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Lecture 11 — More about resampling techniques for model assessment
(Iz 5.4, HTF 7.4-7.5, MPV 15.4)
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Todays lecture

® Test and training errors
® Bootstrap
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Test and training errors

Let 7 = ((xi,vi)), be a training set.

The generalization/prediction/test error

Errr = Exy,y0 [|yo - xoTﬁ('7’)|2 | 'T]

The expected prediction error
Er[Errr]

Training error/apparent error rate/in-sample error/regression learning error

1 R
Errin = o5 >y —xi Brl?

€T

Regression test error

__ 1 4
err = W Z lyi — %7 Br|?

i€V
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Resampling techniques for model assessment

We will now continue developing methods to validate the models we
develop using linear regression. In this course, will discuss three such
methods:

® Cross validation (random regressors)
® Bootstrap (random or non-random regressors)
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What is bootstrap?

In ideal cases, we have data and a model which is such that all the assumptions
we have made earlier, such as normality and independence, hold. However, in
many cases, this is not really the case. Also, for some methods, such as e.g.
ridge regression, there are no known distributions of parameters which allow us
to e.g. calculate confidence intervals.

An ideal solution to this problem would be to consider a lot of independent
datasets and then estimate variation, confidence intervals, etc. from their
empirical counter-parts. However, we often do not have access to such data.

Use the existing data to "simulate" new data sets, and use these to calculate
emperical estimates of the desired parameters.
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Bootstrap samples
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A sample T = ((Xi, yi))i€{1,2,...,n} A fitted line y = fo + frz

In the next few slides we describe two different methods which can be used to
obtain new "samples" from £(7), known as bootstrap samples.
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Unconditional /non-parametric bootstrap, bootstrapping cases/pairs

When applying this method, we (ideally) assume that X is random.

Forj=1,2,...
from 7T at random, with replacement.

,m, pick a bootstrap sample 7;" by choosing n observations
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Conditional /parametric bootstrap, bootstrapping residuals

We now assume that the residuals for y = X3 + € are i.i.d.

1. Fit a linear regression model y = X3 + & to obtain an estimate 3 and
residuals e =y — X 3.

2. For j =1,2,...,m, pick a bootstrap residual vector e* by choosing n
residuals from e at random with replacement.

3. Form a bootstrap vector of responses by letting y*/ := X8 + ¢*7.

4. The bootstrap sample T*7 is given by the pairs ((thr’j))ie{yz,‘.‘,n}

The sample points The residuals

The residuals The bootstrap
(w4, y:) and the fitted (x4, €5). (33, €¥) sample points
line § = X8. R (x5, i + €]).-
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Using bootstrap sample to understand the distribution of B

y = Bol(wi,y; 7)) +abi((iy; 7)) Bo((wi,y;7)) Bi((wi,y;™))
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Example

df00.model2 <- 1lm(people_fully_ vaccinated_per_hundred”I(gdp_
per _capita~.1), data = df00)

library("car")

df00.model2.bootstrapcases <- Boot(df00.model2, 1000, method
="case"

df00.model2.bootstrapresiduals <- Boot(df00.model2, 1000,
method="residual")
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Example

hist (df00.model2.bootstrapresiduals, estDensity=FALSE,
estNormal = FALSE, ci="none"
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Bootstrap confidence interval for 3y, version 1

Method
1. Using either M1 or M2, obtain bootstrap samples 7*:1, 72, ... 7T*™,
2. For each bootstrap sample, calculate B*’j.
3. Let IP’A* be the empirical distribution of these samples.

4. Let B7'°" be the largest number such that Py L(Br < By < a2, and let
B1M9" be the smallest number such that Py (B > Brlovy < aj2.

5. Return: Bf’low < B < Brhigh,
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Example

Confint (df00.model2.bootstrapresiduals, level=c(.95, .99),
type="perc")
Estimate 0.5% 2.5% 97.5% 99.5%
(Intercept) -144.138 -169.000 -164.206 -126.594 -117.838
I(gdp_per_capita~0.1) 72.135 62.009 65.174 79.859 81.479
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Bootstrap confidence interval for 3;, version 2

Method
1. Using either M1 or M2, obtain bootstrap samples 7*1, 72 . . T*m,
2. For each bootstrap sample, calculate 3%7.
3. Let PB* be the empirical distribution of these samples.

4. Let Bf‘low be the largest number such that P, (Bi‘ < Bf‘low) < /2, and let
Br,high be the smallest number such that Pj. (Bf > Bik,low) <aj2.
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Bootstrap confidence interval for 3;, version 2

5. Note that
Br,low < Bl < B*,high <:>,B— (ﬂ_[é;,low) < Bl < /B—ﬁ— (B*,high _/3)
& B — (B9 — B1) < By < B+ (B — BTY).

If we replace 8 with Bl in both of the parentheses above, we obtain the
following approximate 100(1 — )% confidence interval for 3y:

B — (B — 1) < B < B+ (B — BYIOY).
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Example
Confint (df00.model2.bootstrapresiduals, level=c(.95, .99),
type="bca")

Estimate 0.5% 2.5% 97.5% 99.5%

(Intercept) -144.138 -170.763 -165.413 -125.587 -118.974
I(gdp_per_capita~0.1) 72.135 61.508 64.729 80.243 82.445
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Example

Confint (df00.model2.bootstrapresiduals, level=c(.95, .99),
type="bca")
Estimate 0.5% 2.5% 97.5% 99.5%
(Intercept) -144.138 -170.763 -165.413 -125.587 -118.974
I(gdp_per_capita~0.1) 72.135 61.508 64.729 80.243 82.445
Confint (df00.model2.bootstrapresiduals, level=c(.95, .99),
type="perc")
Estimate 0.5% 2.5% 97.5% 99.5%
(Intercept) -144.138 -169.000 -164.206 -126.594 -117.838
I(gdp_per_capita~0.1) 72.135 62.009 65.174 79.859 81.479

confint (df00.model2)

Estimate 2.5% 97.5%
(Intercept) -144.138 -64.51172  -124.63379
I(gdp_per_capita~0.1) 72.135 62.009 79.75718
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Example

people_fully_vaccinated_per_hundred
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Simple bootstrap estimate for the prediction error

1. Obtain bootstrap samples 71, 752, ..., T%™,
2. For each bootstrap sample, calculate

— 1 _p
PE: = ~lly - X8I}

3. Take an average over all samples to obtain an estimate of the prediction

error, - L
PE = — PE;.

PE is sometimes called the simple bootstrap estimate of the
prediction error, or the bootstrap estimate of the training error erT.

® The simple bootstrap error will in general be overly optimistic, since we
the bootstrap samples will have data points in common with the original
sample. There are versions of this procedure which are better.
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Example

all_fits <- as.matrix(df00.model2.bootstrapcases$t[,1]) %*%
t(as.matrix(rep(1, nrow(df00))))+as.matrix (df00.model2.
bootstrapcases$t[,2]) %*% t(as.matrix(df00$gdp_per_
capita~.1))

responses <- as.matrix(rep(l, nrow(all_fits))) %x*% t(as.
matrix (df00$people_fully_vaccinated_per_hundred))

mean ((all_fits-responses) ~2)

[1] 249.1058
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The apparent error rate

1. Obtain bootstrap samples 7%, 752, ..., 7™,

2. For each bootstrap sample, calculate
PE. = Lijyd _ I gedy| 2
PE; = Ly — X987,
3. Take an average over all samples to obtain an estimate of the prediction

error, - 18—
PE = — Zl PE;.
=

In this case, PE is known as the apparent error rate, which is a bootstrap
estimate of the in-sample error Err;,,.
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Example

library ("boot")
df00.fit <- function(data) {
mod <- Im(people_fully_vaccinated_per_hundred ™ I(gdp_per_
capita~.1), data = data)

mean (mod$residuals~2)

}

case.fun <- function(d,i)
df00.fit (d[i,])

df00.case <- boot(df00, case.fun, R=999)

mean (df00.case$t)

[1] 244.0289
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Example

library ("boot")
df00.fit <- function(data) {
mod <- Im(people_fully_vaccinated_per_hundred I(gdp_per._
capita~.1), data = data)

mean (mod$residuals~2)}

df00$fit <- fitted(df00.model2)
df00$res <- resid(df00.model2)

model.fun <- function(d,i) {
d$people_fully_vaccinated_per_hundred <- d$fit+d$res[il]
df00.fit(d) }

df00.mod <- boot(df00, model.fun, R=999)

mean (df00.mod$t)

[1] 244.0455
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Example

library ("boot")

df00.fit <-

mod <- Im(people_fully_vaccinated_per_hundred I(gdp_per_
.1), data

capita”

c(coef (mod) ,sqrt (summary (mod) $coef [,2]°2))

case.fun <-

df00.case <-

function(data) {

function(d,i) { d4f00.fit(d[i,]) }

summary (d£00. case)

Number of bootstrap replications R

original
1 -144.138
2 72.134
3 9.886
4 3.864

bootBias
-0.168079
0.032791
-0.025054
-0.010819

boot (df00,

data)

bootSE
8.1083
.2204
.8305
.3196

o O w

case.fun,

R=999)

= 999

bootMed

-144.
72.

9

3.

604
197

.8375

8375

23/25



Example

® bootBias = B]* - Bj

1 A¥i A
® bootSE = 1 Zl(ﬂj - ﬁ;)2
It possible to get the same table, in special cases, from the output from Boot:

summary (d£00 .model2.bootstrapresiduals)

Number of bootstrap replications R = 1000

original bootBias bootSE bootMed
(Intercept) -144.138 0.31934 9.9842 -144.02
I(gdp_per_capita~0.1) 72.134 -0.13545 3.9201 72.15

Compare with the output from 1m (uses normality assumption!)
summary (d£00.model?2)
Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) -144.138 9.886 -14.58 <2e-16 ***
I(gdp_per_capita~0.1) 72.134 3.864 18.67 <2e-16 **x
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When can you not apply bootstrap?

Random vs not random

Non-constant or dependent errors
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