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Abstract In any two-sided matching market, a stable matching can be

found by a central agency using the deferred acceptance procedure of Gale

and Shapley. But if the market is decentralized and information is incom-

plete then stability of the ensuing matching is not to be expected. Despite

the prevalence of such matching situations, and the importance of stability,

little theory exists concerning instability. We discuss various measures of

instability and analyze how they interact with the structure of the underly-

ing preferences. Our main result is that even the outcome of decentralized

matching with incomplete information can be expected to be ”almost sta-

ble” under reasonable assumptions.

Key words stable matching – blocking pair – instability – preference

structure – decentralized market – maximin matching



Instability of matchings 3

1 Introduction

A matching is stable if there is no blocking pair, that is, a pair where both

agents would prefer each other to their partners in the matching. Thus,

whether a given matching is stable is determined by the preferences of

agents. Does every preference structure allow a stable matching? It has

long been known that the answer to this question hinges on whether the

market is two-sided. Indeed, the seminal result in the theory of two-sided

matching is that the deferred acceptance procedure of Gale and Shapley

(1962) always yields a stable matching, regardless of the preferences held

by the agents (cf. Roth and Sotomayor, 1990).

A matching procedure like the deferred acceptance procedure (DAP) is,

of course, easily implemented in any centralized market – but its applica-

bility is even greater. As argued by Roth and Xing (1997), the DAP can

be followed also by agents in a decentralized market if the two sides have

distinct roles and every agent has complete knowledge of his or her own

preferences. However, it is often the case that agents do not know their

own preferences from the beginning. This is the problem of mate search in

biology and social psychology, be it search for a sexual mate or a person to

chat with at a cocktail party. In such markets, unless search is exhaustive

it is impossible to guarantee stability of any matching obtained. Still, by

making greater search efforts we would expect agents to find a matching

that is somehow closer to stable. This is the general background to our

two overarching research questions: (1) How can instability of matchings
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be measured so that it becomes meaningful to speak of one matching being

”closer to stable” than another? (2) In decentralized matching markets with

incomplete information, is it true that we can expect agents to match up in

a way that is ”close to stable”?

The existing game theoretic literature bearing upon our question is quite

small. We will briefly discuss three studies we have identified as most rele-

vant.

Roth and Xing (1997) simulated the American entry-level market for

clinical psychologists with agents following the rules of APPIC, the or-

ganization that administers the market. Agents in this market have full

knowledge of their own preferences. Roth and Xing measured the degree of

instability of the final matchings by the proportion of blocking agents, that

is, agents that belong to some blocking pair. They found that the degree of

instability depended on the preference structure (common or random).

Ünver (2005) compared a decentralized market with various centralized

market mechanisms in the laboratory, following an earlier experiment by

Kagel and Roth (2000). The market consisted of three ”high types” and

three ”low types” at each side, with everyone preferring a high type to a

low type. Thus preferences were common, and every stable outcome has

high types matched to high types and low types to low types, so a high

type matched to a low type was counted as a ”mismatch.” Ünver measured

instability as the proportion of unmatched and mismatched agents, and

found for the decentralized market a total of 40 percent of agents in these
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categories. This instability was significantly higher than when centralized

market mechanisms were used.

Niederle and Roth (2006) conducted an experiment where ”applicants”

tried to match up with ”firms” in a procedure during which qualities were

gradually revealed. Various treatments were compared, differing in whether

offers were ”open” (can be put on hold by applicant) or ”exploding” (must

be immediately accepted or rejected). Among other things, the functioning

of the market was measured by the number of blocking pairs. The authors

found that the number of blocking pairs was larger when exploding offers

were allowed.

To summarize this brief review of the literature, instability has been mea-

sured in various ways by counting either blocking agents, or ”mismatched”

agents, or blocking pairs. Instability of matchings has been found to vary

with several aspects of the underlying market, including the preference

structure and the options available to agents.

In this paper we will argue that the proportion of blocking pairs among

all possible pairs is usually the best measure of instability. The exception

is when we want to be able to compare instability of matchings across

different preference structures, in which case we will show that the blocking

pairs measure is biased. We will also suggest a way to eliminate this bias.

We will then discuss what degree of instability can be expected in the

outcome of a decentralized matching market with incomplete information.

If agents in effect just reach a random matching, we show that the expected
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instability is substantial. However, if each agent acts according to a quite

reasonable and simple heuristic, then we show that our measure of instability

tends to zero as the number of agents grow. Thus, it seems that decentralized

markets would indeed be able to yield matchings that are close to stable.

Outline of this paper

In Section 2 we define four special preference structures of interest: ran-

dom, common, homotypic and antithetical preferences. In the next section

we discuss several possible measures of instability, including a novel mea-

sure designed to avoid bias in comparisons across preference structures. In

Section 4 we investigate how these instability measures interact with pref-

erence structures. Homotypic resp. antithetical preferences turn out to be

the extreme cases, maximizing resp. minimizing the expected number of

blocking pairs in a random matching. Finally, in Section 5, we give a math-

ematical proof that if agents use a simple heuristic in a decentralized mate

search situation, the instability of the resulting matching tends to zero with

increasing size of the market.

1.1 Acknowledgments

This work was partially supported by a grant to the first author from the

Swedish Research Council.
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2 Markets and preference structures

We will always assume markets to be two-sided, each side (X and Y , or

women and men) consisting of n agents so that a complete matching is

possible. However, a similar theory can be developed for one-sided markets,

so called ”roommate problems” (Eriksson and Strimling, unpublished).

A preference structure will be an n-by-n matrix P(n) where each entry

P(n)
xy is a pair (Axy, Bxy). The first number signifies how agent x ranks

y among all Y -agents (where 0 is the worst possible rank and n − 1 is

the best possible rank). Similarly, the second number signifies how agent y

ranks x among all X-agents. Hence, in every row (resp. column) the first

(resp. second) numbers of the pairs constitute a permutation of the integers

from 0 to n− 1.

In models of mate search one must make an assumption about the under-

lying preference structure. There seem to be three standard options. Most

common is an assumption of common preferences, i.e. a universally held

notion of attractiveness (cf. Todd and Miller, 1999; Alpern and Reyniers,

2005). When common preferences are contested, the usual alternative put

forward is homotypic preferences, where everyone prefers someone like them-

selves (cf. Alpern and Reyniers, 1999). A third alternative is to model agents’

preferences as random, i.e. independent of each other (cf. Eriksson, Sjöstrand

and Strimling, 2006). Sometimes these assumptions are pitted against each

other; Roth and Xing (1997) compared decentralized matching in common

and random preference structures, whereas the question of the classic paper
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by Kalick and Hamilton (1986) can be formulated as whether real human

mating preferences are common or homotypic.

In this paper we will add a fourth fundamental preference structure

that will prove interesting. Say that preferences are antithetical if a man

likes a woman more the less she likes him (and vice versa). As Groucho

Marx quipped: ”I don’t want to belong to any club that will accept me

as a member.” Although not a conventional assumption in the scientific

literature, versions of this model are common in popular culture and it does

not seem to be alien to human psychology.

We will now give exact definitions of these preference structures.

Definition 1 Preferences are common if agents can be numbered so that

Axy = y and Bxy = x for all x ∈ X and y ∈ Y .

Preferences are homotypic if Axy = Bxy for all x ∈ X and y ∈ Y .

Preferences are antithetical if Axy = n − 1 − Bxy for all x ∈ X and

y ∈ Y .

Preferences are random if for each x ∈ X her preference function
(
Axy

)n

y=1

is independently drawn at random with uniform probability from the set of

all permutations (and similarly for all Y -agents).

We will use the notation P(n)
com, P(n)

hom, P(n)
ant resp. P(n)

ran for a market of

size n where preferences are common, homotypic, antithetical, resp. random.
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2.1 Preference structures and latin squares

Both homotypic and antithetical preference structures are in bijection with

latin squares, since the conditions boil down to there being exactly one A-

value of each sort in every row and column, with B-values completely deter-

mined by the A-values. It is well-known that the number of nonisomorphic

latin squares of size n quickly becomes very large. On the other hand, up

to isomorphism, there is just one instance with common preferences for a

given value of n.

2.2 Uniqueness of stable matchings for common and homotypic preferences

Usually there are many different stable matchings in a market. Pittel (1989)

showed that under random preferences the expected number of stable match-

ings grows as n ln n. However, some special preference structures have a

unique stable matching. For instance, it is well-known and trivial to show

that under common preferences the only stable matching is the perfectly

assortative matching where all pairs consist of equally ranked agents. Sim-

ilarly, under homotypic preferences the unique stable matching has every

agent matched with his or her highest-ranked partner.

The case of antithetical preferences is not as well-known and several

stable matchings exist. For instance, for any value of i between 0 and n−1,

we evidently obtain a stable matching by letting every woman have her ith

ranked man (who then has his (n − i)th ranked woman). Sometimes there
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are many more stable matchings, see the book by Gusfield and Irving (1989,

section 1.3.2).

3 Measuring instability

As mentioned in the introduction, many measures of instability of match-

ings are possible. For instance, Ünver (2005) simply counted the mismatched

agents compared to the unique stable matching under the common prefer-

ences used. This measure is not generally applicable, however, since most

preference structures allow many different stable matchings. In this respect,

it is better to follow Roth and Xing (1997) in counting blocking agents in-

stead of mismatched agents. But although the existence of blocking agents

certainly makes the matching unstable, the number of blocking agents does

not really tell us the degree of instability since we do not know the number

of blocking partners of any agent; the greater this number, the more likely

that this agent will at some point discover and exploit the instability.

For these reasons, we believe that the best measure of instability of

matchings is obtained by counting the blocking pairs, like Niederle and

Roth (2006). We will divide the number of blocking pairs by n2 (the total

number of possible pairs) to obtain the probability that two random agents

will prefer each other to their partners in the matching. This seems to us a

very clear notion of instability.

Definition 2 For any matching µ under preference structure P(n) on a set

of n agents, let B
(n)
P (µ) denote the number of blocking pairs. Let B̂

(n)
P (µ)
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denote the proportion of blocking pairs:

B̂
(n)
P (µ) = B

(n)
P (µ)/n2.

We will call this number the instability of the matching µ.

There is one caveat with this measure. In an experimental study, Eriks-

son and Strimling (unpublished) compare the outcomes of a decentralized

matching market across different preference structures. As we will show be-

low, our instability measure is biased in the sense that the instability of a

random matching can be expected to be considerably greater if preferences

are homotypic than if they are common or random, and even less if prefer-

ences are antithetical. In other words, it takes more skill or effort for agents

to achieve low instability if preferences are homotypic. For comparisons of

the instability of outcomes when the preference structure varies, we propose

another measure.

Definition 3 The relative instability of a matching µ under preference

structure P(n) is the proportion of matchings that have less instability than

µ. There are n! possible complete matchings, so the relative instability of µ

is given by the expression

|{µ′ : B
(n)
P (µ′) < B

(n)
P (µ)}|

n!
.

It is a hard combinatorial problem to find a formula for the distribution

of matchings over number of blocking pairs (cf. Abraham et al, 2006, for

complexity results on related problems). For small n, relative instability can
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be calculated by a computer through complete enumeration of all possible

matchings. For larger markets, relative instability can be estimated through

Monte Carlo methods.

4 Instability of random matchings

By a ”random matching” in a given market we shall mean a matching drawn

at random from a uniform distribution of all possible complete matchings.

This is the simplest possible model of a mechanism that can be used in

decentralized matching (using no information whatsoever), thus providing

a baseline. We shall compute the expected instability for a random matching

in each of our four fundamental preference structures, yielding the following

main result.

Theorem 1 Let µ be a random matching in a two-sided market of size n.

Then

lim
n→∞

E[B̂
P

(n)
hom

(µ)] = 1/3,

lim
n→∞

E[B̂
P

(n)
com

(µ)] = lim
n→∞

E[B̂
P

(n)
ran

(µ)] = 1/4,

and

lim
n→∞

E[B̂
P

(n)
ant

(µ)] = 1/6.

Furthermore, the homotypic resp. antithetical preference structures attain

the maximal resp. minimal expected instability among all possible preference

structures.
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For random preferences the proof is almost trivial: The expected in-

stability of a random matching tends to 1/4 since the probability that two

random agents will prefer each other to their partners in the matching tends

to 1/2 times 1/2. We will now proceed with a more general analysis.

Lemma 1 For a given preference structure P(n) of size n, the expected in-

stability of a random matching µ is

E[B̂P(n)(µ)] =
∑

x∈X,y∈Y

(n− 1−Axy)(n− 1−Bxy)
n3(n− 1)

.

Proof Consider two agents x and y. If they are already matched, then they

are not a blocking pair. The probability of this happening in a random

matching is 1/n, so with probability (n − 1)/n the random matching does

not match x with y. In this case, there are (n− 1)2 possible partner combi-

nations for x and y in a matching, all equally likely. The numerator in the

lemma is the number of these subcases in which x and y would prefer each

other instead of the matches. By dividing the numerator with (n− 1)2, the

total number of subcases, and multiplying the result with (n − 1)/n, the

probability of being in this case, we obtain the probability for x and y being

a blocking pair:

(n− 1−Axy)(n− 1−Bxy)
n(n− 1)

.

The expected instability is the average of these probabilities for all pairs

x, y, and there are n2 such pairs. The lemma follows.

In order to proceed we need a new version of the following classical

elementary inequality: a1b2 + a2b1 ≤ a1b1 + a2b2 if a1 ≤ a2 and b1 ≤ b2.
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Lemma 2 Let ā = a1, a2, . . . , a2m be a weakly increasing number sequence

of even length. For any complete matching ν among the indices 1, 2, . . . , 2m,

let Sν(ā) be the sum of all products of matched number pairs in ā:

Sν(ā) =
∑

{i,j}∈ν

aiaj .

Then Sν(ā) is maximized by the matching νmax = ({1, 2}, {3, 4}, . . . , {2m−

1, 2m}) and minimized by the matching νmin = ({1, 2m}, {2, 2m−1}, . . . , {m,m+

1}).

Proof For any quadruple i < j < k < l matched in pairs, there are three

possible matchings depending on whether i goes with j, k or l. From the

classical inequality it follows that

aial + ajak ≤ aiak + ajal ≤ aiaj + akal.

Starting in any matching we can stepwise increase (resp. decrease) the prod-

uct sum by rematching every matched quadruple i < j < k < l so that i

goes with j (resp. l). The global maximum (resp. minimum) of Sν(ā) is

therefore attained by the unique (up to automorphisms of the weakly in-

creasing sequence) matching νmax (resp. νmin) for which all quadruples are

locally maximal (resp. minimal).

We can now prove the remaining parts of Theorem 1.

Proof For any preference structure P(n), and with (x, y) ranging over all

ordered pairs of agents, the multiset {n − 1 − Axy}x∈X,y∈Y ∪ {n − 1 −

Bxy}x∈X,y∈Y consists of 2n copies each of the values 0, 1, . . . , n− 1. Taking
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this ordered multiset as the sequence ā in Lemma 2, we conclude that the

sum
∑

(x,y)

(n− 1−Axy)(n− 1−Bxy), (1)

over ordered pairs (x, y), is maximized by homotypic preferences and mini-

mized by antithetical preferences.

Computing the sum (1) for each of the three preference structures in the

theorem is a matter of elementary analysis, and we omit the details. For

homotypic preferences we obtain:

n
(
02 + 12 + · · ·+ (n− 1)2

)
= n4/3 + O(n3).

For antithetical preferences:

n (0 · (n− 1) + 1 · (n− 2) + · · ·+ (n− 1) · 0) = n4/6 + O(n3).

For common preferences:

(0 + 1 + · · ·+ (n− 1))2 = n4/4 + O(n3).

In the formula in Lemma 1, these sums are divided by n3(n−1) = n4+O(n3).

This gives us the respective limiting expected instabilities of 1/3, 1/4 and

1/6 for the homotypic, common and antithetical preference structures.

5 Instability when agents use a simple heuristic

The literature on human mate search commonly assume that agents use

a simple heuristic to decide whether to accept a partner as a permanent

mate (Todd and Miller, 1999; Simão and Todd, 2002, 2003). The basic
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assumptions in these models are as follows. Agents, starting out with no

information, meet potential partners at random and evaluate them. Mating

occurs if both parties find the match above a certain preference threshold.

Thresholds are lowered with time, as agents realize they cannot be too

choosy. Agents can return to previously evaluated partners as long as they

have not mated already.

For simplicity we will assume that all agents follow the same thresh-

old heuristic. If the starting threshold is sufficiently high and the market is

sufficiently small, agents will gain complete information before any mating

occurs. Then, as the threshold T is lowered, the first pair x, y will mate and

leave the market when Axy > T and Bxy > T . Consequently agents par-

ticipating in decentralized matching can in principle implement a matching

mechanism that we may call maximin matching.

Definition 4 The maximin matching mechanism determines a complete

matching as follows. Let x, y be the pair of agents maximizing min{Axy, Bxy}.

If there are several such pairs, choose the pair that maximizes max{Axy, Bxy}.

If there are several such pairs, use any tie-breaking rule. Match x with y.

Repeat the procedure with the remaining agents until none is left.

We will now see that maximin matching fares surprisingly well with

respect to instability of the outcome. Indeed, maximin matching finds the

unique stable outcome for all the non-random fundamental preference struc-

tures.
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Theorem 2 The maximin matching mechanism will result in a stable out-

come under both common, homotypic, and antithetical preferences.

Proof We shall see that in all three cases, we can predict the outcome of the

mechanism as one of the stable matchings described in Section 2.2. Under

common preferences, the maximin mechanism will first match the two best

agents, then the second-best agents, etc. Under homotypic preferences, it

will match every agent with his or her favorite. Under antithetical prefer-

ences for odd values of n, the mechanism will match every agent with his or

her average partner. For even n the outcome will depend on the tie-breaking

rule; e.g. if priority is given to female preferences, then females will obtain

mates of rank n/2 while males obtain mates of rank n/2− 1.

For other preference structures, the outcome of the maximin mechanism

is not necessarily stable. It is easy to construct a family of preference struc-

tures where the outcomes have instability tending to 3/8 (omitted here),

and possibly even larger instabilities can occur. Still, this is the exception

and not the norm. Our main result below says that with random preferences,

the expected instability tends to zero.

Theorem 3 Let µ be the outcome of maximin matching in a random pref-

erence structure P(n)
ran. Then

lim
n→∞

E[B̂
P

(n)
ran

(µ)] = 0.

The remainder of this section is devoted first to proving this result, then

a generalization to incomplete information.
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5.1 Proof of Theorem 3

In order to analyze maximin matching we introduce some terminology and

notation.

Definition 5 The min-rank of a pair x, y is the value mxy = min(Axy, Bxy).

Our basic strategy to prove Theorem 3 consists of two steps: We will

show that, on the one hand, an agent in a matched pair with high min-rank

cannot be part of many blocking pairs; on the other hand, maximin matched

pairs have almost always high min-rank. Hence there cannot be too many

blocking pairs. The first step is taken by the following lemma.

Lemma 3 Given a market of size n and a matching µ, an agent x cannot

be a member of more than n− 1−mxµ(x) blocking pairs.

Proof That (x, y) is a blocking pair to µ implies that Axy > Axµ(x) ≥

mxµ(x). For a fixed x there can only be n− 1−mxµ(x) agents y that x rank

so highly.

The second step is more difficult. Recall that by definition the maximal

rank is n− 1. Among the matched pairs we will show that almost all min-

ranks are close to maximal.

Lemma 4 Let µ be the outcome of maximin matching in a random pref-

erence structure P(n)
ran. Then, for arbitrarily small ε, δ > 0, the probability

that at least εn of the matched pairs have a min-rank that does not exceed

(1− δ)(n− 1) tends to 0 as n →∞.
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Proof The event in the lemma implies that the n × n-matrix P(n)
ran con-

tains an εn × εn submatrix M such that all its entries (Axy, Bxy) satisfy

min(Axy, Bxy) ≤ (1− δ)(n− 1). Let us denote this event by Dn. Thus, it is

sufficient that we prove P (Dn) → 0 as n →∞.

To begin with, by simple combinatorics and Stirling’s formula we can

bound the number of submatrices of size εn× εn by

(
n

εn

)2

≤ C(2πε(1− ε)n)−1(1− ε)−2(1−ε)nε−2εn, (2)

for any C > 1 and sufficiently large n.

Now we wish to estimate the probability that in a given εn×εn submatrix

M all min(Axy, Bxy) ≤ (1 − δ)(n− 1). A fundamental fact is that, for any

single entry, P (Axy > (1 − δ)(n − 1)) = δ and similarly for Bxy. However,

different entries are not independent; if we examine the ε2n2 elements of M ,

one at a time, the conditional probability that Axy > (1−δ)(n−1) depends

on the values we have already observed in the same row. However, assuming

(without loss of generality) that ε < δ/2, this conditional probability will

never be less than δ/2 since there will always be at least δn/2 Ax·-values

exceeding (1− δ)(n− 1) remaining among the entries in this row that have

not been examined. In combination with the same argument for the Bxy-

value, we conclude that the conditional probability that min(Axy, Bxy) ≤

(1−δ)(n−1) is at most 1−(δ/2)2. Hence, the probability that the submatrix

M has all min-ranks ≤ (1− δ)(n− 1) is at most (1− (δ/2)2)ε2n2
.



20 Kimmo Eriksson, Olle Häggström

Finally, multiplication with the total number of submatrices from (2)

yields

P (Dn) ≤ C(2πε(1− ε)n)−1(1− ε)−2(1−ε)nε−2εn(1− (δ/2)2)ε2n2 → 0

as n →∞.

According to our strategy we are now ready to prove Theorem 3.

Proof Let µ be the outcome of maximin matching in a random preference

structure P(n)
ran. By definition of instability, B̂

P
(n)
ran

(µ) ≥ 0. It remains to show

that

lim
n→∞

E[B̂
P

(n)
ran

(µ)] < γ

for any γ > 0. Choose δ, ε > 0 so that δ + ε < γ. We will now assume

that at least (1 − ε)n of the matched pairs have min-rank greater than

(1 − δ)(n − 1). Among those agents, it follows from Lemma 3 that any x

can be part of at most δ(n − 1) blocking pairs, whereas any x among the

remaining agents can be part of at most n blocking pairs. Hence the total

number of blocking pairs is limited by (1 − ε)nδ(n − 1) + εn2 < γn2 so

the instability is limited by γ. According to Lemma 4, the assumption we

made holds with probability approaching 1 as n grows to infinity; in the

complementary case, the instability is limited by 1. We conclude that the

expected instability is limited by γ.
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5.2 Incomplete information

Let us return to our simple heuristics for decentralized matching. If the

market is large, agents will not have the time or possibility to evaluate all

possible partners before any mating occurs. The easiest way to incorporate

this in our model is to assume that every agent first evaluates a random sub-

set of partners, and then the maximin mechanism starts operating on this

partial information. In this generalized model, we ask how many partners

agents must evaluate in order for the instability of the outcome to remain

low. The answer is straightforward — it is sufficient that the expected num-

ber of evaluated partners grows with n, however slowly.

Definition 6 The p-partial maximin matching mechanism determines a

complete matching from a preference structure P(n) as follows. Define an

incomplete preference structure P∗(n) by randomly ”evaluating” a subset of

all possible pairs such that any pair has an independent probability p of being

”evaluated”, and for each such pair (x, y) setting (A∗xy, B∗
xy) = (Axy, Bxy);

all other entries are set to (0, 0). Then run maximin matching on P∗(n).

We wish to determine how the evaluation probability p must vary with

n.

Theorem 4 Let µ be the outcome of p-partial maximin matching in a ran-

dom preference structure P(n)
ran. Then

lim
n→∞

E[B̂
P

(n)
ran

(µ)] = 0

if and only if np →∞.
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Proof That np →∞ is a necessary condition is almost trivial: Suppose np,

the expected number of partners evaluated by any agent, is limited to K.

Then any agent would typically prefer n/K unevaluated partners over the

best evaluated partner. Hence, even if it would be possible to match every

agent with his or her best evaluated partner, there would be a probability

1/K2 that a given pair would be blocking.

To prove that np →∞ is a sufficient condition, we can follow the proof

of Theorem 3. The only exception is the last bit of the proof of Lemma 4

where p enters: min(A∗xy, B∗
xy) ≤ (1− δ)(n− 1) is at most 1− p(δ/2)2. The

proof then proceeds along the same lines, yielding

P (Dn) ≤ C(2πε(1− ε)n)−1(1− ε)−2(1−ε)nε−2εn(1− p(δ/2)2)ε2n2

≤ exp−[log(2πε/C) + 2n log(1− ε) + 2εn log ε + ε2n2p(δ/2)2].

As both n and np tend to infinity, the last term of the exponent will grow

faster than linearly, thereby dominating the expression which will hence

tend to zero. This proves Lemma 4 for p-partial maximin matching, and

the theorem follows.

Thus, the proportion of evaluated partners may decline as n grows.

6 Discussion

Bergstrom and Real (2000) suggested that two-sided stable matching the-

ory can provide insights to the study of animal mate choice. They were

dismissed by Simão and Todd (2002, p. 116) who claim that this theory’s
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emphasis on ”full knowledge and stability only diverts attention from other

issues of greater empirical relevance.” Indeed, economic experiments on de-

centralized matching markets with incomplete information (Ünver, 2005;

Niederle and Roth, 2006) have yielded outcomes with considerable instabil-

ity. However, we believe that these results are not necessarily representative

of larger decentralized markets including mate search situations. Our The-

orem 4 suggests that if agents put some more effort into mate search than

just picking a random partner, and if they increase the search effort some-

what when there are more potential mates, then we can expect outcomes

of large markets with a very small proportion of blocking pairs.
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