∈ {0} ∪ [θ, 1] for all x ∈ Z.

In other words, what the theorem says about the limiting configuration is that it is
piecewise constant, interrupted by jumps of size at least θ.

Proof of Theorem 5.3. Given the initial configuration {η0(y)}y∈Z, let y1 be any
vertex such that Dy1−1 happens, and define y2 = min{y > y1 : Dy}. In other words,
{y1, y1 + 1, . . . , y2} are the vertices sitting between two edges that are doomed by
{η0(y)}y∈Z never to be crossed by any liquid. Since any x ∈ Z is in some such
interval, it suffices to prove that the conclusion of the theorem holds for all x ∈
{y1, y1 + 1, . . . , y2}.

To analyze how ηt evolves on {y1, y1 + 1, . . . , y2} we borrow the energy idea from
the proof of Theorem 2.3. Define

Wt =
∑

x∈{y1,y1+1,...,y2}

(ηt(y))2 ,

and note that Wt is nonnegative. Note now that (a) no x ∈ {y1, y1 + 1, . . . , y2}
will ever exchange liquids with any site outside {y1, y1 + 1, . . . , y2}, and (b) each
time t that two vertices x, x + 1 ∈ {y1, y1 + 1, . . . , y2} exchange liquids, Wt drops by
2µ(1 − µ)|ηt−(x) − ηt−(x + 1)|2. These two observations imply that Wt is decreasing
in time. Next, define

Ft = max{I{|ηt(x)−ηt(x+1)|≤θ}|ηt(x) − ηt(x + 1)| : x ∈ {y1, y1 + 1, . . . , y2 − 1}} .

We need to show that
lim

t→∞
Ft = 0 . (21)

To this end, suppose for contradiction that there is a δ > 0 such that Ft ≥ δ for
arbitrarily large t. At each time t that a Poisson clock rings in the interval {y1, y1 +
1, . . . , y2}, check the new value of Ft; if this value exceeds δ, then the probability
is at least 1

y2−y1
that an edge 〈x, x + 1〉 with |ηt(x) − ηt(x + 1)| ∈ (δ, θ] will be

the next to exchange liquids, in which case the energy Wt will go down by at least
2µ(1 − µ)δ2. By conditional Borel–Cantelli (see, e.g., Durrett [3, p 207, Corollary
(3.2)]), this will happen infinitely often a.s., so that limt→∞ Wt = −∞, contradicting
the nonnegativity of Wt, so (21) follows.

Next, we need to show that each edge 〈x, x + 1〉 in the interval satisfies

either |ηt(x) − ηt(x + 1)| > θ for all sufficiently large t,
or limt→∞ |ηt(x) − ηt(x + 1)| = 0.

(22)

In view of (21), the alternative to (22) would be the existence of some 〈x, x + 1〉 such
that for any δ > 0, |ηt(x) − ηt(x + 1)| jumps back and forth between [0, δ] and (θ, 1]
infinitely often. But this is impossible, because the dynamics of the Deffuant model
is defined in such a way that a single Poisson event cannot increase |ηt(x)− ηt(x+1)|
by more than µθ, which for small enough δ is less than the length of the gap (δ, θ]
that needs to be crossed. Hence (22) holds.
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It remains to prove existence of the limit η∞(x) = limt→∞ ηt(x). Suppose first
that no edge 〈x, x+1〉 in {y1, y1 +1, . . . , y2} gets stuck with |ηt(x)−ηt(x+1)| > θ for
large t. By (22), this implies that limt→∞ |ηt(x)− ηt(x+ 1)| = 0 for each 〈x, x + 1〉 in
the interval. Note now that

∑

x∈{y1,y1+1,...,y2}
ηt(x) is preserved over time (because no

such x exchanges liquids with any vertex outside the interval). Hence ηt(y1), . . . , ηt(y2)
must all converge, as t → ∞, to their initial average 1

y2−y1+1

∑

x∈{y1,y1+1,...,y2}
η0(x).

Suppose on the other hand that some 〈x, x+1〉 in the interval does get stuck with
|ηt(x)−ηt(x+1)| > θ. Then each x ∈ {y1, y1+1, . . . , y2} still belongs to some subinter-
val {y′

1, y
′
1+1, . . . , y′

2} with y1 ≤ y′
1 ≤ y′

2 ≤ y2 such that limt→∞ |ηt(x)−ηt(x+1)| = 0
for each 〈x, x+1〉 in the subinterval, and such that from some time T onwards neither
y′
1, nor y′

2, exchanges liquids with its neighbor outside the subinterval. We then get
preservation of

∑

x∈{y′

1
,y′

1
+1,...,y′

2
} ηt(x) from time T and onwards, so each ηt(x) with

x in their subinterval must converge to their average 1
y′

2
−y′

1
+1

∑

x∈{y′

1
,y′

1
+1,...,y′

2
} ηT (x),

and the proof is complete. 2

6 The Deffuant model for θ > 1/2

To analyse the Deffuant model with θ > 1/2, we first need to extend (22) to this part
of the parameter space.

Proposition 6.1 For the Deffuant model with arbitrary threshold parameter θ ∈
(0, 1), we have a.s. that for each x ∈ Z,

either |ηt(x) − ηt(x + 1)| > θ for all sufficiently large t,
or limt→∞ |ηt(x) − ηt(x + 1)| = 0.

(23)

In order to prove this, we proceed again via an energy argument, but since we can
no longer assume that x is contained in a finite interval that is forever blocked from
exchanging liquids with the outside, we need to go about it somewhat differently. This
time, define Wt(x) as the energy (ηt(x))2 at site x, and define an auxiliary process

{W †
t (x)}x∈Z as follows. Initially W †

0 (x) = 0. Then W †
t (x) stays constant, except at

times when an exchange of liquids happens along 〈x, x + 1〉. At such a time t, W †
t (x)

increases by 2µ(1 − µ)|ηt−(x) − ηt−(x + 1)|2, which is the exact amount by which

Wt(x) + Wt+1(x) decreases. Thus, W †
t (x) measures the amount of energy loss along

〈x, x + 1〉 up to time t, making it intuitively plausible that E[Wt(x)] + E[W †
t (x)] is

constant over time. This, however, requires an argument.

Lemma 6.2 For some (hence any) x ∈ Z we have

E[Wt(x)] + E[W †
t (x)] =

1

3
. (24)

Proof. For t = 0, (24) is clear, since E[W0(x)] =
∫

[0,1]
r2 dr = 1

3 and E[W †
0 (x)] = 0.

To handle the case t > 0, define W tot
t (x) = Wt(x) + W †

t (x). By the same ergodicity
argument as in the paragraph preceeding Lemma 5.2, we have for fixed t that the
process {W tot

t (x)}x∈Z is ergodic, i.e.,

P

(

lim
y1→−∞

y2→∞

1

y2 − y1 + 1

y2
∑

x=y1

W tot
t (x) = E[W tot

t (0)]

)

= 1 . (25)
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In order to show that the limit in (25) is constant over time, note first that for any
t > 0, we can find some y1 < 0 and some y2 > 0 such that the Poisson clocks at
〈y1 − 1, y1〉 and 〈y2, y2 + 1〉 have not rung by time t. By induction over the Poisson
rings inside the interval {y1, . . . , y2}, in chronological order up to time t, we see that
∑

x∈{y1,...,y2}
W tot

s (x) is constant as s ranges from 0 to t, so that in particular

∑

x∈{y1,...,y2}

W tot
t (x) =

∑

x∈{y1,...,y2}

W tot
0 (x) .

Since y1 and y2 could be taken arbitrarily far from 0, the limit in (25) must equal
lim y1→−∞

y2→∞

1
y2−y1+1

∑y2

x=y1
W tot

0 (x), so that

E[Wt(x)] + E[W †
t (x)] = E[W tot

t (x)] = lim
y1→−∞

y2→∞

1

y2 − y1 + 1

y2
∑

x=y1

W tot
t (x)

= lim
y1→−∞

y2→∞

1

y2 − y1 + 1

y2
∑

x=y1

W tot
0 (x)

= E[W tot
0 (x)] =

1

3
.

2

Proof of Proposition 6.1. Fix x ∈ Z and δ > 0. We first show that, a.s.,

|ηt(x) − ηt(x + 1)| ∈ [0, δ] ∪ (θ, 1] for all sufficiently large t . (26)

To do so, note that each time the Poisson clock of any of the edges 〈x−1, x〉, 〈x, x+1〉
or 〈x + 1, x + 2〉 rings, there is probability 1

3 that the next such ring will be at
〈x, x + 1〉. If |ηt(x) − ηt(x + 1)| ∈ (δ, θ], then such a ring at 〈x, x + 1〉 will cause

W †
t (x) to increase by at least 2µ(1 − µ)δ2. If (26) fails, then, by conditional Borel–

Cantelli as in the proof of Theorem 5.3, such an increase will happen infinitely often,
so that limt→∞ W †

t (x) = ∞, an event which must have probability 0 since E[W †
t (x)]

is bounded by 1
3 due to Lemma 6.2.

It remains to show for small enough δ > 0 that |ηt(x) − ηt(x + 1)| cannot jump
back and forth between [0, δ] and (θ, 1] infinitely often. But we already saw in the
proof of Theorem 5.3 why this cannot happen: a single Poisson event cannot increase
|ηt(x) − ηt(x + 1)| by more than µθ, which for small enough δ is less than the length
of the gap (δ, θ] to be crossed. 2

Next comes the final key ingredient in sorting out how the Deffuant model behaves for
θ > 1

2 , namely that certain sites x ∈ Z will be predestined by the initial configuration
{η0(y)}y∈Z to forever stay close to 1

2 in their value of ηt(x).

Lemma 6.3 Suppose, given ε > 0, that site x ∈ Z is two-sidedly ε-flat for the initial
configuration {η0(y)}y∈Z. Then, regardless of all future Poisson rings, we have

ηt(x) ∈ [ 12 − 6ε, 1
2 + 6ε] for all t ≥ 0 . (27)

Proof. In order to avoid spending excessive amounts of ink on the additive constant
1
2 , define, for all t ≥ 0 and all y ∈ Z, ζt(y) = ηt(y) − 1

2 . Fix ε > 0, x ∈ Z and
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{η0(y)}y∈Z as in the lemma. Without loss of generality we may assume that x = 0.
Lemma 3.1 tells us that for any t > 0 there exists a SAD profile {ξt(y)}y∈Z such that

ηt(0) =
∑

y∈Z

ξt(y)η0(y) . (28)

Since
∑

y∈Z
ξt(y) = 1, we can translate (28) to the ζ notation as

ζt(0) =
∑

y∈Z

ξt(y)ζ0(y) . (29)

We need to show that
ζt(0) ∈ [−6ε, 6ε] . (30)

Since the SAD profile {ξt(y)}y∈Z is nonzero for only finitely many sites y, it takes
only a finite collection of values, a1, a2, . . . , an, an+1, say, in decreasing order with
an+1 = 0. Fix w ∈ Z such that ξt(w) = a1 (the mode) and define for i = 1, . . . , n the
set

Ji = {y ∈ Z : ξt(y) ≥ ai} .

By unimodality of {ξt(y)}y∈Z (Lemma 2.2), we have that each Ji is an interval
{yi, yi+1, . . . , y

′
i}, containing the mode w. Again for i = 1, . . . , n, define δi = ai−ai+1,

|Ji| = y′
i − yi + 1 and ci = δi|Ji|. Similarly as the decomposition (20) in the proof of

Proposition 5.1, we can rewrite (29) as

ζt(0) =
∑

y∈Z

ξt(y)ζ0(y) =

n
∑

i=1

δi

∑

y∈Ji

ζ0(y) (31)

=

n
∑

i=1

ci





1

|Ji|

∑

y∈Ji

ζ0(y)



 . (32)

The coefficients c1, . . . , cn sum to 1 (this follows using the property
∑

y∈Z
ξt(y) = 1

of the SAD profile, similarly as in (19)), so if we knew that each of the intervals
J1, . . . , Jn contained site 0, we would also know from two-sided ε-flatness of 0 that
(32) is a convex combination of numbers in [−ε, ε], and thus itself take a value in
[−ε, ε], completing the proof. Alas, as we saw in Section 2, the mode w does not need
to coincide with 0, so we need to do a bit more.

We may assume without loss of generality that w > 0. By the nesting prop-
erty J1 ⊂ J2 ⊂ · · · ⊂ Jn, there is an m ∈ {1, 2, . . . , n + 1} such that each of
Jm, Jm+1, . . . , Jn contains either site 0 or site 2w (or both), whereas each of J1, . . . , Jm−1

contains neither. With a hybrid of (31) and (32) we may write ζt(0) as

ζt(0) =

m−1
∑

i=1

δi

∑

y∈Ji

ζ0(y) +

n
∑

i=m

ci





1

|Ji|

∑

y∈Ji

ζ0(y)



 . (33)

To estimate the first sum
∑m−1

i=1 δi

∑

y∈Ji
ζ0(y) in (33), note that for such i, the

interval Ji = {yi, . . . , y
′
i} has endpoints yi and y′

i strictly between 0 and 2w. By
two-sided ε-flatness of 0, we get

∣

∣

∣

∣

∣

∣

∑

y∈Ji

ζ0(y)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

y′

i
∑

y=yi

ζ0(y)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

y′

i
∑

y=0

ζ0(y)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

yi−1
∑

y=0

ζ0(y)

∣

∣

∣

∣

∣

≤ (y′
i + 1)ε + yiε ≤ 2wε + wε = 3wε
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so that
∣

∣

∣

∣

∣

∣

m−1
∑

i=1

δi

∑

y∈Ji

ζ0(y)

∣

∣

∣

∣

∣

∣

≤

m−1
∑

i=1

δi

∣

∣

∣

∣

∣

∣

∑

y∈Ji

ζ0(y)

∣

∣

∣

∣

∣

∣

(34)

≤ 3wε

m−1
∑

i=1

δi ≤ 3wε

n
∑

i=1

δi

= 3wεξt(w) ≤
3wε

w + 1
< 3ε (35)

where the fourth inequality is due to Theorem 2.3.

For the second sum
∑n

i=m ci

(

1
|Ji|

∑

y∈Ji
ζ0(y)

)

in (33), the average 1
|Ji|

∑

y∈Ji
ζ0(y)

can be estimated as follows. If 0 ∈ Ji, then
∣

∣

∣

1
|Ji|

∑

y∈Ji
ζ0(y)

∣

∣

∣ < ε by two-sided ε-

flatness of 0. Otherwise 2w ∈ Ji = {yi, . . . , y
′
i}, so that |Ji| ≥ w and |Ji| ≥

y′

i+1
2 , so

that
∣

∣

∣

∣

∣

∣

1

|Ji|

∑

y∈Ji

ζ0(y)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1

|Ji|

y′

i
∑

y=yi

ζ0(y)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

1

|Ji|

y′

i
∑

y=0

ζ0(y)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

|Ji|

yi−1
∑

y=0

ζ0(y)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

2
1

y′
i + 1

y′

i
∑

y=0

ζ0(y)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1

yi

yi−1
∑

y=0

ζ0(y)

∣

∣

∣

∣

∣

≤ 2ε + ε = 3ε ,

again by two-sided ε-flatness of 0. Since the weights cm, cm+1, . . . , cn are nonnegative
and sum to at most 1, we get

∣

∣

∣

∣

∣

∣

n
∑

i=m

ci





1

|Ji|

∑

y∈Ji

ζ0(y)





∣

∣

∣

∣

∣

∣

≤

n
∑

i=m

ci

∣

∣

∣

∣

∣

∣

1

|Ji|

∑

y∈Ji

ζ0(y)

∣

∣

∣

∣

∣

∣

≤ 3ε

n
∑

i=m

ci ≤ 3ε . (36)

Plugging (35) and (36) into (33) yields (30), so the proof is complete. 2

With Lemma 6.3 in our hands, we quickly get the following refinement of Proposition
6.1.

Proposition 6.4 For the Deffuant model with θ > 1
2 , we have a.s. for all x ∈ Z that

limt→∞ |ηt(x) − ηt(x − 1)| = 0.

Proof. Fix the parameter θ > 1
2 , and pick an ε > 0 such that θ > 1

2 + 6ε. In view of
Proposition 6.1, all we need in order to prove the lemma is that, for any x,

P(|ηt(x) − ηt(x + 1)| > θ for all sufficiently large t) = 0 . (37)

Suppose for contradiction that the event in (37) has positive probability. Then by
ergodicity it happens for infinitely many x ∈ Z a.s., and we can follow the proof
of Theorem 5.3 in order to show that η∞(y) = limt→∞ ηt(y) exists for each y ∈ Z,
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and that the limiting configuration {η∞(y)}y∈Z is piecewise constant interrupted by
jumps of size at least θ.

We know from Lemma 4.3 plus ergodicity that there will a.s. exist some z ∈ Z that
is two-sidely ε-flat for the initial configuration {η0(y)}y∈Z. By Lemma 6.3, we thus
have ηt(z) ∈ [ 12 − 6ε, 1

2 +6ε] for all t, so that η∞(z) ∈ [ 12 − 6ε, 1
2 +6ε]. By Proposition

6.1, η∞(z + 1) must either exceed η∞(z) by at least θ, or be less than η∞(z) by at
least θ, or equal η∞(z). But by choice of ε, the first option causes η∞(z +1) to exceed
1, while the second causes it to be negative. Both are impossible so we are stuck with
η∞(z + 1) = η∞(z). By the same token, η∞(z − 1) = η∞(z), and by iterating we get
η∞(y) = η∞(z) for all y ∈ Z. This contradicts positivity of (37), as desired. 2

One more application of Lemma 6.3 will suffice to establish our last result:

Theorem 6.5 For the Deffuant model with θ > 1
2 , we have a.s. for all x ∈ Z that

limt→∞ ηt(x) = 1
2 .

Proof. Fix x ∈ Z and ε > 0. As in the proof of Proposition 6.4, we know that
there will a.s. exist some z ∈ Z that is two-sidedly ε-flat for the initial configuration
{η0(y)}y∈Z. By Lemma 6.3, we thus have ηt(z) ∈ [ 12 −6ε, 1

2 +6ε] for all t. By applying
Proposition 6.4 to each of the (finitely many) edges on the interval between z and x,
we get that ηt(x) must be in [12 − 7ε, 1

2 + 7ε] for all sufficiently large t. But ε > 0 was
arbitrary, so limt→∞ ηt(x) = 1

2 as desired. 2

A glaring omission so far is the lack of discussion of the critical case θ = 1
2 . Depending

on whether P(Bx) > 0 or not (with Bx as in Section 5), the qualitative limiting
behavior will be the same as for θ < 1

2 or θ > 1
2 , respectively. In either case, we have

the a.s. existence of the limiting configuration {η∞(x)}x∈Z, but to determine which
of the two cases we get remains open.
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