

SF2930 - Regression analysis KTH Royal Institute of Technology, Stockholm

Lecture 9 - Shrinkage methods (MPV 9.5.3, HTF 3.4, Iz 5.4)

February 14, 2022

Todays lecture

- Ridge regression
- Model validation techniques
 - Cross validation
 - (Unconditional bootstrap)
 - (Conditional bootstrap)

Assumptions

In this lecture, we assume that the vectors of observations of each regressor is centered and normalized, and that the vector of responses is also centered and normalized.

In other words, we assume that the data has been transformed so that

$$\bar{\mathbf{y}} = \overline{X_{\cdot 1}} = \ldots = \overline{X_{\cdot (k+1)}} = 0$$

and

$$\|\mathbf{y}\|_{2}^{2} = \|X_{\cdot 1}\|_{2}^{2} = \dots = \|X_{\cdot (k+1)}\|_{2}^{2} = 1.$$

Motivation for ridge regression

Problem

If $X^T X$ is ill-conditioned (if there is multicollinearity), then the variance of $\hat{\beta}$ becomes very large. Consequently, even though the model might have a good fit, it will probably not be very good for predictions.

PCR solves this by changing the regressors, but what if $\hat{\beta}$ is the problem, rather than the regressors...? However, by the Gauss Markov theorem, $\hat{\beta}$ is the unbiased estimator with smallest variance..

Idea

Find a biased estimator that performs better when there is multicollinearity.

What does it mean to be a "good" estimator

In general, we want estimators to

- be unbiased
- have small variance

By the Gauss-Markov theorem, we know that the LSE $\hat{\beta}$ is the unbiased linear estimator with smallest variance, but since the variance is large when there is collinearity, we might be happy enough if there is approximate unbiasedness.

The mean square error

$$MSE(\hat{\boldsymbol{\beta}}^*) \coloneqq \mathbb{E}\left[\|\hat{\boldsymbol{\beta}}^* - \boldsymbol{\beta}\|_2^2\right] = \underbrace{\operatorname{tr}\operatorname{Var}(\hat{\boldsymbol{\beta}}^*)}_{\text{variance}} + \underbrace{\left\|\mathbb{E}[\hat{\boldsymbol{\beta}}^*] - \boldsymbol{\beta}\right\|_2^2}_{\text{bias}}$$

Ridge regression estimates

Ridge regression estimates

The ridge regression estimate (RRE) $\hat{\beta}_R$ of β is given by the solution to the equation

$$(X^T X + tI)\hat{\boldsymbol{\beta}}_R = X^T \mathbf{y}.$$

Here t is a constant, called the *selection constant* or *penalty/tuning/shrinkage/biasing/complexity parameter*.

Comments

- If t = 0, then $\hat{\beta}_R = \hat{\beta}$.
- The eigenvalues of $X^T X + tI$ are given by $\lambda_j + t$, and since $X^T X$ is positive definite, $\lambda_j \ge 0$. Hence, if t is not too small, then $X^T X + tI$ is not ill-conditioned.
- It is not at all clear that the mean square error $\mathbb{E}[\|\hat{\beta}^* \beta\|_2^2]$ is small.

 $\hat{\beta}_R$ as a linear transform of $\hat{\beta}$. Expected value Variance Residual sum of squares The bias

The mean squared error

 $\hat{\beta}_R$ as a linear transform of $\hat{\beta}$. Expected value Variance Residual sum of squares The bias The mean squared error

 $\hat{oldsymbol{eta}}_R$ as a linear transform of $\hat{oldsymbol{eta}}.$

$$\hat{\boldsymbol{\beta}}_{R} = (X^{T}X + tI)^{-1}X^{T}\mathbf{y} = (X^{T}X + tI)^{-1}X^{T}X(X^{T}X)^{-1}X^{T}\mathbf{y}$$
$$= \underbrace{(X^{T}X + tI)^{-1}X^{T}X}_{=:A_{t}}\hat{\boldsymbol{\beta}}.$$

Expected value

$$\mathbb{E}[\hat{\boldsymbol{\beta}}_R] = \mathbb{E}[(X^T X + tI)^{-1} X^T \mathbf{y}] = (X^T X + tI)^{-1} X^T \mathbb{E}[\mathbf{y}]$$
$$= (X^T X + tI)^{-1} X^T X \boldsymbol{\beta}$$

Variance

$$Var(\hat{\boldsymbol{\beta}}_{R}) = Var((X^{T}X + tI)^{-1}X^{T}\mathbf{y})$$

= $(X^{T}X + tI)^{-1}X^{T}Var(\mathbf{y})((X^{T}X + tI)^{-1}X^{T})^{T}$
= $(X^{T}X + tI)^{-1}X^{T}\sigma^{2}IX(X^{T}X + tI)^{-1}$
= $\sigma^{2}(X^{T}X + tI)^{-1}X^{T}X(X^{T}X + tI)^{-1}$

$$\operatorname{tr}\operatorname{Var}(\hat{\boldsymbol{\beta}}_R) = \sigma^2 \operatorname{tr}(X^T X + tI)^{-1} X^T X (X^T X + tI)^{-1} = \sigma^2 \operatorname{diag} \frac{\lambda_j}{(\lambda_j + t)^2}$$

The bias

$$\|\mathbb{E}[\hat{\beta}_{R}] - \beta\|_{2}^{2} = \left\| \left((X^{T}X + tI)^{-1}X^{T}X - I \right) \beta \right\|_{2}^{2} = t^{2}\beta^{T} (X^{T}X + tI)^{-2}\beta^{T} (X^{T$$

Residual sum of squares

$$SS_{Res}(\hat{\boldsymbol{\beta}}_{R}) = \|\mathbf{y} - X\hat{\boldsymbol{\beta}}_{R}\|_{2}^{2} = \|\mathbf{y} - X\hat{\boldsymbol{\beta}} + X(\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{R})\|_{2}^{2}$$

$$= \|\mathbf{y} - X\hat{\boldsymbol{\beta}}\|_{2}^{2} + \|\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{R}\|_{2}^{2} + 2(\mathbf{y} - X\hat{\boldsymbol{\beta}})^{T}(\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{R})$$

$$= \|\mathbf{y} - X\hat{\boldsymbol{\beta}}\|_{2}^{2} + \|\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{R}\|_{2}^{2} + 0 = SS_{Res}(\hat{\boldsymbol{\beta}}) + \|\hat{\boldsymbol{\beta}} - \hat{\boldsymbol{\beta}}_{R}\|_{2}^{2}$$

The mean squared error

$$MSE(\hat{\boldsymbol{\beta}}_{R}) = \mathbb{E}\left[\|\hat{\boldsymbol{\beta}}_{R} - \boldsymbol{\beta}\|_{2}^{2}\right] = \operatorname{tr}\operatorname{Var}(\hat{\boldsymbol{\beta}}_{R}) + \left\|\mathbb{E}[\hat{\boldsymbol{\beta}}_{R}] - \boldsymbol{\beta}\|_{2}^{2}\right]$$

$$= \sigma^{2} \sum \frac{\lambda_{j}}{(\lambda_{j} + t)^{2}} + t^{2}\boldsymbol{\beta}^{T}(X^{T}X + tI)^{-2}\boldsymbol{\beta}$$

The mean squared error $MSE(\hat{\boldsymbol{\beta}}_{R}) = \mathbb{E}[\|\hat{\boldsymbol{\beta}}_{R} - \boldsymbol{\beta}\|_{2}^{2}] = \underbrace{\operatorname{tr}\operatorname{Var}(\hat{\boldsymbol{\beta}}_{R})}_{\text{variance}} + \underbrace{\|\mathbb{E}[\hat{\boldsymbol{\beta}}_{R}] - \boldsymbol{\beta}\|_{2}^{2}}_{= \sigma^{2} \sum \frac{\lambda_{j}}{(\lambda_{j} + t)^{2}} + t^{2}\boldsymbol{\beta}^{T}(X^{T}X + tI)^{-2}\boldsymbol{\beta}}$

```
1 library("lmridge")
```

df01.model <- lmridge(people_fully_vaccinated_per_hundred~ gdp_ per_capita + hospital_beds_per_thousand + total_cases_per_ million + total_deaths_per_million + median_age + aged_65_ older + cardiovasc_death_rate + diabetes_prevalence + male_ smokers + life_expectancy, data = df01, K=.026)

```
summary(df01.model)
```

Coefficients: fo	or Ridge	parameter	K= 0.026			
	Est.	Est. (Sc)	SE (Sc)	t (Sc)	Pr(> t)	
Intercept	-99.0190	-3271400	1468100	-2.2283	0.0278	*
gdp_per_capita	0.0002	48.182	20.124	2.3943	0.0183	*
hospital_beds_p	0.0388	1.066	19.271	0.0553	0.9560	
total_cases_p	0.0000	33.383	20.887	1.5983	0.1127	
total_deaths_p	-0.0040	-44.642	20.802	-2.1460	0.0340	*
median_age	1.0469	102.530	35.335	2.9015	0.0044	* *
aged_65_older	-0.6642	-48.361	30.369	-1.5925	0.1140	
cardiovasc_dea.	-0.0404	-54.985	18.826	-2.9207	0.0042	**
diabetes_prev	0.5462	23.381	16.170	1.4459	0.1509	
male_smokers	0.0475	70.928	16.520	0.4293	0.6685	
life_expectancy	1.5749	116.130	28.003	4.1473	0.0001	***
Signif. codes:	0 '***'	0.001 '**	, 0.01 ,*,	0.05 '.	, 0.1 , ,	1

```
library("lmridge")
df01.model00 <- lmridge(people_fully_vaccinated_per_hundred~ gdp
    _per_capita + hospital_beds_per_thousand + total_cases_per_
    million + total_deaths_per_million + median_age + aged_65_
    older + cardiovasc_death_rate + diabetes_prevalence + male_
    smokers + life_expectancy, data = df01, K=.026)
summary(df01.model00)
Ridge Summary
       R.2
             adi-R2 DF ridge
                                     F
                                             ATC
                                                       BTC
   0.7189
             0.6971
                       9.0387
                                33.1875 671.4730 1306.4807
Ridge minimum MSE= 9189.994 at K= 0.026
P-value for F-test (9.03866, 116.2246) = 3.200431e-28
```

i bias.plot(df01.model00,abline=FALSE)

Bias, Variance Tradeoff

Biasing Parameter

How to choose the biasing parameter?

The ridge trace

The plot of the RREs $\hat{\beta}_R(j)$ as a function of the biasing parameter t is called the *ridge trace*.

Idea

The RREs $\hat{\beta}_R(j)$ will stabilize quite quickly as t increases.

Method

- 1. Plot the RREs $\hat{\beta}_R(j)$ as functions of the biasing parameter t for some finite set of values for t.
- 2. Pick (by inspection) a small t for which the traces seem to have stabilized.

How to choose the biasing parameter?

Method

- 1. Plot the RREs $\hat{\beta}_R(j)$ as functions of the biasing parameter t for some finite set of values for t.
- 2. Pick (by inspection) a small t for which the traces seem to have stabilized.

How to choose the biasing parameter?

The effective degrees of freedom

Iz suggests plotting $\hat{oldsymbol{eta}}_R$ against the *effective degrees of freedom*, defined by

$$df(t) := \operatorname{tr} H_t := \operatorname{tr} X(X^T X + tI)^{-1} X^T$$

Ridge regression as a shrinkage operator

Ridge regression as a shrinkage operator

Recall the decomposition $X^T X = P D P^T, \, {\rm and} \, \, {\rm assume that} \, \, X^T X$ is invertible. Then

$$\hat{\boldsymbol{\beta}}_{R} = (X^{T}X + tI)X^{T}\mathbf{y} = (X^{T}X + tI)X^{T}X(X^{T}X)^{-1}X^{T}\mathbf{y}$$
$$= (X^{T}X + tI)(X^{T}X)\hat{\boldsymbol{\beta}}$$

and

$$(X^{T}X + tI)^{-1}X^{T}X = (PDP^{T} + tI)^{-1}PDP^{T}$$

= $(PDP^{T} + tPP^{T})^{-1}PDP^{T} = (P(D + tI)P^{T})^{-1}PDP^{T}$
= $P(D + tI)^{-1}P^{T}PDP^{T} = P(D + tI)^{-1}DP^{T}$

Hence

$$\hat{\boldsymbol{\beta}}_R = P(D+tI)^{-1}DP^T\hat{\boldsymbol{\beta}} = P(D+tI)^{-1}DP^T\hat{\boldsymbol{\beta}}.$$

Ridge regression vs. PCR

Resampling techniques for model assessment

We will now start developing methods to validate the models we develop using linear regression. In this course, will discuss two such methods:

- Cross validation (random regressors)
- Bootstrap (random or non-random regressors)

Assume that $(\mathbf{x}_j, y_j)_{j \in \{1, 2, \dots, n\}}$ is a random sample with random regressors.

Assume that $(\mathbf{x}_j, y_j)_{j \in \{1, 2, ..., n\}}$ is a random sample with random regressors.

Basic idea

Assume that n is even.

- 1. Let $T \cup V$ be a random partition of [n] into two sets of equal size. Then the sets of observations $(\mathbf{x}_j, y_j)_{j \in T}$ and $(\mathbf{x}_j, y_j)_{j \in V}$ can be though of as two separate random samples, though of as the *training set* and the *validation set*.
- 2. Apply linear regression to the training set to find en estimate of the regression coefficients $\hat{\beta}$.
- 3. Use the validation set to estimate, e.g., the prediction error

$$\widehat{PE} = \frac{1}{|V|} \sum_{j \in V} (y_j - X_{j,\cdot} \hat{\boldsymbol{\beta}}^{(T)})^2$$

4. Switch the roles of T and V to obtain another estimate of \widehat{PE} , and take the average of these for a better estimate.

Divide the sample into a training set T and a validation set V.

Calculate the mean of the squared residuals using the validation set.

Fit a model using the training set.

Divide the sample into a training set T and a validation set V.

Calculate the mean of the squared residuals using the validation set.

Fit a model using the training set.

Divide the sample into a training set T and a validation set V.

Calculate the mean of the squared residuals using the validation set.

Fit a model using the training set.

Assume that $(\mathbf{x}_j, y_j)_{j \in \{1, 2, ..., n\}}$ is a random sample with random regressors.

General idea (*m*-fold cross validation)

Assume that m|n.

- 1. Let $T_1 \cup T_2 \cup \ldots \cup T_{n/m}$ be a random partition of [n] into sets of size m. For each $i \in \{1, 2, \ldots, n/m\}$, the sets $(\mathbf{x}_j, y_j)_{j \in \{1, 2, \ldots, n\} \smallsetminus T_i}$ and $(\mathbf{x}_j, y_j)_{j \in T_i}$ can be though of as separate random samples, though of as the *training set* and the *validation set*.
- 2. Apply linear regression to the training set to find en estimate of the regression coefficients $\hat{\beta}$.
- 3. Use the validation set to estimate, e.g., the prediction error,

$$\widehat{PE}_i = \frac{1}{n - |T_i|} \sum_{j \in V_i} (y_j - \mathbf{x}_j^T \hat{\boldsymbol{\beta}}^{(T_i)})^2$$

4. Obtain a better estimate by averaging over each $i \in \{1, 2, \dots, n-m\}$.

$$\widehat{PE}_{CV/m} = \frac{1}{n/m} \sum_{i=1}^{n/m} \widehat{PE}_i.$$

 \rightarrow Note that we have used this idea before with m=1.

Calculate the mean of the squared residuals using the validation set.

Repeat for each potential training set T_i .

Example: How to choose the biasing parameter?

Ridge regression estimates

The ridge regression estimate (RRE) $\hat{\beta}_R$ of β is given by the solution to the equation

$$(X^T X + tI)\hat{\boldsymbol{\beta}}_R = X^T \mathbf{y}.$$

Method

Using cross-validation, we can pick the parameter t which minimizes the estimated prediction error $\widehat{PE}_{CV/m} = \frac{1}{n/m}\sum_{i=1}^{n/m}\widehat{PE}_i$.

1	Х	<- data.matrix(df01[, c('total_cases_per_million', 'total_			
		<pre>deaths_per_million', 'median_age', 'gdp_per_capita','</pre>			
		hospital_beds_per_thousand', 'population', 'aged_65_			
		<pre>older','diabetes_prevalence','cardiovasc_death_rate','</pre>			
		<pre>population_density','male_smokers','life_expectancy')])</pre>			
2	у	<- df01\$people_fully_vaccinated_per_hundred			
3	X	<- scale(X)/sqrt(nrow(X)-1)			
4	у	<- $(y-mean(y))/sqrt(sum((y-mean(y))^2))$			
5					
6	library(glmnet)				
7	сv	<pre>r_model <- cv.glmnet(X, y, alpha = 0, nfolds=10)</pre>			
8	print(cv_model\$lambda.min)				
9	- pl	ot(cv_model)			

[1] 0.03839179

