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Todays lecture

• Ridge regression
• Model validation techniques

– Cross validation
– (Unconditional bootstrap)
– (Conditional bootstrap)
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Assumptions

In this lecture, we assume that the vectors of observations of each regressor is
centered and normalized, and that the vector of responses is also centered and
normalized.
In other words, we assume that the data has been transformed so that

ȳ = X·1 = . . . = X·(k+1) = 0

and
‖y‖22 = ‖X·1‖22 = . . . = ‖X·(k+1)‖22 = 1.
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Motivation for ridge regression

Problem
If XTX is ill-conditioned (if there is multicollinearity), then the variance of β̂
becomes very large. Consequently, even though the model might have a good
fit, it will probably not be very good for predictions.
PCR solves this by changing the regressors, but what if β̂ is the problem, rather
than the regressors...? However, by the Gauss Markov theorem, β̂ is the
unbiased estimator with smallest variance..

Idea
Find a biased estimator that performs better when there is multicollinearity.
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What does it mean to be a "good" estimator

In general, we want estimators to
• be unbiased
• have small variance

By the Gauss-Markov theorem, we know that the LSE β̂ is the unbiased linear
estimator with smallest variance, but since the variance is large when there is
collinearity, we might be happy enough if there is approximate unbiasedness.

The mean square error

MSE(β̂∗) := E
!
‖β̂∗ − β‖22

"
= trVar(β̂∗)# $% &

variance

+
''E[β̂∗]− β

''2

2# $% &
bias
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Ridge regression estimates

Ridge regression estimates
The ridge regression estimate (RRE) β̂R of β is given by the solution to the
equation

(XTX + tI)β̂R = XTy.

Here t is a constant, called the selection constant or
penalty/tuning/shrinkage/biasing/complexity parameter.

Comments

• If t = 0, then β̂R = β̂.

• The eigenvalues of XTX + tI are given by λj + t, and since XTX is
positive definite, λj ≥ 0. Hence, if t is not too small, then XTX + tI is
not ill-conditioned.

• It is not at all clear that the mean square error E
!
‖β̂∗ − β‖22

"
is small.
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Properties of β̂R

β̂R as a linear transform of β̂.

Expected value
Variance
Residual sum of squares
The bias
The mean squared error
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Properties of β̂R

β̂R as a linear transform of β̂.

β̂R = (XTX + tI)−1XTy = (XTX + tI)−1XTX(XTX)−1XTy

= (XTX + tI)−1XTX# $% &
=:At

β̂.

Expected value

E[β̂R] = E
!
(XTX + tI)−1XTy

"
= (XTX + tI)−1XTE

!
y
"

= (XTX + tI)−1XTXβ

Variance

Var(β̂R) = Var
(
(XTX + tI)−1XTy

)

= (XTX + tI)−1XT Var
(
y
)(
(XTX + tI)−1XT )T

= (XTX + tI)−1XTσ2IX(XTX + tI)−1

= σ2(XTX + tI)−1XTX(XTX + tI)−1

trVar(β̂R) = σ2 tr(XTX + tI)−1XTX(XTX + tI)−1 = σ2 diag
λj

(λj + t)2
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Properties of β̂R

The bias

‖E[β̂R]− β‖22 =
'''
(
(XTX + tI)−1XTX − I

)
β
'''
2

2
= t2βT (XTX + tI)−2β

Residual sum of squares

SSRes(β̂R) = ‖y −Xβ̂R‖22 = ‖y −Xβ̂ +X(β̂ − β̂R)‖22
= ‖y −Xβ̂‖22 + ‖β̂ − β̂R‖22 + 2(y −Xβ̂)T (β̂ − β̂R)

= ‖y −Xβ̂‖22 + ‖β̂ − β̂R‖22 + 0 = SSRes(β̂) + ‖β̂ − β̂R‖22

The mean squared error

MSE(β̂R) = E
!
‖β̂R − β‖22

"
=

variance% &# $
trVar(β̂R)+

bias% &# $
‖E[β̂R]− β‖22

= σ2
* λj

(λj + t)2
+ t2βT (XTX + tI)−2β
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Properties of β̂R

The mean squared error

MSE(β̂R) = E
!
‖β̂R − β‖22

"
=

variance% &# $
trVar(β̂R)+

bias% &# $
‖E[β̂R]− β‖22

= σ2
* λj

(λj + t)2
+ t2βT (XTX + tI)−2β

t
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Example
1 library("lmridge")
2

3 df01.model <- lmridge(people_fully_vaccinated_per_hundred~ gdp_
per_capita + hospital_beds_per_thousand + total_cases_per_
million + total_deaths_per_million + median_age + aged_65_
older + cardiovasc_death_rate + diabetes_prevalence + male_
smokers + life_expectancy , data = df01 , K=.026)

4

5 summary(df01.model)

Coefficients: for Ridge parameter K= 0.026
Est. Est. (Sc) SE (Sc) t (Sc) Pr(>|t|)

Intercept -99.0190 -3271400 1468100 -2.2283 0.0278 *
gdp_per_capita 0.0002 48.182 20.124 2.3943 0.0183 *
hospital_beds_p 0.0388 1.066 19.271 0.0553 0.9560
total_cases_p 0.0000 33.383 20.887 1.5983 0.1127
total_deaths_p -0.0040 -44.642 20.802 -2.1460 0.0340 *
median_age 1.0469 102.530 35.335 2.9015 0.0044 **
aged_65_older -0.6642 -48.361 30.369 -1.5925 0.1140
cardiovasc_dea. -0.0404 -54.985 18.826 -2.9207 0.0042 **
diabetes_prev 0.5462 23.381 16.170 1.4459 0.1509
male_smokers 0.0475 70.928 16.520 0.4293 0.6685
life_expectancy 1.5749 116.130 28.003 4.1473 0.0001 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Example

1 library("lmridge")
2

3 df01.model00 <- lmridge(people_fully_vaccinated_per_hundred~ gdp
_per_capita + hospital_beds_per_thousand + total_cases_per_
million + total_deaths_per_million + median_age + aged_65_
older + cardiovasc_death_rate + diabetes_prevalence + male_
smokers + life_expectancy , data = df01 , K=.026)

4

5 summary(df01.model00)

Ridge Summary
R2 adj -R2 DF ridge F AIC BIC

0.7189 0.6971 9.0387 33.1875 671.4730 1306.4807

Ridge minimum MSE= 9189.994 at K= 0.026

P-value for F-test ( 9.03866 , 116.2246 ) = 3.200431e-28
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Example

1 bias.plot(df01.model00 ,abline=FALSE)
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Example
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How to choose the biasing parameter?

The ridge trace
The plot of the RREs β̂R(j) as a function of the biasing parameter t is called
the ridge trace.

Idea
The RREs β̂R(j) will stabilize quite quickly as t increases.

Method

1. Plot the RREs β̂R(j) as functions of the biasing parameter t for some
finite set of values for t.

2. Pick (by inspection) a small t for which the traces seem to have stabilized.
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How to choose the biasing parameter?
Method

1. Plot the RREs β̂R(j) as functions of the biasing parameter t for some
finite set of values for t.

2. Pick (by inspection) a small t for which the traces seem to have stabilized.
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How to choose the biasing parameter?
The effective degrees of freedom
Iz suggests plotting β̂R against the effective degrees of freedom, defined by

df(t) := trHt := trX(XTX + tI)−1XT
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Ridge regression as a shrinkage operator
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Ridge regression as a shrinkage operator

Recall the decomposition XTX = PDPT , and assume that XTX is invertible.
Then

β̂R = (XTX + tI)XTy = (XTX + tI)XTX(XTX)−1XTy

= (XTX + tI)(XTX)β̂

and

(XTX + tI)−1XTX = (PDPT + tI)−1PDPT

= (PDPT + tPPT )−1PDPT = (P (D + tI)PT )−1PDPT

= P (D + tI)−1PTPDPT = P (D + tI)−1DPT

Hence
β̂R = P (D + tI)−1DPT β̂ = P (D + tI)−1DPT β̂.
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Ridge regression vs. PCR

Ridge regression

β̂R = P (D + tI)−1DPT β̂

Principal components regression

β̂PCR = P diag
(
1(λj > δ)

)
PT β̂
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Resampling techniques for model assessment

We will now start developing methods to validate the models we develop using
linear regression. In this course, will discuss two such methods:

• Cross validation (random regressors)
• Bootstrap (random or non-random regressors)
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Cross validation

Assume that (xj , yj)j∈{1,2,...,n} is a random sample with random regressors.
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Cross validation

Assume that (xj , yj)j∈{1,2,...,n} is a random sample with random regressors.

Basic idea
Assume that n is even.

1. Let T ∪ V be a random partition of [n] into two sets of equal size. Then
the sets of observations (xj , yj)j∈T and (xj , yj)j∈V can be though of as
two separate random samples, though of as the training set and the
validation set.

2. Apply linear regression to the training set to find en estimate of the
regression coefficients β̂.

3. Use the validation set to estimate, e.g., the prediction error

+PE =
1

|V |
*

j∈V

(yj −Xj,·β̂
(T ))2

4. Switch the roles of T and V to obtain another estimate of +PE, and take
the average of these for a better estimate.
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Cross validation
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Cross validation
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Cross validation
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Cross validation
Assume that (xj , yj)j∈{1,2,...,n} is a random sample with random regressors.

General idea (m-fold cross validation)
Assume that m|n.

1. Let T1 ∪ T2 ∪ . . . ∪ Tn/m be a random partition of [n] into sets of size m.
For each i ∈ {1, 2, . . . , n/m}, the sets (xj , yj)j∈{1,2,...,n}!Ti

and
(xj , yj)j∈Ti can be though of as separate random samples, though of as
the training set and the validation set.

2. Apply linear regression to the training set to find en estimate of the
regression coefficients β̂.

3. Use the validation set to estimate, e.g., the prediction error,

+PEi =
1

n− |Ti|
*

j∈Vi

(yj − xT
j β̂

(Ti))2

4. Obtain a better estimate by averaging over each i ∈ {1, 2, . . . , n−m}.

+PECV/m =
1

n/m

n/m*

i=1

+PEi.

→ Note that we have used this idea before with m = 1.
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Cross validation
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Example: How to choose the biasing parameter?

Ridge regression estimates
The ridge regression estimate (RRE) β̂R of β is given by the solution to the
equation

(XTX + tI)β̂R = XTy.

Method
Using cross-validation, we can pick the parameter t which minimizes the
estimated prediction error +PECV/m = 1

n/m

,n/m
i=1

+PEi.
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Example
1 X <- data.matrix(df01[, c(’total_cases_per_million ’, ’total_

deaths_per_million ’, ’median_age’, ’gdp_per_capita ’,’
hospital_beds_per_thousand ’, ’population ’, ’aged_65_
older ’,’diabetes_prevalence ’,’cardiovasc_death_rate’,’
population_density ’,’male_smokers ’,’life_expectancy ’ )])

2 y <- df01$people_fully_vaccinated_per_hundred
3 X <- scale(X)/sqrt(nrow(X) -1)
4 y <- (y-mean(y))/sqrt(sum((y-mean(y))^2))
5

6 library(glmnet)
7 cv_model <- cv.glmnet(X, y, alpha = 0, nfolds =10)
8 print(cv_model$lambda.min)
9 plot(cv_model)

[1] 0.03839179
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