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Abstract

We discuss the volume fraction of a model of non–overlapping convex grains. It
is obtained from thinning a Poisson process where each point has a weight and is
the centre of a grain, by removing any grain that is overlapped by one of larger or
equal weight. In the limit as the intensity of the Poisson process tends to infinity,the
model can be identified with the intact grains in the dead leaves model if the weights
are independent of the grain sizes. In this case we can show that the volume fraction
is at most 1/2d for d = 1 or 2 if the shape is fixed, but the size and the orientation
are random. The upper bound is achieved for centrally symmetric sets of thesame
size and orientation. For generald we can show the upper bound, 1/2d, for spherical
grains with two–point radius distribution. If dependence between weight and size is
allowed, it is possible to achieve a volume fraction arbitrarily close to one.

1 Introduction

The model considered in this paper is a non–overlapping germ–grain model, which is a
generalisation of one of Matérns hard–core models in [6]. Itwas proposed by Månsson
and Rudemo in [5]. The model is constructed by generating a Poisson process inRd and
letting each point be the centre of a grain. The sizes and orientations of the grains are
random and each grain is given a weight which may depend on itssize. The process is
thinned by rejecting any grain that intersects with anothergrain that has equal or higher
weight. In [5] the intensity and size distribution of the grains after thinning for this model
were given. Furthermore, the asymptotic value of the volumefraction as the intensity
before thinning tends to infinity was derived in the case of fixed-sized grains. One result
is that centrally symmetric sets of equal size give the volume fraction 1/2d.

The aim of the present paper is to study the asymptotic volumefraction, namely if
fixed-sized grains give the highest volume fraction in the case where the weights are
independent of the grain size and if it is possible to choose weights so that the volume
fraction can become arbitrarily close to 1. We believe that 1/2d is an upper limit for the
volume fraction inRd for anyd if the weights are independent of the grain sizes. However
we can only show it in general ford = 1 or 2 and for spherical grains with two–point
distribution for anyd. Furthermore, we show that it is possible to achieve a volume
fraction arbitrarily close to one by a particular choice of radius distribution and weights
depending on the radii.

If the weight distribution is continuous and the intensity tends to infinity, the grains
kept in our model are the same as the intact grains in Matheron’s dead leaves model,
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[7]. It can be defined as follows. Consider a stationary Poisson process{(xi , ti)} with unit
intensity inRd × (−∞,0]. Interpretti as the arrival time of the pointxi ∈ Rd. Let d–
dimensional, possibly random, compact grains be implantedat the pointsxi sequentially
in time, so that a new grain deletes portions of the “older” ones. At timet = 0 the space
R

d is completely occupied, and the grains which are not completely deleted constitute a
tessellation ofRd.

The grains which are intact, that is not intersected by any later grains, constitute a
model of non-intersecting grains. The intact grains can also be considered as the limit
of the generalisation of Matérn’s hard-core model under study here. Let the weights be
continuously distributed on (−∞,0], independent of each other and of the radii. Then the
weights can be identified with the time coordinate in the description of the dead leaves
model given above. The connection between Matérn’s hard-core model and the dead
leaves model in the case of fixed-sized spheres was noted by Stoyan and Schlater [10].
The dead leaves model and generalisations of it, for instance the colour dead leaves, are
studied in a number of papers by Jeulin, see e.g. [4]. Results on the intensity and size
distribution of the intact grains can be found in [3].

When the intensity of the Poisson process tends to infinity andthe grains are spherical
an alternative formulation of our model, which is related tothe description of the dead
leaves model above, can be found in [2]. Consider a (d + 1)–dimensional spaceRd × R+
whereR+ is a time dimension. Each point in a Poisson process in this space is the centre of
a sphere inRd which is tried to be added to the model and the final coordinaterepresents
the time of the trial. A sphere has radiusR(t) at timet. A sphere is not added if it overlaps
with any sphere with smaller value oft regardless of whether this sphere was rejected or
not. The only difference from the formulation in [5] is that the sizes of the spheres are not
random. Large times corresponds to small weights in our model and the functionR(t) is
similar to weights depending deterministically on the radius.

Obviously volume fraction one is impossible to achieve. However, Gilbert, [2], proves
that the volume fraction can be made arbitrarily close to oneby choosing the functionR(t)
carefully. One choice is

R(t) =

(

1+
a(d + a)t

A

)1/(d+a)

, (1.1)

wherea andA > 0 are constants and|a| < 1. Volume fractions close to one are achievable
if A and |a| are small. Ifa is negative, in additionA/|a| needs to be large. Here we will
give an alternative proof of the achievability of volume fractions close to one, based on
a “separation of size” argument somewhat reminiscent of theconstruction of Meester,
Roy and Sarkar, [8], to demonstrate the nonuniversality of critical volume fractions in the
so–called Boolean model of continuum percolation.

The paper is outlined as follows. In Section 2 we give a detailed description of the
model with spherical grains and show that it is stochastically increasing in the intensity of
the Poisson process if the weight distribution is independent of the radius. In Section 3 we
discuss the volume fraction when the intensity of the Poisson process tends to infinity and
the weight distribution is independent of the radius. Our alternative proof that the volume
fraction can be made arbitratily close to one if the weight distribution is dependent of the
radius is given in Section 4. The use of more general convex sets in place of spheres is
considered in Section 5.
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2 Model

For simplicity we give the description of the model for spherical grains, but the generali-
sation to convex grains is obvious. In Section 5 we give the counterpart to (2.2) for convex
grains. The model is constructed by thinning a marked Poisson process, also known as
a Boolean model, with proposal intensityλpr in Rd. Each point in the Poisson process is
given two marks. One of the marks is the radius of a sphere centred at the point and the
other mark is a weight that is allowed to depend on the radius.Points are assigned radii
independently and according to a proposal radius distribution Fpr. The radii are indepen-
dent of the point process. Weights are also assigned independently of the point process
but to stress the possible dependence on radius, the weight distribution is denotedFW|r . A
point is kept in the thinning only if its sphere is not intersected by any other sphere with
equal or higher weight. Note that the radii of the spheres areno longer independent after
thinning. One way of quantifying the dependence is by the mark–correlation function, see
[1]. Some further notation is needed. Letκd be the volume of the unit sphere inRd and
defineF̄(x) = P(X ≥ x) for a random variableX with distribution functionF.

In Sections 3 and 4 we will need some properties of the model, primarily the volume
fractionρ. For a stationary model with intensityλ and non-overlapping grains of random
size it can be written as the intensity times the mean volume of a typical grainv̄, that is

ρ = λv̄. (2.1)

One useful property is the probability that a randomly chosen point with radiusr is kept
when thinning, henceforth called the retention probability, which from [5] is

g(r) =
∫ ∞

0
exp

{

−λprκd

∫ ∞

0
F̄W|y(w)(r + y)dFpr(dy)

}

FW|r(dw). (2.2)

Also from [5] the intensity after thinning is

λ = λpr

∫ ∞

0
g(r)Fpr(dr) (2.3)

and the distribution function of the radius of a randomly chosen sphere after thinning is

F(r) = 1−
λpr

λ

∫ ∞

r
g(s)Fpr(ds). (2.4)

In the following we will mostly be concerned with the case when the intensity of the
Poisson process tends to infinity. When the weight distribution is independent of radius,
the intensity and the volume fraction after thinning are strictly increasing as functions
of the intensity before thinning. In fact the process is increasing in the intensity before
thinning as can be seen in the following theorem.

Theorem 2.1 Consider the model with continuous weight distribution independent of the
radii and letλ1 < λ2. Let X be the union of the resulting spheres forλpr = λ1 and let Y be
the union of the resulting spheres forλpr = λ2. Then X is stochastically dominated by Y.
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Proof. We prove the theorem by a coupling argument. Take a Poisson process inRd with
intensityλ2 and give each point independently a radius with distribution Fpr. Furthermore
give each point a weight that is uniform (0, λ2). Let Ỹ consist of the spheres that are
left when the thinning is performed. This process has the same distribution asY. In the
Poisson process, consider only those spheres that have weights in the interval (λ2−λ1, λ2).
The intensity of this process isλ1 and the radius distribution is stillFpr because the weights
are independent of the radii. Carry out the thinning and call the resulting process of
spheres̃X. It has the same distribution asX. A sphere before thinning with weight greater
than or equal toλ2 − λ1 will belong to Ỹ if and only if it belongs toX̃. A sphere with
weightλ2 − λ1 will only be contained inỸ. We have shown

X̃ ⊆ Ỹ

and henceX is stochastically dominated byY.

The condition that the weight distribution is continuous isnecessary in the argument
above.

Example 2.1. Let the spheres have equal radii,r, and let the weights be constant. Then
all spheres will be removed except those that do not intersect with any other sphere. The
intensity after thinning is by using (2.2) and (2.3)

λpr exp{−λprκd2
drd}.

The intensity after thinning is at most 1/(κd2drde) for λpr = 1/(κd2drd) and it tends to zero
asλpr tends to infinity. ¤

If the weights are continuous but depend on the radii, the process is not necessarily in-
creasing.

Example 2.2. Let the radii take value 1 ora with probabilitiesp andq = 1 − p respec-
tively. Let the weight distribution be uniform in (0,1) given radius 1 and let it be uniform
in (1,2) given radiusa. Then the intensity, by (2.2) and (2.3), is

1
κd2d

{

exp
( − λprκd(1+ a)dq

)(

1− exp(−λprκd2
dp)
)

+
1− exp

( − λprκd2dadq
)

ad

}

.

Whenλpr tends to infinityλ tends to 1/(κd2dad). Let d = 2, a = 2 andp = q = 1/2,
then numerical inspection shows that the intensity has maximum approximately 0.027 for
λpr ≈ 0.088. The value ofλ asλpr tends to infinity is 1/(16π) ≈ 0.020. ¤

Theorem 2.1 implies that the process exists in the limit asλpr tends to infinity. If the
weights are allowed to depend on the radii, the limit processdoes not necessarily exist.

Example 2.3. Suppose we have a model with two different radii of the spheres, 1 and 2,
with probabilities 1/2 each. LetN be large,N = 100 say, and let the weight of a sphere
of radius 1 be uniform in

∞
⋃

i=0

(

N2i − 1
N2i

,
N2i+1 − 1

N2i+1

)
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and let the weight of a sphere of radius 2 be uniform in

∞
⋃

i=0

(

N2i+1 − 1
N2i+1

,
N2i+2 − 1

N2i+2

)

.

The limit process is not well defined since asλpr → ∞ the process will fluctuate between
consisting mostly of spheres of radius 1 and consisting mostly of spheres of radius 2.¤

3 Volume fraction for the spherical case if the
weight distribution is independent of the radius

In this section we will consider the case where the weight distribution is continuous and
independent of the radii andλpr → ∞. As noted earlier the model then coincides with
the intact grains of the dead leaves model. We will show that the largest volume fraction
achievable is that of the process with all radii being equal.In that case the volume fraction,
as shown in [5], is 2−d.

Theorem 3.1 If the weight distribution is continuous and independent of the radii and
λpr → ∞, then, forRd with d = 1 or 2, the volume fraction is at most

1
2d
,

with equality if and only if the spheres have equal radii.

Proof. First we need to find an expression for the volume fraction. From (2.2) the reten-
tion probability for fixedr, whenλpr is the intensity of the Poisson process, is

g(r) =
1− exp{−λprκdE[(r + Y)d]}

λprκdE[(r + Y)d]
,

whereY has distributionFpr. By (2.4), the expectation ofRd is

E[Rd] =
λpr

λ

∫ ∞

0
rdg(r)Fpr(dr)

and hence the volume fraction is by (2.1),

ρ =

∫ ∞

0
rd 1− exp{−λprκdE[(r + Y)d]}

E[(r + Y)d]
Fpr(dr).

Letting the intensity tend to infinity gives

lim
λpr→∞

ρ =

∫ ∞

0

rd

E[(r + Y)d]
Fpr(dr). (3.1)

If d = 1 the function r
r + EY
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is concave and we can use Jensen’s inequality to deduce
∫ ∞

0

r
r + EY

Fpr(dr) ≤ EY
EY+ EY

=
1
2
.

We have equality above only if the radius is constant, since otherwise the function is
strictly convex.

If d = 2 the function

f (r) =
r2

r2 + 2rEY+ EY2

is not concave but it can be shown to lie below a tangent passing through the origin. Let
µ = EY andγ = EY2 and the equation for the tangent is

t(r) =
r

2(µ +
√
γ)
.

The difference between the tangent and the curve is

t(r) − f (r) =
r(r − √γ)2

2(µ +
√
γ)(r2 + 2rµ + γ)

.

Hencet(r) − f (r) ≥ 0 and

∫ ∞

0

r2

r2 + 2µr + γ
Fpr(dr) ≤

∫ ∞

0

r
2(µ +

√
γ)

Fpr(dr) =
µ

2(µ +
√
γ)
≤ 1

4
,

where in the last inequality we usedγ ≥ µ2. Since equality holds only for fixed radius,
the volume fraction is 1/4 only if that is the case.

We cannot prove that the upper bound of the volume fraction is1/2d for generald. In
fact the method used in the proof above gives an upper bound for the volume fraction in
d = 3 as 4/27. This can be seen by considering the function

f (r) =
r3

E[(r + Y)3]
.

SinceEY3 ≥ (EY)3 for Y ≥ 0 we have

f (r) ≤ r3

(r + EY)3
.

As before this function lies below a tangent that passes through the origin. The equation
of the tangent is

4r
27µ
.

Proposition 3.2 For a two point radius distribution and continuous weight distribution
independent of the radius inRd andλpr → ∞, the volume fraction is at most1/2d. The
upper bound is achieved only if the radius is fixed.
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Proof. Let the radius take value 1 with probabilityp and valuea with probability q =
1 − p. From (3.1) the volume fraction as the intensity of the Poisson process tends to
infinity is

ρ =
p

2dp+ (1+ a)dq
+

adq
(1+ a)dp+ 2dadq

.

Rewriting with a common divisor gives,

ρ =
(1+ a)dp2

+ 2d+1adpq+ (1+ a)dq2

(2dp+ (1+ a)dq)((1+ a)dp+ 2dadq)
.

By subtracting the volume fraction from 1/2d we have

1
2d
− ρ =

(

(1+ a)2d − 22dad)pq

(2dp+ (1+ a)dq)((1+ a)dp+ 2dadq)
.

It is easy to see thata = 1 is a root to (1+a)2d−22dad
= 0. It is actually a double root and

by some tedious manipulation using binomial expansions, wecan write

1
2d
− ρ =

(a− 1)2pq
(

∑d−1
j=0

∑ j
m=0

∑m
k=0

(

2d
k

)

a2d− j−2
+
∑d−2

j=0

∑ j
m=0

∑m
k=0

(

2d
k

)

aj
)

(2dp+ (1+ a)dq)((1+ a)dp+ 2dadq)
,

which is clearly 0 only fora = 1 and positive otherwise.

Proposition 3.2 gives an indication that Theorem 3.1 holds for anyd. Hence we state
the following conjecture.

Conjecture 3.3 If the weight distribution is continuous and independent of the radii and
λpr → ∞, then inRd for any d, the volume fraction is at most

1
2d
,

attained by spheres of equal radius.

4 Volume fraction if the weight distribution
depends on the radius

As can be seen in the Introduction, Gilbert [2], showed that the volume fraction can be
made arbitrarily close to one by choosing the right functionR(t). This is similar in our
view to let the weight distribution depend deterministically on the radius. We will make
an alternative proof of this fact. The idea is the same in our setting as in Gilberts, namely
letting the functionR(t) decrease in such a way that not much space is wasted. In Gilbert’s
caseR(t), see (1.1), is continuous while we have discrete radii.

Theorem 4.1 If the weight distribution is independent of the radius, it ispossible to
achieve a volume fraction arbitrarily close to 1 inRd for any d.
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Proof. The theorem will be proved by considering a model with spheres having discrete
radius distribution withk possible values. The weight will be proportional to the radius
of the sphere. The idea is to let each size of spheres have sufficiently low intensity so that
they do not overlap spheres of the same size and to let smallerspheres be so much smaller
that not much space is wasted if they overlap partially with alarger sphere.

Fix smallα > 0 andδ > 0. Below we will show that we can achieve a volume fraction
of at least

1− ακd(3d − 1)− 2δ. (4.1)

The volume fraction can be made arbitrarily close to one by picking α andδ small. Let
the radius of a sphere before thinning take valuer i = ǫ

i−1 with probability pi = λi/λpr, i =
1, . . . , k, whereλpr is the intensity of the Poisson process. Think ofǫ > 0 as being small
andk large. Let the weight of a sphere with radiusr i be uniform ((r i−1+r i)/2, (r i+r i+1)/2).
The intensity of spheres of radiusr i is λi before thinning.

The volume fraction after thinning is the same as the probability that the origin is
covered after thinning and can be written

ρ =1− P(The origin is not covered after thinning)

=1− P(The origin is not covered before thinning)

− P(All spheres covering the origin are deleted).

(4.2)

The number of spheres with radiusr i that covers the origin before thinning is Poisson
distributed with expectationλiκdrd

i and hence

E[# spheres covering the origin before thinning]=
k
∑

i

κdr
d
i λi .

Lettingλi = α/rd
i the expectation becomeskκdα. Pickk large enough so that

P(The origin is not covered before thinning)= exp(−kκdα) ≤ δ. (4.3)

To obtain the probability that all spheres covering the origin are deleted we assume
that at least one sphere covers the origin before thinning. Let the largest of all such spheres
be denotedB. In case several spheres having the same radius cover the origin we letB be
the one with highest weight. IfB has radiusr i, a centre of a sphere with higher weight
thanB, having radiusr j ≥ r i, that intersectsB must be separated by at least a distance of
r j from the origin, otherwise we get a contradiction of the definition of B. On the other
hand, the centre ofB is at most a distancer i from the origin and hence the centre of a
sphere with radiusr j overlappingB cannot be further away from the origin than 2r i + r j.
Now we can get an upper bound for the probability that all spheres covering the origin are
deleted by

P(All spheres covering the origin are deleted)

≤ P(A sphere with radius larger than or equal tor i overlapsB)

≤ E[# spheres with radius larger than or equal tor i overlappingB]

≤
i
∑

j=1

E

[

# spheres with radiusr j and center at

distance betweenr j and 2r i + r j from the origin

]

.
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The number of spheres with radiusr j is Poisson distributed and

P(All spheres covering the origin are deleted)

=

i
∑

j=1

λ jκd
(

(2r i + r j)
d − rd

j

)

=

i
∑

j=1

ακd
(

(2ǫ i− j
+ 1)d − 1

)

= ακd(3
d − 1)+ ακd

i−1
∑

j=1

(

(1+ 2ǫ i− j)d − 1
)

.

(4.4)

We can choose a smallǫ such that, for alli simultaneously,

ακd

i−1
∑

j=1

(

(1+ 2ǫ i− j)d − 1
)

< δ.

Insert this estimation of (4.4) together with (4.3) in (4.2)and we have shown (4.1).

5 Convex grains

In our model we may replace the spheres with convex sets of different sizes. We introduce
a minimum of notation to prove a counterpart to Theorem 3.1 and refer to [5] for a more
detailed description.

We begin with some definitions. First,D(A), denotes the diameter of a set A, that is

D(A) = sup
x,y∈A
‖x− y‖.

We let half the diameter be called the size. LetCd be the set of all convex, compact sets
C in Rd such that the origin belongs toC andD(C)/2 = 1. Moreover letC(x, r) be the set
C translated byx and with half its diameter equal tor and letČ = {−x : x ∈ C} be the
reflection ofC in the origin. Finally we denote the Lebesgue measure ind dimensions by
ld.

In the following we will only considerR2 andC ∈ C2. Replacingκ2(r + y)2 in (2.2)
with l2({x : C(o, r) ∩C(x, y) , ∅}) gives the retention probability for convex sets with the
same shape and orientation asC. Let ν(C, Č) be the mixed volume ofC andČ, then

l2({x : C(o, r) ∩C(x, y) , ∅}) = (r2
+ y2)l2(C) + 2ryν(C, Č).

If the sets are uniformly rotated about the origin, thenκ2(r + y)2 should be replaced by
E[l2({x : C(o, r) ∩ mC(x, y) , ∅})], wherem is a rotation matrix, i.e. orthogonal with
determinant 1, and the expectation is taken with respect to an angle of rotation that is
uniform (0,2π). Let S1(C) be the perimeter ofC, then by the generalised Steiner formula

E[l2({x : C(o, r) ∩mC(x, y) , ∅})] = (r2
+ y2)l2(C) +

ryS1(C)2

2π
.

Just as in the spherical case the maximal volume fraction, atleast inR2, is given by
grains of equal size.
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Proposition 5.1 Let the grains be convex of the same shape as C∈ C2 and let the weight
distribution be continuous and independent of the size. Forgrains of the same orientation
and whenλpr → ∞, the volume fraction is at most

l2(C)

2(l2(C) + ν(C, Č))
.

For grains of random orientation and whenλpr → ∞, the volume fraction is at most

l2(C)
2l2(C) + S1(C)2/(2π)

.

In both cases the upper bound is attained if and only if all thegrains have the same size.

Proof. The volume fraction asλpr → ∞ is deduced similar to (3.1). For convex sets of
the same orientation we have volume fraction

ρ =

∫ ∞

0

r2l2(C)
∫ ∞

0

(

r2 + y2)l2(C) + 2ryν(C, Č)
)

Fpr(dy)
Fpr(dr),

and for uniformly rotated convex sets we have volume fraction

ρrot =

∫ ∞

0

r2l2(C)
∫ ∞

0

(

(r2 + y2)l2(C) + ryS1(C)2

2π

)

Fpr(dy)
Fpr(dr).

In both cases we take the expectation of a function that can bewritten as

r2

r2 + ar + b
,

for some positive constantsa andb. The result is shown exactly as for thed = 2 case in
the proof of Theorem 3.1.

In two dimensions it is well-known that for convexC

l2(C) ≤ ν(C, Č) ≤ 2l2(C)

with equality to the left if and only ifC is centrally symmetric and to the right if and only if
C is a triangle. No convex set has a larger perimeter relative to its area than a circle, more
preciselyS1(C)2 ≥ l2(C)4π. By these bounds and Proposition 5.1 it follows that among
all dead leaves models with convex grains of equal shape, fixed or uniformly distributed
orientations, and independent random radii, the highest volume fraction results for fixed-
sized centrally symmetric sets of equal orientation. In this case the volume fraction is 1/4
if d = 2 and we believe that the bound 1/2d holds in any dimension. Finally, we generalise
Conjecture 3.3 to hold among convex grains of fixed or random orientation and the upper
bound is achieved for centrally symmetric sets of fixed size.
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