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Todays lecture

• The multivariate normal distribution
• Maximum likelihood estimates
• Test for regression coefficients
• Coefficients of determination
• Confidence regions and sets
• Project 1 handout
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General assumption

General assumption
To evaluate the model, we need further assumptions on the errors, and will
assume that they are independent with distribution N(0,σ2).

The normal distribution
X has a normal distribution if it has pdf 1√

2πσ2
e−(x−µ)2/2σ. We write

X ∼ N(µ,σ). Recall that if X ∼ N(µ,σ), then X + µ′ ∼ N(µ+ µ′,σ) and
σ′X ∼ N(µσ′,σ2σ′2).
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The multivariate normal distribution

The standard multivariate normal distribution
Let X ′

1, X
′
2, . . . , X

′
n ∼ N(0, 1) be independent. Then

X = (X ′
1, X

′
2, . . . , X

′
n)

T ∼ N(0, I).
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The multivariate normal distribution

The multivariate normal distribution with independent marginals
Let X ′

1 ∼ N(µ1,σ
2
1), X

′
2 ∼ N(µ2,σ

2
2), . . . be independent, and let

X = (X ′
1, X

′
2, . . . , X

′
n)

T .

With
• µ = (µ1, µ2, . . . , µn)

T ,

• A = diag(σ1,σ2, . . . ,σn), and
• X ′′ ∼ N(0, I)

we equivalently have X := µ+AX ′′.

We write X ∼ N(µ, A2).
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The multivariate normal distribution

The multivariate normal distribution
Let X ′ ∼ N(0, I), µ = (µ1, µ2, . . . , µn)

T , let A be a general invertible matrix,
and let X = µ+AX ′. We write X ∼ N(µ, ATA).
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The multivariate normal distribution

Properties
E[Xi] = E[eT

i X] = E
!
eT
i (µ+AX ′)

"
= E

!
µT ei + (AX ′)T ei

"
= µi

Cov[Xi, Xi] = E
!
(eT

i X − µi)(e
T
j X − µj)

"

= E
#$
eT
i (µ+AX ′)− µi

%$
eT
j (µ+AX ′)− µj

%&
= E

!
(eT

i AX ′)(eT
j AX ′)

"

= E
#'(

k

AikX
′
k)(

(

ℓ

AiℓX
′
ℓ

)&
=

(

k

AikAjk = AAT (i, j) = ATA(i, j),

where the last equation follows from the fact that
Cov(X1, X2) = Cov(X2, X1). We say that X ∼ N(µ, ATA) has with mean
vector µ and covariance matrix AAT .

If B is positive definite, then there is an invertible matrix A such that
B = ATA, and we may write X ∼ N(µ, B) instead of X ∼ N(µ, ATA).
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The multivariate normal distribution

Probability density function
One can verify that X ∼ N(µ, B) = N(µ, ATA) has pdf

f(x) :=
1*

(2π)n detB
e(x−µ)TB−1(x−µ)/2.
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ML-esimates vs. LS estimates

A maximum likelihood estimate of β.
Assume that the model is y = Xβ + ε, and that ε ∼ N(0,σ2I). Then the pdf
of ε is given by

f(ε) =
1

(2π)n/2σn
e−εT ε/2σ2

=: L(ε,β,σ2).

Hence

logL(ε,β,σ2) = − log(2π)n/2σn − εT ε/2σ2

= − log(2π)n/2σn − (y −Xβ)T (y −Xβ)/2σ2

→ logL(ε,β,σ2) is maximal when (y −Xβ)T (y −Xβ) is as small as
possible, i.e., when β = β̂. Consequently, the ML estimates are equal to the
least squares estimates.
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Significance of regression using ANOVA
Hypothesis

H0 : β1 = β2 = . . . = βk = 0 H1 : βj ∕= 0 for at least one j

General idea
Recall the ANOVA identity

(
(yi − ȳ)2

+ ,- .
SST

=
(

(ŷi − yi)
2

+ ,- .
SSRes

+
(

(ŷi − ȳ)2

+ ,- .
SSR

.

If H0 is correct, then yi = β0 + εy. SSR gives a measure on how much the
residuals vary, while SSRes measures how much the residuals vary in an
"optimal" linear model. If H0 is false, then SSRes should be much smaller
than SSR.

Distribution of SSR and SSRes

Appendix C.3, they show that if H0 is true, then SSRes and SSR are
independent, SSR ∼ χ2

k, and SSRes ∼ χn−k−1.

Test statistic

F0 :=
SSR/k

SSRes/(n− k − 1)
∼ Fk,n−k−1

Reject H0 if F0 > Fα,k.n−k−1.
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The coefficients of determination

Recall SST =
/

(yi − ȳ)2, SSRes =
/

(ŷi − yi)
2, SSR =

/
(ŷi − ȳi).

The coefficient of determination
"The proportion of the variation explained by the regressors"

R2 = SSR/SST = 1− SSRes/SST

R2 close to one means most of the variability is explained by the model.
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Example

1 df00.model <- lm(people_fully_vaccinated_per_hundred~gdp_per
_capita , data = df00)

2 summary(df00.model)

Call:
lm(formula = people_fully_vaccinated_per_hundred ~ gdp_per_

capita , data = df00)

Residuals:
Min 1Q Median 3Q Max

-16.428 -6.176 -0.675 7.997 14.445

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.929e+01 6.075e+00 3.175 0.00588 **
gdp_per_capita 1.194e-03 1.957e-04 6.100 1.53e-05 ***
---
Signif.codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 9.665 on 16 degrees of freedom
Multiple R-squared: 0.6993 , Adjusted R-squared: 0.6805
F-statistic: 37.21 on 1 and 16 DF , p-value: 1.534e-05
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The coefficients of determination
A problem with R2

R2 = 1− SSRes/SST = 1−
!

(ŷi − yi)
2

!
(yi − ȳi)2

= 1−
!

e2i!
(yi − ȳi)2
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• As we increase the degree number of regressors (in this case, the degree of the
polynomial (regressors x1 = x, x2 = x2, x3 = x3, etc.), SSRes =

!
e2i

decreases while SST is constant.
• R2 is also affected by the positions of the points, as this affects SST .

• Encourages overfitting
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The coefficients of determination

The adjusted coefficient of determination

R2
adj = 1− SSRes/(n− k − 1)

SST /(n− 1)

Here the denominator does not depend on the number of variables in the
model, and SSRes/(n− k − 1) is the residual mean square, which do not
necessarily decrease when we add a new variable.
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Extra sum of squares

Let β = (β1,β2).

Hypothesis
H0 : β2 = 0 H1 : β2 ∕= 0.

Extra sum of squares
0
y = Xβ + ε = X1β1 +X2β2 + ε the full model
y = X1β1 + ε the reduced model

The regression sum of squares that is due to adding β2 to the reduced model is
given by

SSR(β2 | β1) = SSR(β)− SSR(β1) extra sum of squares due to β2.

General idea
If the null hypothesis is true, then SSR(β2 | β1) should be small.
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Extra sum of squares

H0 : β2 = 0 H1 : β2 ∕= 0. the hypothesis

0
y = Xβ + ε = X1β1 +X2β2 + ε the full model
y = X1β1 + ε the reduced model

SSR(β2 | β1) = SSR(β)− SSR(β1) extra sum of squares due to β2.

Properties

• SSRes ∼ χ2
n−(k+1).

• SSR(β2 | β1) ∼ χ2
r, where r is the number of parameters in β2.

• If H0 is true, then SSR(β2 | β1) is independent of SSRes(β).

Statistic

F0 :=
SSR(β2 | β1)/r

SSRes/(n− k − 1)
∼ Fr,n−k−1

→ Reject if F0 > Fα,r,n−k−1.
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Example

The function anova in R can be used to access the extra sums of squares
sequentially, and to perform the corresponding tests.

1 anova(df00.model2)

Analysis of Variance Table

Response: people_fully_vaccinated_per_hundred
Df Sum Sq Mean Sq F value Pr(>F)

gdp_per_capita 1 3475.8 3475.8 41.4921 1.111e-05 ***
hospital_beds_per_th 1 238.1 238.1 2.8417 0.1125
Residuals 15 1256.6 83.8
---
Signif.codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Note that the column Sum Sq above contains SSR(βj |β0,β1, . . . ,βj−1). Hence
from the above table, we see that there is no real support for adding the
regression variable hospital_beds_per_thousand to our model.
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Tests for single coefficients
We want to test whether βj = 0, since this would motivate removing βj from
our model.

Hypothesis

H0 : βj = 0 H1 : βj ∕= 0

Test statistic

t0 :=
β̂j*

σ̂2(XTX)−1(j + 1, j + 1)
∼ tn−k−1

Reject if t0 > tα,n−k−1.

Comments

• This test is conditional on all other regressors being present, hence we
cannot use this for all variables, and then remove all the variables that
failed, but rather have to perform such tests in a sequence.

• We can use this to find confidence intervals for β̂j . However, this will only
give confidence intervals for one variable. For intervals for several of the
coefficients simultaneously, see MPV 3.4.3.
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Example
1 df00.model2 <- lm(people_fully_vaccinated_per_hundred~gdp_

per_capita+hospital_beds_per_thousand , data = df00)
2 summary(df00.model2)

Call:
lm(formula = people_fully_vaccinated_per_hundred ~ gdp_per_

capita + hospital_beds_per_thousand , data = df00)

Residuals:
Min 1Q Median 3Q Max

-13.7639 -4.4811 0.0485 5.8690 12.7837

Coefficients:
Estimate Std. Error t value Pr

(>|t|)
(Intercept) 33.7305585 10.3210623 3.268 0.00519 **
gdp_per_capita 0.0011229 0.0001901 5.908 2.88e-05 ***
hosp_beds_per_th -2.1185866 1.2567801 -1.686 0.11253
---
Signif.codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 9.153 on 15 degrees of freedom
Multiple R-squared: 0.7472 , Adjusted R-squared: 0.7135
F-statistic: 22.17 on 2 and 15 DF , p-value: 3.318e-05
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Confidence sets for a single regression coefficient

Since
β̂ ∼ N(β,σ2(XTX)−1)

we have

t0 :=
β̂j − βj*

σ̂2(XTX)−1(j + 1, j + 1)
∼ tn−k−1.

We can use to construct a confidence interval on level α exactly as before.
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Confidence sets for a single regression coefficient

1 confint(df00.model2 , level =0.95)

2.5 % 97.5 %
(Intercept) 11.7317350225 55.729382016
gdp_per_capita 0.0007177958 0.001528066
hospital_beds_per_thousand -4.7973501033 0.560176819
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Joint confidence sets

Important!!!
We do not have

P
$
β1 ∈ CIα(β̂1) and β2 ∈ CIα(β̂2)

%
= P

$
β1 ∈ CIα(β̂1)

%
P
$
β2 ∈ CIα(β̂2)

%
.

In fact, we only have

P
$
β1 ∈ CIα(β̂1) and β2 ∈ CIα(β̂2)

%
= 1− P

$
β1 /∈ CIα(β̂1) or β2 /∈ CIα(β̂2)

%

≥ 1− P
$
β2 /∈ CIα(β̂2)

%
− P

$
β2 /∈ CIα(β̂2)

%
= 1− (1− α)− (1− α).

Bonferroni confidence intervals

A joint confidence set on level 1− j(1− α) is given by

CIα(β̂1)× . . .× CIα(β̂j).

This marginals of this set is often referred to as Bonferroni confidence intervals.
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Joint confidence sets

Bonferroni confidence intervals
A joint confidence set on level 1− j(1− α) is given by

CIα(β̂1)× . . .× CIα(β̂j).

This marginals of this set is often referred to as Bonferroni confidence intervals.
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Joint confidence sets

Since
β̂ ∼ N(β,σ2(XTX)−1)

implies that

(β̂ − β)TXTX(β̂ − β)/(k + 1)

SSRes/(n− k − 1)
∼ Fk+1,n−k−1,

we can use the F -distribution to calculate joint confidence regions directly.
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Joint confidence sets

An elliptical confidence region
Since

P

1
β ∈

2
β̃ :

(β̂ − β̃)TXTX(β̂ − β̃)/(k + 1)

SSRes/(n− k − 1)
≤ Fα,k+1,n−k−1

34
= α,

a confidence set (on confidence level α is given by
2
β̃ :

(β̂ − β̃)TXTX(β̂ − β̃)/(k + 1)

SSRes/(n− k − 1)
≤ Fα,k+1,n−k−1

3

This often a smaller region than the corresponding Bonferroni confidence set,
but is hard to understand and visualize if k is large.
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Joint confidence sets

An elliptical confidence region
A confidence set on confidence level α is given by

2
β̃ :

(β̂ − β̃)TXTX(β̂ − β̃)/(k + 1)

SSRes/(n− k − 1)
≤ Fα,k+1,n−k−1

3
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Joint confidence sets
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Project 1

• Project 1 is now available on course web page.
• The purpose of this project is to developing a regression model for

one out of two given datasets, by applying the ideas we have
discussed in class to this dataset.

• Work in groups of 2, and joint the same "group" on project page
before handing in a report

• Deadline is same day as exam
• Reported as 1.5 hec, pass/fail, must be passed to pass the course
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