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Abstract

We discuss the volume fraction of a model of non—overlapping conversyra
is obtained from thinning a Poisson process where each point has at\ae)ts
the centre of a grain, by removing any grain that is overlapped by oneggrlar
eqgual weight. In the limit as the intensity of the Poisson process tends to intlivaty,
model can be identified with the intact grains in the dead leaves model if thetaeigh
are independent of the grain sizes. In this case we can show that tmeevfyaction
is at most 129 for d = 1 or 2 if the shape is fixed, but the size and the orientation
are random. The upper bound is achieved for centrally symmetric sets séthe
size and orientation. For generhe can show the upper bound;2t, for spherical
grains with two—point radius distribution. If dependence between weighsie is
allowed, it is possible to achieve a volume fraction arbitrarily close to one.

1 Introduction

The model considered in this paper is a nhon—overlapping -gg@an model, which is a
generalisation of one of Matérns hard—core models in [6jva$ proposed by Mansson
and Rudemo in [5]. The model is constructed by generating ssBoiprocess iR and
letting each point be the centre of a grain. The sizes anchtatiens of the grains are
random and each grain is given a weight which may depend miziis The process is
thinned by rejecting any grain that intersects with anotirain that has equal or higher
weight. In [5] the intensity and size distribution of the ijiaafter thinning for this model
were given. Furthermore, the asymptotic value of the voldiraetion as the intensity
before thinning tends to infinity was derived in the case addisized grains. One result
is that centrally symmetric sets of equal size give the vadiraction 729

The aim of the present paper is to study the asymptotic volireration, namely if
fixed-sized grains give the highest volume fraction in theecevhere the weights are
independent of the grain size and if it is possible to choosmghts so that the volume
fraction can become arbitrarily close to 1. We believe thaf 1s an upper limit for the
volume fraction irR® for anyd if the weights are independent of the grain sizes. However
we can only show it in general fat = 1 or 2 and for spherical grains with two—point
distribution for anyd. Furthermore, we show that it is possible to achieve a volume
fraction arbitrarily close to one by a particular choice aflius distribution and weights
depending on the radii.

If the weight distribution is continuous and the intensiynds to infinity, the grains
kept in our model are the same as the intact grains in Matfedwad leaves model,



[7]. It can be defined as follows. Consider a stationary Poigsocesg(x;, tj)} with unit
intensity inRY x (—c0,0]. Interprett; as the arrival time of the point € RY. Let d—
dimensional, possibly random, compact grains be implaatede pointsg sequentially
in time, so that a new grain deletes portions of the “olde@snAt timet = 0 the space
RY is completely occupied, and the grains which are not corapyieteleted constitute a
tessellation oRY.

The grains which are intact, that is not intersected by at®r Igrains, constitute a
model of non-intersecting grains. The intact grains can bks considered as the limit
of the generalisation of Matérn’s hard-core model undedystiere. Let the weights be
continuously distributed on-o, 0], independent of each other and of the radii. Then the
weights can be identified with the time coordinate in the dpson of the dead leaves
model given above. The connection between Matérn’s hare-owdel and the dead
leaves model in the case of fixed-sized spheres was notedoggrSand Schlater [10].
The dead leaves model and generalisations of it, for instéme colour dead leaves, are
studied in a number of papers by Jeulin, see e.g. [4]. Resnlth@intensity and size
distribution of the intact grains can be found in [3].

When the intensity of the Poisson process tends to infinitytlaadrains are spherical
an alternative formulation of our model, which is relatedhe description of the dead
leaves model above, can be found in [2]. Consided & {)—dimensional spade® x R+
whereR* is a time dimension. Each pointin a Poisson process in thisesis the centre of
a sphere irRY which is tried to be added to the model and the final coordirepieesents
the time of the trial. A sphere has radiid&) at timet. A sphere is not added if it overlaps
with any sphere with smaller value bfegardless of whether this sphere was rejected or
not. The only diference from the formulation in [5] is that the sizes of theesph are not
random. Large times corresponds to small weights in our ivenate the functiorR(t) is
similar to weights depending deterministically on the uadi

Obviously volume fraction one is impossible to achieve. ldegr, Gilbert, [2], proves
that the volume fraction can be made arbitrarily close tolpnehoosing the functioR(t)
carefully. One choice is

R(t) = (1 + —a(d'A* t

wherea andA > 0 are constants and < 1. Volume fractions close to one are achievable
if A and|al are small. Ifais negative, in additior\/|a] needs to be large. Here we will
give an alternative proof of the achievability of volumedtians close to one, based on
a “separation of size” argument somewhat reminiscent ofctirestruction of Meester,
Roy and Sarkar, [8], to demonstrate the nonuniversalityit€af volume fractions in the
so—called Boolean model of continuum percolation.

The paper is outlined as follows. In Section 2 we give a dedadlescription of the
model with spherical grains and show that it is stochagyitatreasing in the intensity of
the Poisson process if the weight distribution is indepahdgthe radius. In Section 3 we
discuss the volume fraction when the intensity of the Poigsocess tends to infinity and
the weight distribution is independent of the radius. Oteraktive proof that the volume
fraction can be made arbitratily close to one if the weigktrihution is dependent of the
radius is given in Section 4. The use of more general convesxisglace of spheres is
considered in Section 5.

1/(d+a)
), (1.2)



2 Modd

For simplicity we give the description of the model for spbalgrains, but the generali-
sation to convex grains is obvious. In Section 5 we give thatarpart to (2.2) for convex
grains. The model is constructed by thinning a marked Poigsocess, also known as
a Boolean model, with proposal intensity, in R%. Each point in the Poisson process is
given two marks. One of the marks is the radius of a sphereextat the point and the
other mark is a weight that is allowed to depend on the radfasnts are assigned radii
independently and according to a proposal radius distabu,,. The radii are indepen-
dent of the point process. Weights are also assigned indepéw of the point process
but to stress the possible dependence on radius, the wasgfitbation is denotedry,. A
point is kept in the thinning only if its sphere is not intert® by any other sphere with
equal or higher weight. Note that the radii of the spheresiar®nger independent after
thinning. One way of quantifying the dependence is by thekr@orrelation function, see
[1]. Some further notation is needed. Lgtbe the volume of the unit sphere tf and
defineF(x) = P(X > x) for a random variabl&X with distribution functionF.

In Sections 3 and 4 we will need some properties of the modiehgpily the volume
fractionp. For a stationary model with intensifiyand non-overlapping grains of random
size it can be written as the intensity times the mean voluhaetypical grainv, that is

p = AV (2.2)

One useful property is the probability that a randomly cihgseint with radiug is kept
when thinning, henceforth called the retention probabiithich from [5] is

o(r) = fo exp{—aprkd fo F‘W.y(w)(r+y)der(dy)} o (). (2.2)

Also from [5] the intensity after thinning is

A=Ay fom g(r)Fpr(dr) (2.3)

and the distribution function of the radius of a randomly stosphere after thinning is

dor [
F(r):l—Tpfr 9(9F pr(ds). (2.4)

In the following we will mostly be concerned with the case witke intensity of the
Poisson process tends to infinity. When the weight distiouis independent of radius,
the intensity and the volume fraction after thinning aréc#yr increasing as functions
of the intensity before thinning. In fact the process is @aging in the intensity before
thinning as can be seen in the following theorem.

Theorem 2.1 Consider the model with continuous weight distribution inaej@eat of the
radii and letd; < A,. Let X be the union of the resulting spherestgr= 4, and let Y be
the union of the resulting spheres fof, = A,. Then X is stochastically dominated by Y.



Proof. We prove the theorem by a coupling argument. Take a Poissmes ifRY with
intensityA, and give each point independently a radius with distrilbuig,. Furthermore
give each point a weight that is uniform,(@). Let Y consist of the spheres that are
left when the thinning is performed. This process has theesdistribution asy. In the
Poisson process, consider only those spheres that havete/gighe interval {o — A1, 15).
The intensity of this process.s and the radius distribution is st because the weights
are independent of the radii. Carry out the thinning and ¢l riesulting process of
sphere«. It has the same distribution s A sphere before thinning with weight greater
than or equal tol, — A; will belong to Y if and only if it belongs toX. A sphere with
weight 1, — 2; will only be contained inY. We have shown

XcVY
and henceX is stochastically dominated by ]

The condition that the weight distribution is continuousnecessary in the argument
above.

Example 2.1. Let the spheres have equal radiiand let the weights be constant. Then
all spheres will be removed except those that do not intevgiélec any other sphere. The
intensity after thinning is by using (2.2) and (2.3)

The intensity after thinning is at most(kq29rde) for A, = 1/(k42%r¢) and it tends to zero
asAp tends to infinity. |

If the weights are continuous but depend on the radii, thegs® is not necessarily in-
creasing.

Example 2.2. Let the radii take value 1 aa with probabilitiesp andq = 1 — p respec-
tively. Let the weight distribution be uniform in (@) given radius 1 and let it be uniform
in (1, 2) given radius. Then the intensity, by (2.2) and (2.3), is

1 - exp( — Aprkg2%a’q)
ad '

1
~d exp( - /lerd(l + a)dq)(l - eXp(—/lerdZd p) +
Kd2

When A, tends to infinityA tends to ¥(xs2%a). Letd = 2,a = 2 andp = q = 1/2,
then numerical inspection shows that the intensity has maxi approximately 027 for
Apr = 0.088. The value oft asa,, tends to infinity is 1(16r) ~ 0.020. |

Theorem 2.1 implies that the process exists in the limifi@stends to infinity. If the
weights are allowed to depend on the radii, the limit prockess not necessarily exist.

Example 2.3. Suppose we have a model with twdfdrent radii of the spheres, 1 and 2,
with probabilities 2 each. LeiN be large,N = 100 say, and let the weight of a sphere

of radius 1 be uniform in
© N2i -1 N2i+1 -1
U( N2 ° N2+ )

i=0




and let the weight of a sphere of radius 2 be uniform in

b N2i+1 -1 N2i+2 -1
U( N2i+1 ’ N2i+2 )
i=0

The limit process is not well defined since s — oo the process will fluctuate between
consisting mostly of spheres of radius 1 and consisting Ino§spheres of radius 2.0

3 Volumefraction for the spherical caseif the
weight distribution isindependent of theradius

In this section we will consider the case where the weigtibigion is continuous and
independent of the radii antl,, — co. As noted earlier the model then coincides with
the intact grains of the dead leaves model. We will show tiatdrgest volume fraction
achievable is that of the process with all radii being equrethat case the volume fraction,
as shown in [5], is Z.

Theorem 3.1 If the weight distribution is continuous and independenthaf tadii and
Apr = oo, then, forRY with d = 1 or 2, the volume fraction is at most

1
?a

with equality if and only if the spheres have equal radii.

Proof. First we need to find an expression for the volume fractiooni=¢2.2) the reten-
tion probability for fixedr, whenA,, is the intensity of the Poisson process, is

1- exﬂ_/lerdE[(r + Y)d]}
ﬁerdE[(r + Y)d] ’

a(r) =
whereY has distributior,. By (2.4), the expectation ¢ is

B[R =2 [ g

and hence the volume fraction is by (2.1),

o1 _ d
o= f g1 — expl—=ApkqE[(r +Y) ]}Fpr(dr).
0

E[(r + Y)9]

Letting the intensity tend to infinity gives

. 0 rd
A!)lrr_(‘oop=f0 mer(df) (3.1)

r
r+EY

If d = 1 the function




Is concave and we can use Jensen’s inequality to deduce

N ¢ EY 1
——Fp,(dr) £ =——— ==.
_ﬁ r+EY'“ )_EY+EY 2
We have equality above only if the radius is constant, sirberaise the function is
strictly convex.
If d = 2 the function ,
r
f(r) =
") r2+ 2rEY + EY?
IS not concave but it can be shown to lie below a tangent pgsksnough the origin. Let
u = EY andy = EY? and the equation for the tangent is

r
O 2+

The diference between the tangent and the curve is

r(r— )
2+ V(2 +2ru+y)

t(r)— f(r) =

Hencet(r) — f(r) > 0 and

jo‘ mer(dr) = fc; mer(dr) = m < r

where in the last inequality we used> u2. Since equality holds only for fixed radius,
the volume fraction is M only if that is the case. ]

We cannot prove that the upper bound of the volume fractidria$ for generald. In
fact the method used in the proof above gives an upper bourttidosolume fraction in
d = 3 as 427. This can be seen by considering the function

r3
"= v
SinceEY? > (EY)? for Y > 0 we have
r3
f(r) < m

As before this function lies below a tangent that passesugiraéhe origin. The equation

of the tangent is
4r

2%
Proposition 3.2 For a two point radius distribution and continuous weight distion

independent of the radius ik? and Apr — oo, the volume fraction is at mogy2¢. The
upper bound is achieved only if the radius is fixed.



Proof. Let the radius take value 1 with probabilityand valuea with probability q =
1 - p. From (3.1) the volume fraction as the intensity of the Rmisprocess tends to
infinity is
_ p a'q
P = 2p+ (1+a)dq " (1+a)p+ 29a%q
Rewriting with a common divisor gives,

_ (1+a)%p? + 2%a’pg + (1 + a)%c?
P~ @p+ (1+a)iq)((1+a)0p+ 2atg)’

By subtracting the volume fraction frony2 we have

1 ~ (1 +a)® - 229a%)pq
20 P T 2dp+ (1+a)dq)(1+ a)p+ 29adq)’

It is easy to see that = 1 is a root to (& a)>? — 229a% = 0. It is actually a double root and
by some tedious manipulation using binomial expansions;amewrite

1 (@-2Ppa S Th o S (F)a P + £ S0 2o (F)a)

2d (29p + (1 + a)9g)((1 + a)dp + 29adq) ’

which is clearly O only fola = 1 and positive otherwise. ]

Proposition 3.2 gives an indication that Theorem 3.1 haddsihyd. Hence we state
the following conjecture.

Conjecture 3.3 If the weight distribution is continuous and independenhefriadii and
Apr = o0, then inRY for any d, the volume fraction is at most

2d°

attained by spheres of equal radius.

4 Volumefraction if the weight distribution
depends on theradius

As can be seen in the Introduction, Gilbert [2], showed thatwolume fraction can be
made arbitrarily close to one by choosing the right functrft). This is similar in our
view to let the weight distribution depend deterministigan the radius. We will make
an alternative proof of this fact. The idea is the same in ettirg) as in Gilberts, namely
letting the functiorR(t) decrease in such a way that not much space is wasted. InrGilbe
caseR(t), see (1.1), is continuous while we have discrete radii.

Theorem 4.1 If the weight distribution is independent of the radius, itpisssible to
achieve a volume fraction arbitrarily close to 11tf for any d.



Proof. The theorem will be proved by considering a model with sphéiring discrete
radius distribution withk possible values. The weight will be proportional to the usdi
of the sphere. The idea is to let each size of spheres héiveiantly low intensity so that
they do not overlap spheres of the same size and to let srapheres be so much smaller
that not much space is wasted if they overlap partially wikarger sphere.

Fix smalla > 0 ands > 0. Below we will show that we can achieve a volume fraction
of at least

1 - axg(3? - 1) - 26. (4.2)

The volume fraction can be made arbitrarily close to one lakipg @ andé small. Let
the radius of a sphere before thinning take value €~ with probability p; = Ai/Apr, 1 =
1,...,k, whereA, is the intensity of the Poisson process. Thinkof 0 as being small
andk large. Let the weight of a sphere with radiube uniform (¢_1+r;)/2, (ri +ri;1)/2).
The intensity of spheres of radiusis A; before thinning.

The volume fraction after thinning is the same as the prdibalthat the origin is
covered after thinning and can be written

p =1—P(The origin is not covered after thinning)
=1 - P(The origin is not covered before thinning) (4.2)
— P(All spheres covering the origin are deleted)

The number of spheres with radiyghat covers the origin before thinning is Poisson
distributed with expectationikdrid and hence

k
E[# spheres covering the origin before thinniﬁg]Z: Kar9A;.
i

Letting 4 = a/r? the expectation becomésya. Pickk large enough so that
P(The origin is not covered before thinning)exp(-kkga) < 6. (4.3)

To obtain the probability that all spheres covering the iorgye deleted we assume
that at least one sphere covers the origin before thinniegthe largest of all such spheres
be denoted. In case several spheres having the same radius cover gjire we letB be
the one with highest weight. B has radiug;, a centre of a sphere with higher weight
thanB, having radius; > r;, that intersect® must be separated by at least a distance of
rj from the origin, otherwise we get a contradiction of the deén of B. On the other
hand, the centre dB is at most a distance from the origin and hence the centre of a
sphere with radius; overlappingB cannot be further away from the origin than 2 r;.
Now we can get an upper bound for the probability that all spheovering the origin are
deleted by

P(All spheres covering the origin are deleted)
< P(A sphere with radius larger than or equaltt@verlapsB)
< E[# spheres with radius larger than or equat;toverlappingB]

< ZE
=1

# spheres with radiug and center at
distance between and 2; + r; from the origin '

8



The number of spheres with radiusis Poisson distributed and
P(All spheres covering the origin are deleted)
i i
=) Ajka((@ri +1)? = 1) = 3" akg((267T + 1) - 1)
j=1 j=1
i-1

= akg(3¥ — 1) + akg Z (L+ 2674 - 1).
=1

(4.4)

We can choose a smalisuch that, for all simultaneously,
Ky Z (L+2€71)¥-1) <.
ji=1

Insert this estimation of (4.4) together with (4.3) in (4a2d we have shown (4.1). =

5 Convex grains

In our model we may replace the spheres with convex setdtefent sizes. We introduce
a minimum of notation to prove a counterpart to Theorem 3dLrafer to [5] for a more
detailed description.

We begin with some definitions. FirdD(A), denotes the diameter of a set A, that is

D(A) = supl|x -yl

X,yeA

We let half the diameter be called the size. Cétbe the set of all convex, compact sets
C in RY such that the origin belongs @andD(C)/2 = 1. Moreover letC(x, r) be the set
C translated by and with half its diameter equal toand letC = {-x : x € C} be the
reflection ofC in the origin. Finally we denote the Lebesgue measurkdimensions by
lg.

In the following we will only consideiR? andC € C?. Replacinge(r + y)? in (2.2)
with I,({x : C(o,r) N C(x,y) # 0}) gives the retention probability for convex sets with the
same shape and orientation@sLet v(C, C) be the mixed volume of andC, then

L({x: C(0,r) N C(x,Yy) £ 0}) = (r> + Y)I,(C) + 2ryv(C, C).

If the sets are uniformly rotated about the origin, the@ + y)? should be replaced by
E[l,({x : C(o,r) n mC(x,y) # 0})], wherem is a rotation matrix, i.e. orthogonal with
determinant 1, and the expectation is taken with respechtangle of rotation that is
uniform (Q 2r). Let S;(C) be the perimeter o, then by the generalised Steiner formula

ryS:(C)>?

E[l,({x : C(0,r) n mC(x, y) # 0})] = (r*> + y?)I-(C) + T

Just as in the spherical case the maximal volume fractioleaat inR?, is given by
grains of equal size.



Proposition 5.1 Let the grains be convex of the same shape a2 and let the weight
distribution be continuous and independent of the size gFains of the same orientation
and whem, — oo, the volume fraction is at most

12(C)
2(2(C) +v(C,C))

For grains of random orientation and whel, — oo, the volume fraction is at most

12(C)
205(C) + S1(C)?/(2n)

In both cases the upper bound is attained if and only if alldgregns have the same size.

Proof. The volume fraction ad,, — o is deduced similar to (3.1). For convex sets of
the same orientation we have volume fraction

- r2l,(C)
_ Fpr(dr),
p j; fow (r2 +Y?)I2(C) + 2ryv(C, CE))':pr(dY) 0

and for uniformly rotated convex sets we have volume fractio

* r2l,(C)
rot = 2 F r d .
P L fooo ((r2 +y2)I,(C) + %)Fpr(dy) il

In both cases we take the expectation of a function that cavritten as
r2
r’+ar+b’

for some positive constangsandb. The result is shown exactly as for the= 2 case in
the proof of Theorem 3.1. ]

In two dimensions it is well-known that for convéx
1,(C) < ¥(C,C) < 21,(C)

with equality to the left if and only i€ is centrally symmetric and to the right if and only if
Cis atriangle. No convex set has a larger perimeter relabivis area than a circle, more
preciselyS;(C)? > 1,(C)4r. By these bounds and Proposition 5.1 it follows that among
all dead leaves models with convex grains of equal shapel Gxeniformly distributed
orientations, and independent random radii, the highdsnwe fraction results for fixed-
sized centrally symmetric sets of equal orientation. Is t@se the volume fraction ig4

if d = 2 and we believe that the boung?t holds in any dimension. Finally, we generalise
Conjecture 3.3 to hold among convex grains of fixed or randaentation and the upper
bound is achieved for centrally symmetric sets of fixed size.
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