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Abstract

The two-type Richardson model describes the growth of two competing
infections on Z% and the main question is whether both infection types
can simultaneously grow to occupy infinite parts of Z? For bounded
initial configurations, this has been thoroughly studied. In this paper,
an unbounded initial configuration consisting of points z = (z1,...,z4)
in the hyperplane H = {z € Z% : z; = 0} are considered. It is
shown that, starting from a configuration where all points in H\{0}
are type 1 infected and the origin 0 is type 2 infected, there is a positive
probability for the type 2 infection to grow unboundedly if and only if
it has a strictly larger intensity than the type 1 infection. If instead
the initial type 1 infection is restricted to the negative z;-axis, it is
shown that the type 2 infection at the origin can grow unboundedly
also when the infection types have the same intensity.

Keywords: Richardson’s model, first-passage percolation, competing
growth, initial configuration, coexistence.
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1 Introduction

One of the simplest models for spatial growth and competition is the Richard-
son model, introduced in Richardson (1973). The original version describes
the growth of a single infectious entity on Z¢, but the mechanism can be
extended to comprise two entities, making it a model for competition on Z%
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see Haggstrom and Pemantle (1998,2000). This paper is concerned with the
two-type version of the model in d > 2 dimensions, started from a configu-
ration where one of the entities occupies one single site in an infinite “sea”
of the other entity.

The dynamics of the one-type Richardson model is that an uninfected
site becomes infected at a rate proportional to the number of infected nearest
neighbors and, once infected, it never recovers. This is equivalent to first
passage percolation with i.i.d. exponential passage times. The main result,
dating back to Richardson (1973) and Kesten (1973), is that, for bounded
initial configurations, the infection grows linearly in time in each direction
and, on the scale 1/t, the set of infected points at time ¢ converges almost
surely to a deterministic shape; see Theorem 2.1.

In the two-type version of the model a second infection type is introduced
and the two infections, referred to as type 1 and type 2 respectively, grow
simultaneously on Z¢%, the dynamics being that an uninfected site becomes
type 7 infected at a rate proportional to the number of type ¢ infected nearest
neighbors, and then stays (type i) infected forever. The model has two
parameters, denoted by A1 and Ao, indicating the intensities of the infections.

For the two-type Richardson model, the main challenge lies in deciding
if it is possible for both infection types to simultaneously grow to occupy
infinite parts of Z%. Write G; for the event that the type 7 infection reaches
sites arbitrarily far away from the origin. It has been conjectured that, in
the two-type Richardson model in d > 2 dimensions, started from one single
site of each infection type, the event G1 N G2 has positive probability if and
only if A\ = A\g; see Higgstrom and Pemantle (1998). The if-direction of the
conjecture was proved for d = 2 by Hiaggstrom and Pemantle (1998) and in
the general case independently by Garet and Marchand (2005) and Hoffman
(2005).

As for the only-if-direction of the conjecture, the best result to date
is that, with one of the intensities fixed, mutual unbounded growth has
probability 0 for all but at most countably many values of the other intensity;
see Haggstrom and Pemantle (2000). The full result would indeed follow
from this if it could be proved that the probability of the event G1 N Go
is monotone in the sense that it decreases as the difference between the
intensities increases. This monotonicity is certainly believed to hold on the
Z%lattice. However, it has turned out to be very hard to prove and, in fact,
there are other graphs where it actually fails; see Deijfen and Haggstrom
(2006:1).0n the other hand, in Deijfen and Haggstrom (2006:2), it is shown
that, as long as we restrict ourselves to bounded initial configurations, the
particular choice of initial sets is not important in deciding whether the



event of mutual unbounded growth for the two infection types has positive
probability or not.

The purpose of the present paper is to study the two-type Richardson
model with unbounded initial configurations. The question is as before: can
both types simultaneously infect infinitely many sites? With infinite initial
configurations for both types, the answer is (other than in particularly silly
cases) obviously yes. We therefore restrict to cases where type 1 starts with
infinitely many sites and type 2 with finitely many (for concreteness only
one), and the question of coexistence reduces to that of whether type 2 can
survive. Write (z1,...,x4) for the coordinates of a point z € Z¢, and define
H={zx:2z1=0}and L ={z:21 <0and z; =0 for all s > 2}. Writing 0
for the origin, the initial configurations that we will consider are

I(H) : all points in #\{0} are type 1 infected and

0 is type 2 infected; (1)
I(L) : all points in £\{0} are type 1 infected and

0 is type 2 infected.

Interestingly, it turns out that the set of parameter values that allows for
coexistence is slightly different for these two configurations. Let P;_‘ll(’])‘z and

Pz‘}dh denote the probability measure associated with a two-type process
started from configuration I(H) and I(L) respectively, and note that, by
time-scaling, we may restrict our attention to the case Ay = 1. Our main
result is as follows.

Theorem 1.1 For the Richardson model in d > 2 dimensions, we have
(a) Pf}{’i‘)(Gz) > 0 if and only if A > 1;
(b) Po(G2) > 0 if and only if A > 1.

In words, when the type 2 infection is strictly stronger than the type
1 infection, there is a positive probability for the type 2 infection to grow
unboundedly in both configurations. Intuitively, the type 2 infection can use
its higher intensity to rush away along the z;-axis and get an impregnable
lead over the type 1 infection. When the infection types have the same
intensity, the type 2 infection can grow unboundedly from the configuration
I(L), but not from I(H), where the initial disadvantage for the type 2
infection turns out to be too severe.

The rest of the paper is organized as follows. In Section 2, some results
for a one-type process started with the entire hyperplane H infected at time



0 are described. These results are then used in Section 3, 4 and 5 to prove
the claims in Theorem 1.1 for A > 1, A = 1 and A < 1 respectively; these
cases will be referred to as supercritical, critical, and subcritical. Finally,
our considerations are wrapped up together with some concluding remarks
in Section 6.

2 The one-type process started from H

In this section we recall from the literature the results needed to deduce that
the asymptotic speed along the z1-axis of the growth in a one-type process
started with all sites in H infected at time 0 is the same as the asymptotic
speed along the axes in a one-type process started from the origin. We
also state a result on the rate of convergence of the speed, originating from
Kesten (1993), and introduce a hampered version of the process where only
edges in a certain part of Z% can be used.

First consider a one-type process with intensity A started from the origin.
In such a process, each edge e of the Z%lattice has an exponential random
variable 7(e) with parameter A associated with it. The travel time of a path
I is defined as

ecTl’

and, for z € Z%, the time when the point z is infected is given by
TO(z) := inf{T(T) : T is a path from 0 to z}.

Write n = (n,0,...,0). A basic result then, obtained from the subadditive
ergodic theorem, is the existence of a constant ) > 0 such that 7°(n)/n —
)y almost surely and in L; as n — oo; see e.g. Kingman (1968). Defining
W = p1, it follows from a simple time-scaling argument that py = pA~!, and
hence we have that

TO
lim (n)

n—00 n

=pX~" as. and in L;. (2)

More generally, for any z € Z¢ with = # 0, there is a constant u(z) > 0 such
that T%(nz)/n — u(z)A\ ! as n — oco. The infection hence grows linearly
in each fixed direction and the asymptotic speed of the growth is an almost
sure constant. That this is true also when all directions are considered
simultaneously is stated in the shape theorem, which is the main result for
the model. To formulate it, write £2(¢) for the set of infected points at time
t in a process started from the origin, and let £°(¢) C R? be a continuum



version of £0(t) obtained by replacing each x € ¢°(¢) by a unit cube centered
at .

Theorem 2.1 There is a compact convex set A such that, for any € > 0,
almost surely

(1-e)MA C Eotﬂ C(l+e)rA
for large t.

An “in probability” version of this result was established by Richardson
(1973), and strengthened to the present form by Kesten (1973). Note that
A is the unit ball in the norm defined by u(z), that is, A = {z : u(z) < 1}.

Now consider the Richardson model started with all sites in the hyper-
plane H infected. We will show that the asymptotic speed of the growth
in the direction of the zi-axis in such a process is in fact the same as the
speed along the axes in a process started with only the origin infected. To
this end, write 7% (z) for the time when the point z € Z? is infected in a
process started from H.

Proposition 2.1 In the unit rate one-type process we have, as n — oo, that
TH(n)/n — p in L.

Proof. Let H, be the hyperplane at zi-coordinate n, that is, H, = {z €
7%z = n}. (In this notation, we have H = #Hgy.) The first important
observation is that, in the first passage percolation representation of the
model that is used in this paper, the time when the point n is infected in a
process started from # is the same as the time when the first (in time) point
belonging to # is infected in a process started from n. Furthermore, the
minimal travel time from n to A has the same distribution as the minimal
travel time from the origin to H,, which we denote by T°(#,). Hence we
have that

; (3)

where £ denotes equality in distribution. Just as in establishing (2), the
subadditive ergodic theorem can be applied to show that T°(#,)/n con-
verges in L; (and almost surely) to a constant ¢. Using (3), the proposition
follows if we can show that ¢ = u. Clearly, since n € H,, we have that
TO(H,,) < T°(n), which gives that ¢ < lim,, 7°(n)/n = u. The reverse in-
equality follows from the fact that the asymptotic shape of a process started



from the origin is convex. Indeed, having ¢ < p would contradict the con-
vexity of the asymptotic shape A stipulated in Theorem 2.1. Hence ¢ = u,
as desired. m|

Next, we state a result on the convergence rate in (2). The result originates
from Kesten (1993), and is formulated here for the time 7°(#,) when the
hyperplane #,, is reached by the infection. In the original formulation, the
estimate concerns the time 7°(n) when the single point n is infected, but
it is pointed out that the bound applies to passage times to hyperplanes
as well. Kesten (1993) also contains results on the convergence rate in the
shape theorem, and related results, improving some of the bounds of Kesten,
can be found in Alexander (1993).

Theorem 2.2 (Kesten (1993)) There are constants c1, ca and cg such
that

P TO(Hn) — E[TO(Hn)]
Vn
Combining this estimate with Proposition 2.1 gives the following lemma,

which will be useful in controlling the type 1 infection in a two-type process
started according to I(H).

‘ > :v) <ce ?*  forz <c3n.

Lemma 2.1 In a unit rate one-type process, for any € > 0, there are con-
stants ¢ and ¢ such that

P (T*(n) < (1 - &)np) < ce™VA (4)
for large n.
Proof. Trivially, we have that
P (T*(n) < (1 —e)np) <P (|T%(n) — np| > enp).

To have |TH(n) — nu| > enp, by the triangle inequality, at least one of the
quantities [T (n) — E[T?(n)]| and |E[T*(n)] —nu| must exceed enu/2. By
Proposition 2.1, we will indeed not have |E[T*(n)] — nu| > enu/2 when n
is large, and hence

ENL
P (‘Tﬂ(n) - n,u‘ > enp) <P (‘Tﬂ(n) - E[TH(n)H > T)
for large n. As observed in the proof of Proposition 2.1, the passage time

T*(n) has the same distribution as T%(#,,). Choosing = = \/neu/2 (which



is clearly smaller than c3n when 7 is large) in Theorem 2.2, we hence get
that en

P (|T’H(n) _ E[TH(H)H > T“) < cle*\/ﬁsucz/Q
and the lemma follows. |

Using Lemma 2.1, it turns out that we can establish that the concergence
in Proposition 2.1 holds also in the almost sure sense:

Proposition 2.2 Asn — oo, we have that T™(n)/n — p almost surely.

Proof. We need to show for any ¢ > 0 that

limsupT#(n)/n < (1 +¢)u (5)
n—0o0
almost surely, and that
liminf T%(n)/n > (1 —&)u (6)
n—oo

almost surely. Note first that (2) implies that (5) holds with 7%(n) in place
of T*(n). But obviously T%(n) < T%(n), so (5) is established.

Next, in order to show (6), fix N < oo in such a way that (4) holds for
all n > N. We then have from Lemma 2.1 that the expected number of
n > 0 for which the event {T"(n) < (1 — ¢)nu} happens is at most

(o]
N + Z ce ¢V
n=N

which is finite. Hence, by Borel-Cantelli, (6) is established. O

The last point on the agenda before moving on to the two-type process is
to show that the growth of a one-type process restricted to a “tube” around
the x1-axis behaves approximately as an unrestricted process when the tube
is large. This will be needed to control the type 2 infection at the origin
in a two-type process started from the configuration I(H). To formulate
the result, we introduce a new, hampered version of the one-type process
by placing “walls” in Z? restricting the growth in all directions except one.
More precisely, we consider a process with the same dynamics as the original
one, but where only sites in the set

Qp:={z €Z%: |z;| <bforalli#1} (7)

are susceptible to the infection. Write £*(¢) for the set of infected points at
time ¢ in such a process, started with a single infection at the origin 0. The
following lemma, says that €2 is filled with infection linearly in time.



Lemma 2.2 Consider a hampered one-type process with rate \. For any
dimension d, there is a real number uyp > 0 such that, for any € € (0,/1;})),
almost surely

{x €Q: |z < (1 e)tu;})} C () ¢ {x eQy: o] < (1+ s)tu;j)}
for all sufficiently large t.

Being a completely standard adaption of the proof of the shape theorem,
the proof of this lemma is omitted.

The constant p 4 is the analog of pA~! in the unhampered process, that
is, if T%*(z) denotes the time when the point z is infected in a hampered
process, we have that uy p = lim, 7%*(n)/n. When b is large, it is reasonable
to expect that the speed of the growth in the hampered process is close to
the speed of an unhampered process, and hence that ) ; is close to pAt
for large b. This intuition is confirmed by the next lemma.

Lemma 2.3 As b — oo, we have that pyp — pA~t.

The proof of this lemma again a straightforward adaptation, this time
of the proof of Lemma 4.4 in Deijfen et. al. (2004), where the same result
is established for a continuum counterpart of the Richardson model. It is
therefore omitted.

3 The supercritical case

Our main task in this section is to prove coexistence when A > 1:

Proposition 3.1 For any A > 1 and any d > 2 we have
1,2
P%’O(Gz) >0.

Here and later, we will make use of the following convenient way of con-
structing the two-type Richardson model: attach to each edge e in the edge
set Eyq of the Z%lattice independently two independent exponential vari-
ables 71(e) and To(e) with respective means 1 and A~!, indicating the time
it takes for the type 1 and the type 2 infection respectively to traverse the
edge.

Proof of Proposition 3.1: Fix A > 1 as in the proposition. For the
hampered one-type model in a region € as in (7), Lemma 2.3 tells us that



limy o0 pirp — pA~t, and since uA~! < p we have pap < ¢ when b is large
enough. Fix such a b, and define

Q;:{.’IIEQb:xlzl}.

For z € Z¢, define SH*\M% (z) as infr 3,1 71(e) where the infimum is over
all paths starting at 7 \ {0} and ending at z. Furthermore, for z € Q;,
define Sg 0(z) as infr Y ecr T2(€) where this time the infimum is over all
paths starting at 0 and passing through vertices in Qp only.

The point of these definitions is the following observation, which is easy
to see and which turns out instrumental in proving Proposition 3.1:

Suppose at least one vertex in Q;’ is eventually infected by type
1, and let z be the first (in time) vertex in € for which this
happens. We then have

SLHMO} (1) < Sg’o(x) )

So if we can show that
P(SH*MO (2) > §7%z) for all z € Q) > 0, (8)

then we know that with positive probability all z € QI')" eventually become
infected by type 2, and the proposition follows.

To do this, define pu* = % so that uyp < p* < u, and note that by
Proposition 2.2 we have the existence of some (random) M; < oo such that

SLH\{0} (x) > p*zq for all z € Q;’ with ;1 > M; .

Likewise, Lemma 2.2 guarantees the existence of some (again random) My <
oo such that

Sg’o(ar) < pzy for all z € QF with 21 > Mo
Taking M = max{M;, My} yields
SO} (z) > SI?’O(:L') for all z € ) with 21 > M,

which is “morally” very close to proving (8). To rigorously go from here to
(8), we employ a the following conditioning argument. Pick an m such that

P(SVHMO (1) > Sg’o(a:) for all z € Q) with z; >m) >0, 9)



and define E;' ™ as the set of edges (z,y) € E2 such that either
z=0andy=1=(1,0,...,0)

or
a:,yng',:z:lgm,ylgm—i—l.

Write D,, for the event in (9). We will condition on the 71 (e) variables for all
edges e € F;a together with the 79(e) variables for all edges e € EZd\E;' .
Let A be the event that

P (D [{71(e)}eer,a {T2() e g, p\ ) > 0, (10)

and note that since P(D,,) > 0, we must also have P(4) > 0. On the
event A, there exists a random 7 > 0 (depending on {7i(e)}ecr,, and

{m2(€)}er d\E+,m) such that if 75(e) < yforalle € Egr’m, then D,, happens.
Z b

By further decreasing v > 0, we can also make sure (due to the fact that
SLHMOY (1) > 0 for all = almost surely) that if 7(e) < «y for all e € E;’m,
then we also get

SLHMO} (1) > Sg’o(:z) for all z € Q;f with z; <m.

But with such a v > 0, we have on the event A that the probability — under
the conditioning in (10) — that mo(e) < 7y for all e € E;“ ™ is strictly positive;
this is simply because the edge set E;' ™ is finite. Hence

P(SY"\0 (g) > 57(z) for all z € Q | A) >0

Since P(A) > 0, (8) follows, and the proof is complete. O

The other result concerning the supercritical case that we need to prove is
the following.

Corollary 3.1 For any A > 1 and any d > 2 we have
LA
PE,O(GQ) >0

To prove this, one way is to note that the proof of Proposition 3.1 can be
easily adapted to handle the corollary. Or, to be a bit more careful, we can
invoke the proposition itself, together w1th the following easy lemma. For
disjoint subsets &, and & of Z¢, write P 1’5 ? for the law of the two-type
process with parameters A; and )\2, with all sites in £; initially infected by
type 1, all in & by type 2, and none others infected at all.

10



Lemma 3.1 Suppose that & and & are disjoint subsets of Z¢, and &} and
&l likewise. If & C &) and & D &, then
/\1,/\2 )\11)\2
PN (Ga) > Pf’1ﬂ€’2 (Gq).
Proof: Couple the two processes using the same 71(e) and 72(e) variables.
Writing (£1(t), &2(t)) for the state of the first process at time ¢ in the obvious
way, and similarly for the second process, it is straightforward to show that

the relations &;(t) C &[(t) and &(t) D &,(t) are preserved as t increases.
Sending t — oo proves the lemma. |

Proof of Corollary 3.1: Defining £’ the same way as £ except with the
roles of the x1- and z2-coordinates interchanged, i.e.,

L' ={r:29 <0and z; =0 for all i # 2},

we get by symmetry that PI})‘O(GQ) = Pé:é(Gg). But since £’ C H, we can

invoke Lemma 3.1 in order to deduce that Pé}’\O(Gg) > P;L’,’}](Gg), But that
the latter is positive is the statement of Proposition 3.1. O

4 The critical case

The critical case A = 1 is in some ways the most interesting, particularly in
view of the fact that whether or not a single type-2 infection at the origin
has a chance to survive against an infinite army of type-1 enemies depends
on wether these initially get to occupy all of H \ {0} or just £\ {0}. The
two results we need to prove in this section is the following.

Proposition 4.1 For any d > 2, we have P;l”lo(Gg) =0.

Proposition 4.2 For any d > 2, we have Pll:’})(Gz) > 0.

For A\ = 1, it is often convenient to replace the construction following Propo-
sition 3.1 by one that has not two but just one travel time variable 7(e)
associated with each e € E;4. Here the 7(e)’s are taken to be i.i.d. expo-
nentials with mean 1, and represent the time it takes for either of the two
infection types to traverse the edge. We will employ this construction in the
proofs of both Proposition 4.1 and Proposition 4.2. A nice feature of the
construction is the following. Suppose that the process starts at time 0 with
the nodes in & C Z? infected by type 1 and the nodes in & C Z¢ infected
by type 2. Write 7% (z) for infp )" . 7(e) where the infimum is over all

11



paths starting in ¢; and ending at z, and define T (z) analogously. Then
T becomes infected precisely at time min{7*¢!(z), 7% (z)}, and furthermore

x gets infected by type 1 if and only if T (z) < T%(z). (11)

The following lemma (an easy variation of Lemma 3.1) will be useful in the
proof of Proposition 4.1.

Lemma 4.1 Consider the (one-type) Richardson model with parameter 1
on a bounded degree graph L with vertex set V and edge set E starting at
time 0 with the set & C V initially infected. And consider the same model
with parameter 1 on another graph L' = (V', E') starting at time 0 with the
set &' C V' initially infected. If L is a subgraph of L', in the sense that
V CV'and E C E', and we furthermore have that & C &', then for any
t > 0 and any n C E the probability that all vertices in n are infected at time
t is no greater for the process on L than for the process on L'.

Proof: Simply couple the two processes in such a way that for each e €
they use the same 7(e) variable. O

Proof of Proposition 4.1: We will show that

P(type 2 infects infinitely many sites in the half-space {z : z; > 1}) = 0.
(12)
Once that is done, we can by symmetry infer the corresponding statement
for the other half-space, and thus conclude that P(G2) = 0.

Recall, for integer b, that 7{; is the set of vertices z € Z¢ whose zi-
coordinate is b (so that in particular Hy = H). For z € Z? and y € H,
write y — z for the event that the infimum 7%(z) is obtained by a path
from y to z. Beginning with all nodes in H infected, we think of y — = as
meaning that the infection eventually hitting x descends from y. Since the
7(e)’s are independent with a continuous distribution, we have for fixed z
that the event y — z happens for only one y almost surely (i.e., there are
no ties). Thus,

Y Ply—a)=1. (13)

yEH

Fix b> 1, y,9 € H and z, 2’ € H; in such a way that = and y differ only
in their first coordinate, and likewise for z’ and y'. Symmetry implies that

P(y —»a') =Py — ),

12



and observation that in conjunction with (13) implies that

Y Py =1. (14)

TEHy

for any y € H. Let X denote the number of sites € H; such that 0 — .
To prove (12) is the same as showing that

P(iXb:oo) =0. (15)
b=1

By (14), we have E[X,] = 1, whence P(X}, = c0) = 0 for any b, so that in
order to prove (15) it is enough to show that

P(limXb:O>:1. (16)
b—oo

Ideally, we would now, since E[X}] = 1 for each b, like to endow the sequence
(X1, X2,...) with a martingale structure (with respect to some filtration).
Since a nonnegative martingale converges almost surely, and this one could
presumably not converge to anything other than 0, that would settle (16).
But we do not see how to do this (and it is probably not even possible),
and will settle for a different solution that, although a bit less clean, still is
reminiscent of a martingale approach.

To this end, we first define, for z € Z% with z; < b and y € H, the
passage time T} (z) as infr Y., . 7(e) where the infimum is over all paths
from y to z that do not pass through any vertex z with z, > b. Also define

T}4(w) = inf T} (a), (17)

and for y' € H let 3 % z denote the event that the infimum in (17) is
attained for y = ¢'. Finally, write X; for the number of vertices in H; such

that 0 5 z. By the same argument as for X3, we have for any b > 1 that
EX;]=1. (18)
We now claim, crucially, that
{Xp > 1} impies {X; > 1}. (19)

To see this, assume that X, > 1 and take z to be the vertex among those
in M satisfying 0 — x for which 79(z) is smallest. Then the path from 0

13



to 2 cannot pass through any other vertex z in H; (because if that were the
case, then z would satisfy 0 — z with a smaller T?). Hence T?(z) = T%(z).

Since T}/ (z) > T¥(x) for all y € H, it follows that 0 XN z, and the claim (19)
is warranted.

Now write G for the event that limsupy_,., X; > 0. Using (19), we get
that (16) — and thereby the proposition — follows if we can show that

P(G*) =0, (20)

so this is what we set out to prove.
Our argument will involve the filtration {F3};2,, where F is the o-field
generated by the 7(e)-variables for all edges e = (z,y) with z1,y; < b. Note

that for x € Hy, the event 0 2 2 as well as the random variables TbH(a:),
Tbo(a:) and X; are all Fy-measurable. Levy’s 0-1 law (see, e.g., Durrett
(1991)) tells us that
lim P(G5|Fp) = L (21)
b—o0 2

almost surely, where I3 is the indicator of the event 5. The punchline of
the argument will be to show that with probability 1, P(G5|F,) does not
converge to 1.

Fix € > 0 small, in such a way that n = % is an integer. For z,y € Z9,
write dist(z,y) for the graph-theoretic distance between z and y in the Z¢
lattice. We claim that there exists a 4 < oo such that for any b, the event
Dy, has probability at most §, where we define Dy, as the event that

Xy < n, while for some x,y € H; such that 0 bz and dist(z,y) <
n we have T, (y) > T} (z) + u.

To see this, we will invoke a comparison with the classical one-type Richard-
son model in Z%~! with infection rate 1 and starting at time 0 with a single
infection at the origin. Since almost surely any finite set of sites is eventu-
ally infected in this model, we can find a u such that the probability that
all sites within distance n from the origin are infected by time u is at least
1—=.

é?)ing back to the model in Z%, consider (for some fixed k € {1,...,n})
the vertex x that has the k:th smallest value of T}*(z) among those for which

0%z (provided at least k£ such vertices exist). For a fixed realization of
the process up to time T(;H (z), a stochastic domination argument now shows
that the probability that all sites in H; within distance n from z are infected
by time T;(z) + u is at least 1 — = to see this, apply Lemma 4.1 with L
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equal to H; with edges between Eucildean nearest neighbors (this graph is
isomorphic to Z%1) and ¢ = {z}, and L' equal to Z¢ restricted to vertices
z with 21 < b and ¢’ equal to the set of vertices infected by time 7/*(z) in
the original process.
Summing the resulting complementary probability bound o= from 1 to
n gives the desired bound
P(Db,u) <

S|

Furthermore, Markov’s inequality applied to (18) yields P(X; > n) <
5- If we now define the event

Db,u = Db,u U {XZ > n},

we get

~ 3 3
P(D <-4+ -=c¢.
(bvu)—2+2 €

The next crucial claim is that (given £ > 0 as above) there exists a § > 0
(independent of b) such that the event =Dy, implies

P(Xf,, = 0|F) > 6. (22)

To see this, assume that —I)Q,u happens, and consider the following event
Ap, which together with =Dy, is enough to guarantee that X; , = 0.
Namely, let Ay, be the event that

e for all e = (z,y) withy € Hpy1, z € Hp and O LN x, we have 7(e) >
u+n+1;

b
e for all e = (z,y) with y € Hp1, £ € Hp, 0 /4 z and z sitting within

distance n from some z € H, such that 0 z, we have 7(e) < 1; and

e for all e = (z,y) with z,y € Hpy1 within distance n + 1 from some

z € Hy such that 0 - 2, we have T(e) < 1.

The point of this definition is that if _‘Db,u and A, happen, then none of

the vertices z € H; with 0 2 2 will have time to infect their neighbor in
Hp+1 before infection creeps in from another direction, and therefore Xy,
will equal 0. These requirements on A, are pretty tough, but note that
on the event ﬂf)b,u there are at most n edges e for which we require that
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7(e) > u+n+ 1, and there are at most ngf(2n)d_1 edges e for which we
require that 7(e) < 1. Thus, on the event —Dy,, we have

P(Ab,u|~7:b) > (e—(u+n+1)>" (1 _ 6—1)nd(2n)d—1

which is a small number indeed, but strictly positive, and the whole point
of this exercise is that it does not depend on b. Thus, we have for any b

~ . d—1
on the event =Dy, that (22) holds with § = (e_(“+”+1))”(1~— e~ 1)nd(2n)""
And since X, ; = 0 precludes G35, we have on the event - Dy, that

P(G5|F) <1-96.

So in order for the limit lim,_,, P(G5|Fp) in (21) to equal 1, we need Db,u
to occur for all sufficiently large b. But Dy, was defined in such a way as
to guarantee that P(Dy,) < ¢ for any b, so we can conclude that

p(G;) = P (Jm PG3A) = 1)
< €.

And since ¢ > 0 could be taken arbitrarily small, we get P(G3) = 0, and
the proof is complete. O

That was a bit involved. Fortunately, the proof of Proposition 4.2 is some-
what more straightforward.

Proof of Proposition 4.2: Recalling the notation n = (n,0,...,0), the
initial configuration in Proposition 4.2 consists of a single type-2 infection at
0, competing against type-1 infections at —1,—2,.... Intuitively, the best
hope for type 2 seems to be to rush off along the positive z;-axis. Betting
on this, and viewing the model in terms of the 7(e)-variables as before, we
will set out to prove that

lim inf P <T0(n) = inf Tm(n)> >0. (23)
n—00 m<0
Note that the event in (23) is precisely the event that the vertex n becomes
infected by type 2. Hence, if we can prove (23), we can deduce that with pos-
itive probability infinitely many vertices on the positive z1-axis are infected,
and the proposition will follow.

Symmetry implies that for any n > 1 we have

P (To(n) = inf Tm(n)> = (To(n) — inf TO(I)) : (24)

m<0 I>n
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We will work with the right-hand side of (24), the advantage of this being
that it has a useful interpretation in terms of the one-type Richardson model.
Namely, for the one-type model starting at time 0 with a single infected site
at the origin, then event {T°(n) = inf;>, T%(1)} is precisely the event that
the node n is infected before any node further away on the positive z1-axis
is infected.

For this one-type Richardson model, define Y (¢) as the number of nodes
on the positive z1-axis that are infected by time ¢. And define Y7 (¢) as the
the number of nodes on the positive x1-axis that are infected by time ¢, with
the additional property that at the time of their infection, they became the
rightmost infected node on the x-axis.

We have from (2) that

Y@

lim —= =
00 t #

almost surely, where y > 0 is the time constant discussed in Section 2.
How about @? At any time ¢, there exists a rightmost infected node
on the zi-axis, and this node infects its neighbor-to-the-right with Poisson
intensity 1. Every time such an infection occurs, Y7 (¢) increases by 1.
Hence, the process {Y 7(t)};>0 stochastically dominates a rate-1 Poisson

process, whence
Y~ ()

lim inf >1 (25)
t—00

almost surely. By (2) again, we have with probability 1 that for any ¢ > 0
eventually all infected nodes on the positive xi-axis at time ¢ have an x;-
coordinate that does not exceed (1 + ¢)u~!. In conjunction with (25), this
implies that

n—0oQ

n
liminfn* Z ]I{TU(j):inlej To(1)} Z p
7j=1

almost surely. Hence,

n

.. -1 O/s\ __ = 0

hnrggéfn g 1P (T G) = %IzlfT (l)) >
Ja

implying that

n—00

liminf P (To(n) = inf T0(1)> > .
>n

Using the identity (24), this implies (23), and the proof is complete. O
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5 The subcritical case

For the subcritical case A < 1, we shall see that the following results holds,
which is more general than the subcritical cases of both part (a) and part
(b) of Theorem 1.1.

Proposition 5.1 Consider the two-type Richardson model on Z4, d > 2,
with types 1 and 2 having respective intensities 1 and A, starting with type
1 in & C Z% and type 2 in &5 C Z%. If & is infinite, & is finite, and X < 1,
then the event Go of unbiunded survival for type 2 has probability 0.

It turns out that this result is a direct consequence of the following propo-
sition which was instrumental to proving the main result in Higgstrom and
Pemantle (2000) mentioned in Section 1. Let A be the asymptotic shape for
the Richardson model as defined by Theorem 2.1.

Proposition 5.2 For any A <1 and any € > 0, we have
lim sup plA (G2) =0
r—00 61 ’62 El 752
where the supremum is over all initial configurations (&1,&2) such that

&9 is contained in rA, while (26)
&1 is not contained in (1 + €)rA.

In fact, the proposition as stated in Haggstrom and Pemantle (2000) dealt
ony with the case where ¢; was finite, but the generalization to infinite &;
follows immediately from Lemma 3.1. Proposition 5.1 now follows immedi-
ately from Proposition 5.2 upon noting that if £ is infinite and &5 is finite,
then the pair (&1, &2) satisfies (26) for all sufficiently large 7.

6 Concluding remarks

To see that our main result, Theorem 1.1, has now been proved is just a
matter of collecting the results from the previous three sections. Theorem
1.1 (a) follows from Propositions 3.1 (supercritical case), 4.1 (critical case)
and 5.1 (subcritical case), while Theorem 1.1 (b) follows from Corollary 3.1
(supercritical case) and Propositions 4.2 (critical case) and 5.1 (subcritical
case).

We end the paper with the observation that Proposition 4.2 allows us a
simple proof of the fact that infinite coexistence is possible in the critical
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case A = 1 starting from finitely many infected nodes of each type (recall the
result of Deijfen and Haggstrom (2006:2) that the particular choice of finite
initial configurations does not matter, as long as type 1 does not already
“strangle” type 2 or vice versa). There are already a number of proofs of
this result — Haggstrom and Pemantle (1998) did it for d = 2, while Garet
and Marchand (2005) and Hoffman (2005) did it for arbitrary d — but since
the result is central to the study of the two-type Richardson model we feel
it is worth the extra effort to state a new simple proof.

Theorem 6.1 For the critical (A = 1) two-type Richardson model on Z% in
any dimension d > 2, there exists an n such that if the model starts with a
single type-1 infection at 0 and a single type-2 infection at n, then infinite
coezistence has positive probability.

Proof: Consider the usual edge representation of the critical model, where
each edge is assigned a 7(e) representing the time it takes either infection to
traverse it. Also as usual, for ¢ C Z% and = € Z¢, write T¢(x) for the sum of
the 7(e)’s along the fastest path starting in ¢ and ending at z. Define two

random sequences {X,,}32  and {Y,}52 . as follows. Set

X 1 if T?(2) < T{--n=3n=20=1}(4) for infinitely many z € Z¢
"1 0 otherwise.

and

v 11 if T%(z) < T{nt1n+2043..} () for infinitely many z € Z¢
"1 0 otherwise.

Let a = P(Xy = 1). Proposition 4.2 tells us that a > 0. The process
{Xn}2_ is stationary, so P(X,, = 1) = a for any n. By symmetry,
P(Y, = 1) = a holds as well for any n. Furthermore, {X,}32_ arises in
a stationary way from an i.i.d. process and is therefore ergodic, so P(X,, =
1 for some n > 1) = 1. Hence we can find an n such that

P(Yp=1X,=1)>0. (27)

On the event {Yy = 1, X,, = 1} we have (by definition of the two processes)
that T79(z) < T™(2) for infinitely many z € Z¢, and that T™(z) < T°(z) for
infinitely many z € Z%. Thus, (27) guarantees that infinite coexistence has
positive probability for the two-type model starting at 0 and at n. O
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