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Todays lecture

Equivalent definitions of ridge regression

Penalized least squares

LASSO
Model selection

— Bests subsets regression

— Stepwise forward selection

— Stepwise backwards selection

— Criteria for selecting the "best" model

¢ Consequences of model mis-specification
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Alternative definitions of ridge regression estimates

Theorem

The following definitions are equivalent definitions of the RRE for 3.
1 B (1) = (XEX +tI)"'XTy
2. B (t) = argming |ly — XBII3 + ¢ 813
3. ﬁg)(t) = argming, IBIZ<t (t) ly — Xﬁ”%

Note that in all cases, we do not want to apply the penalty to 5o, and hence
you have to be careful if X and y are not normalized.
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Ridge regression and penalized least squares

Br = arg min ly — X85 +t|8l5 = argmin |y — X3]5.
B B 11Bll2<t/ ()

More generally, we would replace ||3||3 by any penalty function p(3), to get
8= arg min |y ~ XBII5 + tp(B).
Setting p(8) = ||B]|Z, we obtain

B = argmin|ly — XB|3 +¢|8]7 = argmin |y - XB];3.
5 g: Ila<t'(®
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Ridge regression and penalized least squares

argmin |y — X8| argmin |y — X3 argmin |y — XBI[3
B IBl<t! (1) B 1Bl2<t (1) B 11BIL.5<t (1)

q=0

Vo)

argmin |y — XBI2 argmin_ [ly — X33 argmin iy — X2
B: Bl <t/ (t) B: I1Bllo.5 <t/ (t) B lIBllo<t!(t)
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Least Absolute Shrinkage and Selection Operator (LASSO)

Choosing ¢ = 1, we obtain the LASSO estimator

Br = argmin|ly — XB||3 +t|8]l = argmin |ly — X33
B8 B: 1Bl <t/ (t)

® As with ridge regression, one can show that LASSO estimates
generally has a smaller variance than LSE, but has a small bias.

e |f X is orthonormal, then
Br(t)=B/1+1) and Br,; = sgn (13| —t)+

In particular, LASSO is a shrinkage operator.

® There are no formulas for standard errors for LASSO estimates, and
hence we have to use bootstrap estimate errors.

® The larger t is, the more coefficients will be set to zero.
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LASSO profiles

value

o4

coefficients

total_cases_per_million
total_deaths_per_million
median_age
gdp_per_capita
hospital_beds_per_thousand
population
aged_65_older
diabetes_prevalence
cardiovasc_death_rate
population_density
male_smokers

life_expectancy
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How can we efficiently compute the LASSO profiles?

Assume first that we only have one regressor, so that y = 8z + ¢, and that y
and x are both on standard form. Then

Bt) = arg;nin(y —xB)" (y —xB) +t|8]

F(B) = (y —xB)" (y —xB) + t|8|
F'(B) = =2y x + 28x"x + tsgn B

- {yTx—% if yTx > t/2

Bt) = =sgn(y x) - (ly" x| —t/2)+

0 else
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How can we efficiently compute the LASSO profiles?

1. Pick some arbitrary initial value for each regression coefficient,
BY, B3, .-, BR-
2. To update 87, pick Bl which minimizes

=t||Bl1
9(Bi) = lly — ZX]ﬂ? — X.iBillz + tBi +tZ/3j .
i i

By the above argument, we have §; = (sgnr’,x;) - (Jr,x; —t/2|), where
r_;, =y— Zj# X.jﬂ?. Update 8¢ by letting 87 — f;.
3. Repeat this procedure, lopping through all regression coefficients until the

coefficients converge.

Since the initial problem is convex and has a unique minimum,
0 730 oNT 3
(87, B3y .-, Br)~ will converge to Brasso-
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How can we efficiently compute the LASSO profiles?

1. Start with residual r =y, 3(0) = 0, and active set A = 0.

2. Find the predictor x; which maximizes 79 := |r{ x;|. Define the active set
A= {j} and X4 = x;.
3. Repeat the following for i =1,2,...:
3.1 Define § =7, (XA XA) ' X4ri 1.
3.2 Define A := 61 4.
3.3 Move 3 in direction A until the time ¢ when another regressor £ ¢ A
has the same correlation with r’ := y — X3(t) as the coefficients
in A.
34 Set A=AU{{} andr =7’
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How do we choose t7

® Small ¢t — better fit and less bias

® large t — simpler model and smaller variance

1. Partition the data set S up into m samples V1, V3, ..., V,, of equal size
(validation sets).

2. For each t and each j € {1,2,...,m}, use Tj := S\ Vj; as a training set
to find B? (t), and estimate the prediction error by

‘ -

PE,(0) = o 3 (= xBY (0)', PE@) = - 3 PE()

| i€V;

=

3. Plot I/’E(t) as a function of ¢. This plot is called a cross-validation error
curve.

4. Pick t which "almost" minimizes this error.
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How do we choose t7

® Small ¢t — better fit and less bias

® Large t — simpler model and smaller variance
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Ridge vs. LASSO

. . 2
argming, 52<p ) |y — XB|3 argming. | g, <pp) Iy — X812

® | ASSO will in general force some of the coefficients to be equal to zero,
which corresponds to deleting the corresponding regressors from the
model.

® |ASSO estimates tends to be better than RRE when only a few of the
"true" coefficients are non-zero, while RRE is generally better than
LASSO if 3 is not sparse.
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LASSO and elastic net

argmin |ly — X33 = argmin ||y — X8| +t/|8|3
B IBIZ<t (1) B

argmin |y — X33 = argmin |y — X85 + t[|8|x
B 1Bl <t (t) B

1-—

S l18I3)

argﬁmin ly — X85 + t(allBll +
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Ridge vs. LASSO

Ridge traces

coefficients

~— total_casos_por_mion
~— total_deaths_per_millon
— modian_ago

— gdp_por_capita

— hospial_beds_por_thousand
~— population

~— population_density
— malo_smokers.
— Ho_oxpectancy

value

LASSO traces

o

coefficients

— total_cases_per_milion
~— total_deaths_per_milion
— modian_age

— %p_per_capita

— hospita_beds_por_thousand
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Criteria for selecting the "best" model

SSRes(S)
SSr

SSRes(5)/(n =S|+ 1)

2 _ _
=1 SSrin=1)

and R%4(S):=1-
We ideally want to choose the model which for which Ridj (S) is maximal.

SSRes(S)

R

We ideally want to choose the model which for which M Sges(S) is minimal.

deviance = 2log 17 Limodel

saturated model

—lly—xBl3/20> (yi—vi)?/20°
Lmodel xe 2 ) Lsaturated model X et vt
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Criteria for selecting the "best" model

The Akaike Information Criterion (AIC)

) if using LSE

AIC == —2log L+ 2(|S| + 1

2nlogSSR+S(S) +2

(IS]+1).
Bayesian Information Criterion (BIC)

if using LSE

BIC = —2logL+ (|S|+1)logn =" nlo

SSnes(S
gRT()+(|S|+1)logn.

17 /28



Criteria for selecting the "best" model

_ SSRes(S)

6-2

Cp(5) : —(n—=2(15+1))

which is an estimate of the standardized total mean square error

o Ellats) —E] |E[3(5)] — Ely]| + tr Var(3(5))
o= -

o2 o2
If the model has little bias, then C,(S) =~ |S].

20

Cp
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Best subsets regression

Find the best model using some subset of the regressors by calculating the
regression coefficients for each possible subset of the regressors, and then
choose the "best model".

The model which minimizes sum SSgres = |le||3 = ||y — ¥|I3-

® |f we initially have k regressors, excluding the intercept (o, then there are
2F different such subsets, and hence if k is large, we will need to compare

many models...
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Example

dff <- d4df00
dff$continent <- NULL
dff$location <- NULL

library("leaps")
model <- regsubsets(people_fully_ vaccinated_per_hundred” .,
data = dff, nvmax = 4)

summary (model)

® 1 regressor ® 4 regressors
— life_expectancy — life_expectancy
— gdp_per_capita
— cardiovascular_death_rate

— life_expectancy — diabetes_prevalence
— gdp_per_capita

® 2 regressors

® 5 regressors

.
3 regressors — life_expectancy

— life_expectancy — gdp_per_capita
— gdp_per_capita — cardiovascular_death_rate
— cardiovascular_death_rate — aged_65_older

— median_age

which.max (summary (bsrmodel) $adjr2)
which.min (summary (bsrmodel) $cp)

which.min (summary (bsrmodel) $bic) 20/ 28



Stepwise forward selection

Start with a model with no regressors.
Pick a statistic 7" which can be used to compare models, such as SSges, AIC,
etc, and a threshold ¢t for this statistic.

1. For each regressor z, calculate
T(x|0)=T(z)—T(®)
2. Let z1 = argmaxT(z | 0). Add z1 to the model if T'(z1 | 0) > ¢t. If

T(x | 0) < t, stop and return {}.

3. Assume that x1, 2, ..., x; has already been added to the model. For
each remaining regressor x, calculate

T(x|z1,22,...,25) =T(x,21,22,...,2;) — T(x1,22,...,2;).
4. Let xjy1 = argmaxT(z|x1,x2,...,2;). Include ;11 in the model if
T(x|x1,x2,...,25) > t. If T(x|z1,22,...,2;) < t, stop and return
{.’K1,£L’2,...,.Z‘j}.

21 /28



Stepwise forward selection

The book suggests using F'-statistics to define

SSr(x)/1

@0 = sge)/in-1-1)
and
 SSa(@ | an e e /(G 1)~ 1)
T($|$1,$2,.--,$3) o MSR65($17$27-"7xj7x)
_ SSgr(z1,72,...,25,x) — SSr(x1, 22, ..., T5)

SSRes(x1,22,.. ., x5,2)/(n—(+1) 1) °
With this choice,

® 1, will be the regressor which has the largest simple correlation with y.

® For each j > 2, x; will be the regressor not yet included in the model
which has the largest simple correlation with the residuals from the model
Yy = 50 + 511’1 +...+ Bj711‘j71.
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Example

dff <- d4df00
dff$continent <- NULL
dff$location <- NULL

vaccinations_only <- 1lm(people_fully_vaccinated_per_hundred
~ 1, data=dff)

forward <- step(vaccinations_only, direction=’forward’,
scope=formula(all), trace=0)

summary (forward)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 64.5047523 18.0507915 3.574 0.00305 *x*
cardiovasc_d_r -0.0597492 0.0298076 -2.004 0.06475
gdp_per_capita 0.0005934 0.0003216 1.845 0.08626
diabetes_prev -1.9051997 1.2394378 -1.537 0.14655

Residual standard error: 8.396 on 14 degrees of freedom

Multiple R-squared: 0.8014, Adjusted R-squared: 0.7589
F-statistic: 18.83 on 3 and 14 DF, p-value: 3.477e-05
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Example

dff <- df00
dff$continent <- NULL
dff$location <- NULL

vaccinations_only <- lm(people_fully_ vaccinated_per_hundred

~ 1, data=dff)

forward <- step(vaccinations_only,
scope=formula(all), trace=0)

forward$anova

direction=’forward’,

Step Df Deviance Residual df  Residual deviance  AIC

NA NA 17 4970.4664 103.17615
+cardiovasc death rate -1 3576.7428 16 1393.7236 82.28853
+gdp per capita -1 240.1529 15 1153.5707 80.88442
+diabetes prevalence -1 166.5779 14 986.9928 80.07724
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Stepwise backward elimination

Start with a model that contains all the regressors.
1. Pick some threshold t¢.

2. Calculate a statistic T'(z | 1, ...,x;) for each variable as if it were the
last to enter the model. Let zj41 be the regressor with the smallest
T-statistic. Remove x; from the model if T'(z | z1,...,z;) < t.

Backwards selection might be preferred if we want to ensure that we do not
miss any information, while forward selection could keep the final model smaller.
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Example

dff <- d4df00
dff$continent <- NULL
dff$location <- NULL

all <- Im(people_fully vaccinated_per_hundred ~ ., data=dff)
backward <- step(all, direction=’backward’, scope=formula(
all), trace=0)

summary (backward)

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 3.089e+02 1.917e+02 1.611 0.1354
gdp_per_capita 7.278e-04 3.638e-04 2.001 0.0707
hospital_beds_per_th -2.325e+00 1.563e+00 -1.487 0.1650
aged_65_older 2.216e+00 1.045e+00 2.121 0.0575
cardiovasc_death_rate -1.318e-01 6.457e-02 -2.041 0.0659
male_smokers 3.879e-01 2.894e-01 1.340 0.2072
life_expectancy -3.611e+00 2.356e+00 -1.533 0.1536

Residual standard error: 8.068 on 11 degrees of freedom
Multiple R-squared: 0.856, Adjusted R-squared: 0.7774
F-statistic: 10.89 on 6 and 11 DF, p-value: 0.0004426
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Example

dff <- df00
dff$continent <- NULL
dff$location <- NULL

all <- Im(people_fully vaccinated_per_hundred ~ ., data=dff)
backward <- step(all, direction=’backward’, scope=formula(
all), trace=0)

backward$anova

Step Df Deviance Residual df  Residual deviance  AIC

NA NA 5 582.9232 88.59831
- population 1 0.6653029 6 583.5885 86.61884
- diabetes prevalence 1 0.5082647 7 584.0967 84.63451
- median age 1 3.7695471 8 587.8663 82.75030
- population density 1 37.3660036 9 625.2323 81.85953
- total deaths per million 1 35.6410688 10 660.8734 80.85743
- total cases per million 1 55.1191456 11 715.9925 80.29936
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The consequences of model misspecification
y=XB+e, e~ N(0,0%I).

Let X = (X,,X,) and 8 = (B, B7)T, so that y = X,8, + X3 + €.
Let 8* = ( A;,BA;‘.), 62, * denote the LS estimates for the full model, and let B, &
and y be the corresponding estimates for the reduced model y = X3, + €.

A (the alias matrix)

——
* E[3,] = (XTXP) 1XTX Br. Hence B3, is a biased estimator of 8,

® (yi— eZTXpﬁp) < (y; — eZTX,B )2 In other words, removing regressor never
increases the variance of the remaining parameters.

® Since ,ép is biased and the MSE(ﬁp) = Var(,@p) + bias(ﬁp), we might be able
to use it to see interesting differeneces between the models. In fact, one can
show that MSE(3,) < MSE(B;) when the deleted variables have regression
coefficients which are smaller than the standard errors of their estimates in the
full model.

® 52 is an unbiased estimate of o2, but 62 is a biased estimator (generally to

large) of o2.

Is can often be adventageous to remove variables, even if this means deviating from
the true model.
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