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Abstract

This work is in Differential Geometry and Analysis. The geometric setting is a

family of smooth Riemannian metrics that degenerate to have an isolated conic

singularity. This degeneration will be known as asymptotically conic (ac) conver-

gence. The definition involves: a family of smooth metrics on a compact manifold,

a conic metric on a compact manifold, and an asymptotically conic metric, also

known as a scattering metric. In the geometric setting of ac convergence, we prove

the following analytic results.

• Preliminary Result: The convergence of the spectrum and eigenfunctions of

the scalar Laplacian.

• Main Result: The convergence of the heat kernels for geometric Laplacians

and precise asymptotic behavior.

These results are obtained using pseudodifferential techniques and manifolds

with corners constructed by a new type of blow up procedure called resolution

blow up.
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Chapter 1

Spectral Convergence

1.1 Introduction

The spectrum of the Laplacian on a Riemannian manifold provides rich information

on the geometry and topology of the manifold. The Laplacian has nice analytic

properties; it is a second order elliptic partial differential operator. Associated to

the Laplacian is a parabolic heat operator and the Schwartz kernel of its inverse,

the heat kernel. This work focuses on the spectral geometry of manifolds with

isolated conic singularities. We consider a smooth family of Riemannian metrics

which converge asymptotically conically to a manifold with isolated conic singular-

ity. We analyze the behavior of the Laplacian and its heat kernel as the smooth

metrics converge to the conic metric to better understand the spectral geometry

of manifolds with isolated conic singularities.

Before describing the degenerating family of metrics and the way in which they

converge to a conic metric,1 we briefly discuss results obtained by other authors

in similar contexts.

1By which we mean a smooth, incomplete manifold with an isolated conic singularity, compact
when completed as a metric space by adding the cone point.

1
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1.1.1 Background

Cheeger and Colding wrote a series of three papers between 1997 and 2000 on the

Gromov-Hausdorff limits of families of smooth, connected Riemannian manifolds

with lower Ricci curvature bounds [4], [5], [6]. They proved Fukaya’s conjecture

of 1987 [8]: that on any pointed Gromov-Hausdorff limit space M∞ of a family

{Mn
i } of connected Riemannian manifolds with Ricci curvature bounded below, a

self adjoint extension of the scalar Laplacian on M∞ can be defined with discrete

spectrum. They also proved that the the eigenvalues and eigenfunctions of the

scalar Laplacians ∆i converge to those onM∞. An example, provided by Perelman,

showed that the results of Cheeger and Colding could not be extended to the

Laplacian on forms or to more general geometric Laplacians. In 2002, Ding proved

convergence of the heat kernels and Green’s functions in the same setting. The

estimates are uniform for time bounded strictly away from zero. These results are

impressive in that the only hypothesis on the manifolds is the lower Ricci curvature

bound. It would be useful to prove a more general spectral convergence result for

the geometric Laplacian and to obtain uniform estimates on the heat kernels for

all time. In order to obtain such results, it becomes necessary to impose more

structure on the manifolds and the way in which they converge to a singular limit

space.

In the 1990 thesis of McDonald [23] strong analytic results were proven for

manifolds converging to a singular metric in a restrictive manner. Let M be a

fixed compact manifold with a Riemannian metric and H an embedded orientable

hypersurface with defining function x and smooth metric gH . The family of degen-

erating metrics on M being considered is

(ε2 + x2)gH + dx2 ε ∈ [0, 1).

Here, as ε→ 0, the metric converges to

go = x2gH + dx2,

which has an isolated conic singularity at x = 0. Geometrically, the manifold is
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being pinched along the hypersurface H and the resulting manifold has a conic

singularity as x→ 0. McDonald constructed a parameter (ε) dependent operator

calculus and studied the behavior of the Laplacian and heat kernel as ε→ 0.

In 1995, Mazzeo and Melrose developed pseudodifferential techniques to de-

scribe the behavior of the spectrum under another specific type of metric collapse,

known as analytic surgery, similar to the conic collapse considered by McDonald.

Let (M,h) be an odd dimensional compact spin manifold in which H is an em-

bedded hypersurface with quadratic defining function x2 ∈ C∞(M). Let ∂ε be the

Dirac operator associated to the metric

gε =
|dx|2

x2 + ε2
+ h,

where ε > 0 is a parameter. The limiting metric g0 with ε = 0, is an exact b-metric

on the compact manifold with boundary M̄ obtained by cutting M along H and

compactifying as a manifold with boundary, hence the name, analytic surgery. In

other words, it gives M−H asymptotically cylindrical ends with cross section ∂M̄ ,

a double cover of H, and has the form

go =
|dx|2

x2
+ h.

Under the assumption that the induced Dirac operator on this double cover is

invertible, Mazzeo and Melrose showed that

η(∂ε) = ηb(∂M̄) + r1(ε) + r2(ε) log ε+ η̃(ε),

where ηb(∂M̄) is the b-version of the eta invariant introduced by Melrose, ri are

smooth and vanish at ε = 0 and are integrals of local geometric data, and where

η̃(ε) is the finite dimensional eta invariant or signature for the small eigenvalues

of ∂ε. If ∂M̄ is invertible, then η̃(ε) = 0 and

lim
ε→0

η(∂ε) = ηb(∂M̄)
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Even if ∂M̄ is not invertible, this holds in R/Z. The hypotheses on the Dirac

operator on the double cover were later removed in a collaboration of Hassell,

Mazzeo, Melrose [13]. Their results were proven by analyzing the resolvent family

of ∂ε uniformly near zero. This led to a precise description of the behaviour of the

small eigenvalues. They also constructed the corresponding heat calculus which

contains and describes precisely the heat kernel for ∂2
ε uniformly as ε → 0. Our

goal here is to obtain precise analytic results like those of [13].

The convergence considered in this paper is more restrictive than that of

Cheeger, Colding and Ding, but it is more general than the conic degeneration of

McDonald. This convergence will be called asymptotically conic (ac) convergence.

We note, however, that ac convergence does not require Ricci curvature bounds.

The conic collapse of McDonald, the analogous smooth collapse of a higher codi-

mension submanifold and the collapse of an open neighborhood of the manifold

with some restrictions on the local geometry all fit this new definition. The au-

thor’s hope is that this definition and the convergence results proven here for the

scalar Laplacian’s spectrum and geometric Laplacian’s heat kernel will be useful

in understanding both manifolds with isolated conic singularities and families of

metrics with a singular limit.

1.2 Geometric Preliminaries

The definition of asymptotically conic convergence involves three geometries: a

family of smooth metrics on a compact manifold, a conic metric on a compact

manifold, and an asymptotically conic or ac metric2. In this work, we assume the

dimension is always greater than or equal to three.

First, we define ac metric.

Definition 1.3 An ac metric, also known as a scattering metric, is a smooth met-

ric gZ on a complete manifold Z with a product decomposition outside a compact

2Note that this definition is sometimes also called “asymptotically locally Euclidean,” or ALE.
However, that term is often used for the more restrictive class of spaces that are asymptotic at
infinity to a cone over a quotient of the sphere by a finite group, so to avoid confusion, we use
the term asymptotically conic.
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set K so that Z −K ∼= [ρ0,∞)ρ × Y , for some ρ0 > 0 and as ρ→∞, gZ has the

form

gz|Z−K = dρ2 + ρ2h(ρ).

Here, (Y, h) is a smooth, compact, n− 1 manifold with a smooth family of metrics

{h(ρ)}, such that as ρ→∞, h(ρ) → h, in other words, h extends to a C∞ tensor

on (ρ0,∞)× Y.

The definition is recast by defining r = 1
ρ

and adding a copy of (Y, h) at the

boundary defined by r = 0. With this compactification of Z which we call Z̄, the

metric takes the form
dr2

r4
+
h(1/r)

r2

on a neighborhood of ∂Z̄ diffeomorphic to [0, r1)r × Y.

Next, we define a compact Riemannian manifold with isolated conic singularity.

Definition 1.4 Let M be a compact metric space with Riemannian metric g.

Then, (M, g) has an isolated conic singularity at the point p if the following hold.

1. (M − {p}, g) is a smooth, open manifold.

2. There is a neighborhood N of p and a function x : N − {p} → (0, x1] for

some x1 > 0, such that N − {p} is diffeomorphic to (0, x1]x × Y with metric

g = dx2 + x2h(x) where (Y, h) is a compact, smooth n − 1 manifold and

{h(x)} is a smooth family of metrics on Y converging to h as x → 0, in

other words, h extends to a C∞ tensor on [0, x1)x × Y.

Associated to a manifold with isolated conic singularity is the manifold with

boundary obtained by blowing up the cone point, adding a copy of (Y, h) at this

point. Then, x is a boundary defining function for the boundary, (Y, h).

We use M0
0 to denote the smooth incomplete conic manifold, Mc to denote

the metric space closure of M0
0 , and M0 to denote the associated manifold with

boundary.

One familiar example of a manifold with isolated conic singularity is Rn with

the Euclidean metric in polar coordinates, dr2+r2dθ2, which has a conic singularity
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cone point at x=0

(Y, h) at x=0

Figure 1.1: Manifold with isolated conic singuarity and associated manifold with
boundary.

at the origin. In this example the singularity is a feature of the coordinate system,

not the underlying manifold. In polar coordinates, Rn decomposes as the product

R+ × Sn−1 with metric dr2 + r2dθ. The metric on the Sn−1 cross sections shrinks

as r → 0. A conic singularity generalizes this idea.

The new resolution blow up is a nonstandard blow up that resolves an isolated

conic singularity in a compact manifold using an asymptotically conic space. In

this definition we use the notation M∪φN for a smooth manifold constructed from

the smooth manifolds M and N with a diffeomorphism φ from V ⊂ N to U ⊂M

that gives the equivalence relation, V 3 p ∼ φ(p) ∈ U. M ∪φ N is the disjoint

union of M and N modulo the equivalence relation of φ. The smooth structure on

M ∪φN and the topology is induced by that of M and N. We now define the new

resolution blow up.

Definition 1.5 Let (M0, g0) be a compact n manifold with isolated conic singu-

larity. Let (Z, gz) be an asymptotically conic space of dimension n with compact-

ification Z̄. Assume the cross sections of M0 and Z̄ converge at the boundary to
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(Y, h), a smooth, compact n− 1 manifold. By the definition of conic manifold we

decompose M0 as a union of overlapping open sets,

M0 = K0 ∪ V0,

where V0 is diffeomorphic to (0, r1)r × Y. With this diffeomorphism

g0 = dr2 + r2h̃(r, y) on (0, r1)× Y,

where h̃(r, y) converges smoothly to h as r → 0. We identify (V0, g0) with ((0, r1)r×
Y, dr2 + r2h̃(r, y)) and assume the boundary of K0 in M0

0 is of the form

∂K0 = {r = r1} ∼= Y.

Similarly, decompose Z as a union of overlapping sets,

Z = Kz ∪ Vz,

where Vz is diffeomorphic to (ρ1,∞)ρ × Y. With this diffeomorphism

gz = dρ2 + ρ2h(ρ, y) on (ρ1,∞)× Y,

with h(ρ, y) converging smoothly to h as ρ→∞. We identify (Vz, gz) with ((ρ1,∞)ρ×
Y, dρ2 + ρ2h(ρ, y)) and assume that ∂Kz is of the form

Kz = {ρ = ρ1} ∼= Y.

Let M0,ε be the following subset of M0,

M0,ε = ({(r, y) ∈ V0 : r > ε} ∪K0) .

Similarly, let ZR ⊂ Z be defined as follows

ZR = ({(ρ, y) ∈ Vz : ρ < R} ∪Kz) .
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The resolution blow up of (M0, g0) by (Z, gz) is the patched manifold,

Mε = M0,ε ∪φ Z1/ε,

where the patching map φ is defined for each ε by

φε : M0,ε −M0,r1 → Z1/ε − Zρ1 , φε(r, y) = (r/ε, y).

For r1 > ε > ε′ > 0, the manifolds Mε and Mε′ are diffeomorphic, and so the

resolution blow up of M0 by Z is unique up to diffeomorphism.

We call the resolution blow up a “patched manifold” because a neighborhood

of the singularity in M0 has been replaced by a rescaled patch of the ac space.

In the case that Z̄ is a disk, the resolution blow up is a standard radial blow up.

The definition of ac convergence uses another new geometric construction related

to the resolution blow up, called the asymptotically conic convergence (acc) single

space.

Definition 1.6 Let (M0, g0) be as in the definition of resolution blow up. We

may write M0 = V0 ∪K0 with V0
∼= (0, x1]x × Y and similarly Z̄ = Vz ∪Kz with

VZ ∼= [0, r1]r × Y. Let δ = min{x1, r1}. Then the asymptotically conic convergence

(acc) single space, S, is

S = M0 × [0, δ]µ ∪ψ Z̄ × [0, δ]ν ,

where the joining map ψ is defined on V0 by

ψ(x, y, µ) = (µ, y, x).

This induces a smooth structure on S. We extend x on M0 to be identically equal

to δ on the complement of the set diffeomorphic to (0, δ]x × Y, and we similarly

extend r on Z̄ − [0, δ]r×Y. Define ε = xµ = rν and let Mε = {ε = constant}. This

is the same as the Mε in the definition of resolution blow up.
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r=1

rho= 1/epsilon

rho = 1

K_0

K_z

epsilon

M_0
Z

r = epsilon

M_0,epsilon

Z_1/epsilon

M_epsilon

Resolution Blow Up:  Patching at each epsilon slice

Figure 1.2: Resolution blow up patching.
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The acc single space has two hypersurface boundary faces at µ = 0 and ν = 0

that we call F0
∼= M0 and F1

∼= Z̄. These meet in a codimension 2 corner, C1
∼=

Y. Note that any compact subset of M0
0 embeds into S by p 7→ (p, εx(p)), and

similarly, any compact subset of Z̄ embeds into S by z 7→ (z, εr(z)).

Now we may define asymptotically conic convergence.

Definition 1.7 Let (M0, g0), (Z, gz), Z̄ be as above. Let S be the associated acc

single space. Then the family of metrics {gε} converge to (M0, g0), (Z, gz) asymp-

totically conically if there is a symmetric 2 cotensor G on S that restricts to a

smooth compact metric gε on each Mε slice for 0 < ε < δ and restricts to g0, gz at

F0, F1, respectively. Moreover, we require G to be polyhomogeneous at the corner

C1.

For each 0 < ε < δ, (Mε, gε) is diffeomorphic to the resolution blow up of M0

by Z so we may equivalently identify {Mε} with a family of metrics {gε} on a fixed

smooth compact manifold, M. For each ε > 0 the definition gives a diffeomorphism

φε from Z1/ε to a fixed open proper subset U of M such that 1
ε2

(φε)
∗gε|U converges

smoothly to gZ . Moreover, on M − U, gε must converge smoothly to g0.

A simple example of asymptotically conic convergence is one nape of an exact

cone in Rn resolved by a single sheet hyperboloid of revolution. The family of

diffeomorphic resolution blow ups are also single sheet hyperboloids. Let Rn =

Rk × Rn−k with coordinates x = (y, z). The hyperboloids are defined by

|y|2 − |z|2 = ε2, with y = (y1, . . . , yk) and y1, . . . , yk > 0.

The cone is

M0 = {(y, z) ∈ Rk × Rn−k : |y|2 − |z|2 = 0}.

The ac metric is induced by the Euclidean metric on Rn. Let

ry = |y|, r = |z|,

and let

y = ryθ, z = rω,
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where θ ∈ Sk−1, ω ∈ Sn−k−1. Then on the ε hyperboloid,

r2
y = r2 + ε2.

The Euclidean metric on Rn is dy2+dz2. On Rn−k away from r = 0 we may express

dz2 in polar coordinates as

dz2 = dr2 + r2hn−k(ω),

where hn−k is the standard metric on the sphere Sn−k−1. Similarly, we have

dy2 = dr2
y + r2

yhk(θ)

where hk is the standard metric on the sphere Sk−1. Using the relation for ry in

terms of r the metric gε is

gε =

(
1 +

r2

r2 + ε2

)
dr2 + r2(hn−1(θ, ω)) + ε2hk−1(θ).

The metric g0 on the cone is

g0 = 2dr2 + r2hn−1.

It is clear that (H1, gε) are all diffeomorphic for ε > 0. To verify that (H1, gε) is

a resolution blow up of M0 by H1 define U ⊂ H1 by U = {r ≤ 1}, Z1/ε = {r ≤ 1/ε}
and let φε : Z1/ε → U be defined by

φε(r, θ, ω) = (εr, θ, ω).

Clearly φε is a diffeomorphism from H1 → H1 and moreover, for coordinates

(r, θ, ω) on (H1, gz) with

gz =

(
1 +

r2

r2 + 1

)
dr2 + r2hn−1(θ, ω) + hk−1(θ),
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Hyperboloids of Revolution:  Example of ac convergence
R^k

R^n-k

(M, g_epsilon)

(Z, g_z)

(M_0 , g_0)

Figure 1.3: Ac convergence example: hyperboloids of revolution

we have for coordinates (s, θ, ω) = φε(r, θ, ω)

gε = ε2
((

1 +
s2

s2 + 1

)
ds2 + s2hn−1(ω, θ) + hk−1(θ)

)
= ε2(ϕ−1

ε )∗gz.

Moreover, on H1 − U the metrics gε converge smoothly to g0 and (H1, gε) is dif-

feomorphic to the patched manifold M0 − {r ≤ 2} ∪φ H1 where for each ε, φ is

defined above.

In this example the acc single space is

S =
[(

(R+ × Sn−k−1 × Sk−1)× (0, 1]ε
)
∪ (R+ × Sn−k−1 × Sk−1); 0

]
.

The notation here indicates a standard radial blow up at the origin that creates

the codimension 2 corner in the acc single space, C1 which here is diffeomorphic

to Sn−k−1 × Sk−1.

In the hyperboloid example, the submanifold Sk−1 × Sn−k−1 is collapsing to a

cone point, however the definition of ac convergence handles more general collapse.
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epsilon-axis

Acc Single Space:  Hyperboloid Example

epsilon =1

epsilon =0
blow up

Figure 1.4: Acc single space: hyperboloid example
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For example, in algebraic geometry spaces Cn/Γ where Γ is a finite subgroup of

SU(n) fixing only the origin have a conic singularity at the origin. Blowing up

the singularity at the origin results in a smooth ac space, Z, which is asymptotic

to Cn/Γ at infinity. We may resolve the singular space using the resolution space

and construct the acc single space to obtain a family of smooth spaces converging

asymptotically conically to the singular limit space.

1.8 Analytic Preliminaries

Having described the geometry of ac convergence, we give a brief review of the

analysis in this setting.

Conic Differential Operators and the b-Calculus

Let (X0, g0) be a Riemannian manifold with isolated conic singularity, defined by

x = 0, such that in a neighborhood of the singularity, X0 has a product decompo-

sition, X0
∼= (0, x1)×Y , and with this decomposition the metric has the following

form

g0 = dx2 + x2h(x).

Above, {h(x)} is a smoothly varying family of metrics on Y , with h(x) converging

smoothly to a fixed smooth metric h, where (Y, h) is a smooth, n− 1 dimensional

compact manifold. A conic differential operator of order m is a smooth differential

operator on X0 such that in a neighborhood of the singularity it can be expressed

as

A = x−m
m∑
k=0

Bk(x)(−x∂x)k

with Bk ∈ C∞((0, 1),Diffm−k(Y )), where Diffj(Y ) denotes the space of differential

operators of order j ∈ N0 on Y with smooth coefficients. The scalar Laplacian is

an example of an order 2 conic operator because it is of the form

x−2{(−x∂x)2 + (−n+ 1 + xH−1(∂xH)(−x∂x)) + ∆h(x)}
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where in local coordinates (x, y) = (x, y1, . . . , yn−1),

H(x, y) = | det
(
h(x)(∂yi

, ∂yj

)
|
1
2 .

We may consider on X0 the b-tangent bundle bTX0 (cf. [24]). For a differential

cone operator as above, there is a function σmψ,b(A) ∈ C∞(bT ∗X0) such that in local

coordinates near the cone point

σmψ,b(A)(x, y, ρ, ξ) = xmσmψ (A)(x, y,
ρ

x
, ξ),

where σmψ (A) is the usual homogeneous principal symbol of A on X. bT ∗X0 denotes

the dual of bTX0 and (ρ, ξ) ∈ R × Rn are the covariables to (x, y). The cone

differential operator is elliptic if

σmψ,b(A) 6= 0 on bT ∗X0.

The cone differential operators are elements of the cone operator calculus; for

a detailed description, see [17]. These cone operators are closely related to b-

operators. First, we define a b-manifold.

Definition 1.9 Let (Xb, gb) be a smooth Riemannian manifold with boundary (Y, h)

and boundary defining function x such that in a collared neighborhood, N, of the

boundary Xb has a product decomposition N ∼= [0, x1)x×Y and in this neighborhood

gb =
dx2

x2
+ h(x),

where h(x) is a smoothly varying family of metrics on Y that converges smoothly

to h as x→ 0.

Equivalently, a b-manifold is a complete manifold with asymptotically cylin-

drical ends. A b-operator of order m is a smooth differential operator on Xb such
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that near the boundary of Xb, it can be expressed as

A =
m∑
k=0

Bk(x)(−x∂x)k

with Bk ∈ C∞((0, 1),Diffm−k(Y )). We see that a cone differential operator of order

m is equal to a rescaled b-differential operator of order m. In other words, if A is an

order m cone differential operator then xmA is a b-differential operator. In terms

of the local coordinates near the boundary of Xb, (x, y1, . . . , yn−1), a b-operator

may be expressed as

A =
∑

j+|α|≤m

aj,α(x, y)(−x∂x)j(∂αy ).

Then the b-symbol of A can be written as

bσm(A) =
∑

j+|α|=m

aj,α(x, y)λ
jηα.

Here λ and η are linear functions on bT ∗Xb defined by the coordinates and a generic

element of bT ∗Xb is written as

λ
dx

x
+

n∑
i=1

ηidyi.

The b-operator is b-elliptic if the symbol bσm(A) 6= 0 on bT ∗Xb − {0}.
To use the relationship between b-operators and conic operators, we associate

a b-manifold (Mb, gb) to the conic manifold (M0, g0). In a collared neighborhood

of the boundary of the form U = {0 < x < 1}, gb has the form dx2

x2 + h(x). Using

a smooth cutoff function, we may extend gb to agree with g0 on Mb − U . The

Schwartz kernels of b-differential operators are naturally defined on the b-double

space. Recall, the b-double space is defined to be Mb×Mb radially blown up along

the submanifold ∂Mb × ∂Mb = Y × Y and is written [Mb ×Mb; ∂Mb × ∂Mb]. For

a complete description of the b-calculus and the b-double space, see [24].
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M_b

M_b

Blowup of YxY

The b-Double Space

Figure 1.5: The b−double space
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The Laplacian on M0, ∆0, is equal to

x−2{(−x∂x)2 + (−n+ 1 + xH−1(∂xH)(−x∂x)) + ∆h(x)} = x−2Lb

where Lb is an elliptic order 2 b-operator. The Schwartz kernel of Lb is a distribu-

tion on the b-double space. By the b-calculus theory, (see [24]) Lb has a parametrix

Gb, such that Gb is a b-operator with

GbLb = I −R

where I is the identity operator and R is a b-operator with polyhomogeneous

Schwartz kernel on the b-double space. Then, for any u ∈ L2(xn−1dxdy) with

∆0u = f ∈ L2(xn−1dxdy)

(x2Gb)(x
−2Lbu) = (x2Gb)f = u−Ru =⇒ u = x2Gbf +Ru = α+ β.

The first term, α ∈ x2H2
b ⊂ x2L2(xn−1dxdy). Then u ∈ L2(xn−1dxdy) implies

β ∈ L2(xn−1dxdy) and has a polyhomogeneous expansion as x→ 0,

β ∼
∞∑
j=0

Nj∑
k=0

xγj+kϕj(y).

Above γj is an indicial root for the operator Lb and ϕj is an eigenfunction on

(Y, h). Then,

u = α+
∞∑
j=0

Nj∑
k=0

xγj+kϕj(y) (1.1)

where α ∈ x2L2(xn−1dxdy).

The Domain of the Laplacian on manifolds with isolated conic singular-

ity.

The Laplacian ∆0 for the conic manifold (M0, g0) is an unbounded operator on

L2(M0). It can be extended to various domains in L2. The smallest domain
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considered is denoted Dmin and is obtained by taking the C∞0 closure of the graph

of ∆0 in L2.

Definition 1.10 The minimal domain of ∆0, denoted Dmin is defined to be:

Dmin = {u ∈ L2(M0) : ∃uj ∈ C∞
0 (M0), uj → u, ∆0uj → f}. (1.2)

The convergence here is in L2 and ∆0u is defined to be f . We denote by ∆min the

Laplacian on Dmin.

The largest domain considered is called Dmax and is obtained by taking the L2

closure of the graph of ∆0 in L2.

Definition 1.11 The maximal domain of ∆0, is defined to be:

Dmax = {u ∈ L2(M0) : ∆u ∈ L2(M0)}. (1.3)

We denote by ∆max the Laplacian on Dmax.

Both of the preceding domains are dense in L2(M0), and with either extension

the Laplacian is a closed operator. On complete manifolds these domains would

be equal by the Gaffney-Stokes Theorem [9]. However, M0 is incomplete and so

in general these domains will not be equal. We choose a domain that lies between

these, namely the Friedrich’s domain, and work with the Freidrich’s extension of

the Laplacian. The Friedrich’s domain, DF , is the closure of the graph of ∆0 in

L2 with respect to the densely defined Hermitian form,

Q(u, v) =

∫
M0

∇u∇v dV0.

This extension preserves the lower bound of the operator, so for the scalar Lapla-

cian, the Friedrich’s extension is positive and essentially self adjoint.
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For elements of Dmax, with u ∈ L2 and ∆0u = f ∈ L2, we have the expansion

(1.1) from the preceding section,

u = α+
∞∑
j=0

Nj∑
k=0

xγj+kϕj(y).

The volume form on M0 near the conic tip is asymptotic to xn−1dxdy. Therefore,

the exponents γj must all be strictly greater than −n
2
. For v ∈ Dmin ⊂ Dmax the

above decomposition and the definition of Dmin imply that Dmin ⊂ x2L2. The

equality of Dmin and Dmax then depends on the indicial roots of Lb = x2∆0. For

further discussion of domains of the conic Laplacian, see [11], whose results include:

DF = {f ∈ L2 : ∆0f ∈ L2 and f = O(x
2−n+δ

2 ) as x→ 0, for some δ > 0}.

We will use this characterization of the domain of the (Friedrich’s extension of the)

Laplacian in the proof of the theorem.

1.12 Spectral Convergence

First we define the spectral convergence that will be proven here. Let ∆ε be the

Laplacian for (M, gε), ∆0 be the (Friedrich’s extension of the) Laplacian on the

conic metric (M0, g0), and let σ(∆) be the spectrum of ∆.

Definition 1.13 σ (∆ε) converges to σ (∆o) if the set of accumulation points of

{σ (∆ε)} at ε = 0 is σ (∆o), with correct multiplicities.

We now have all the ingredients for the preliminary result.

Theorem 1.14 Let {gε} be a family of smooth metrics on a compact Riemannian

n-manifold, M , with n ≥ 3. Let (M0, g0) be a compact Riemannian n-manifold

with isolated conic singularity and let (Z, gz) be an ac space. Assume (M, gε)

converges asymptotically conically to (M0, g0), (Z, gZ). Let ∆ε be the scalar Lapla-

cian on (M, gε) and let ∆0 be the Friedrich’s extension of the scalar Laplacian on

(M0, g0). Then σ (∆ε) → σ (∆0).
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The proof requires three steps: the inclusion accumulation σ(∆ε) ⊂ σ(∆0),

the reverse inclusion accumulation σ(∆ε) ⊃ σ(∆0), and correct multiplicities.

1.15 Proof Step 1: Accumulation σ(∆ε) ⊂ σ(∆0)

To prove this inclusion, we extract a smoothly convergent sequence of eigenfunc-

tions corresponding to a converging sequence of eigenvalues as ε → 0. We then

show that the limit function of this sequence is an eigenfunction for the conic met-

ric and its eigenvalue is the accumulation point. For this argument, we work with

sequences of metrics {gεj} which we abbreviate {gj} with Laplacians ∆j.

Let λ(εj) be an eigenvalue of ∆j, with eigenfunction fj. Assume that λ(εj) → λ̄.

Over any compact set K ⊂M0
0 , the metric gj = gεj converges smoothly to g0, thus

so do the coefficients of ∆j − λ(εj). Hence, normalizing fj by supM |fj| = 1, it

follows using standard elliptic estimates and the Arzela-Ascoli theorem that fj

converges in C∞ on any compact subset of M0
0 . Furthermore the limit function f̄

satisfies the limiting equation

∆0f̄ = λ̄f̄ .

However, we do not know yet that f̄ 6≡ 0, nor, even if this limit is nontrivial, that

it lies in the domain of the Friedrichs extension of ∆0. This is the content of the

arguments below.

Weight Functions

Using the diffeomorphisms φε, we pull back the radial function ρ on Z to U −K,

rescale by ε and then extend to the rest of M. Explicitly,

wε =


1 on M − U .

ε (φ−1
ε )∗ρ on U −K.

ε on K.

We write wj for wεj . For some δ > 0 to be chosen later, replace fj by
fj

||wδ
j fj ||∞

.

We may then assume the supremum of |fjwδj | is 1 on M . As M is compact, |fj|
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attains a maximum at some point pj ∈ M , and we may assume pj converges to

some p̄ ∈ M . The argument splits into three cases depending on how and where

pj accumulates in M.

1.15.1 Case 1: wj(pj) → c > 0 as j →∞.

In this case, the points {pj} are accumulating in a compact subset of M0
0 at some

point p̄ 6= p (the cone point). The maximum of |fjwδj | on M is 1 and occurs at pj.

|fj| ≤ w−δj on M for each j =⇒ |fj(pj)| → c−δ as j →∞.

The locally uniform C∞ convergence of fj to f̄ implies that |f̄ | satisfies a similar

bound,

|f̄ | ≤ x−δ on M0,

and clearly |f̄(p̄)| = c−δ 6= 0. By the assumption that the dimension of M and

M0 is greater than or equal to three and the characterization of the Friedrich’s

Domain of the Laplacian, we may choose δ so that

2− n

2
< −δ < 0.

Then f̄ blows up slower than x
2−n

2 as x→ 0, and so f̄ lies in the Friedrich’s domain

of the Laplacian. It satisfies the equation,

∆0f̄ = λ̄f̄ ,

so λ̄ is an eigenvalue of ∆0 and the proof of the first step is complete in this case.

1.15.2 Case 2: wj(pj) = O(εj) as j →∞.

This case leads to a contradiction using the ac space, Z. Let φj = φεj according

to the definition of the acc single space. Let f̃j = φ∗jfj and w̃j = φ∗jwj. Then

w̃j = εjρ, where ρ is the radial variable on Z. Define ρ globally on Z by extending

it to be identically 1 on the complement of the set {ρ ≥ ρ0} in Z. Let p̃j = φj(pj).
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Because |fjwδj | attains its maximum value of 1 at pj, |f̃j(pj)| = ε−δj . Rescale

fj and f̃j, replacing them respectively with εδjfj and εδj f̃j so that the maximum

of |f̃jρδ| occurs at the point p̃j ∈ Zj and is equal to 1. Since wj(pj) = O(εj),

ρ(p̃j) = ε−1
j wj(pj) stays bounded for all j, and so we assume p̃j converges to

p̃ ∈ Z. By the definition of ac convergence, (Zj, ε
−2
j φ∗jgj|U) converges smoothly to

(Zj, gZ). This implies the following equation is satisfied by f̃j on Zj,

∆Z f̃j = ε2jλ(εj)f̃j +O(εj).

Since the λ(εj) are converging to λ̄ and |f̃jρδ| ≤ 1 on Zj, we have

∆Z f̃j → 0 as j →∞ on any compact subset of Z.

This implies fj → f̄ on M and correspondingly, f̃j → f̃ , locally uniformly C∞ on

Z and f̃ satisfies the equation,

∆Z f̃ = 0.

Moreover, |f̃ρδ| ≤ 1 with equality at the point p̃. This implies f̃ is not identically

zero and decays like ρ−δ as ρ → ∞. There are no such harmonic functions on Z,

which leads to a contradiction.

1.15.3 Case 3:
εj

wj(pj)
→ 0 as j →∞.

This case also leads to a contradiction. The analysis is on the complete cone over

(Y, h). Consider the coordinates (ρ, y), defined for ρ ≥ 1. In these coordinates the

metric on Z has the form dρ2 + ρ2h(ρ). Let rj = wj(pj)ρ. Consider the family of

metrics {g̃j} on Zj defined by

g̃j = wj(pj)
2gZ .

On Zj where ρ is defined, g̃j takes the form

dr2
j + r2

jh(rjwj(pj)
−1) for rj ∈ (ρ0wj(pj), wj(pj)

−1).
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Then, as j →∞, the metric h(rjwj(pj)
−1) converges smoothly to h, and the metric

g̃j converges to

gC = dr2 + r2h

on the exact cone over (Y, h), which we call C. Let f̃j = wj(pj)
δ(φj)

∗fj. Since

|fjwδj | ≤ 1 with equality at pj,

|f̃jrδj | ≤ 1 on (Zj, g̃j) with equality at p̃j = wj(pj)
δ
jφ
−1
j (pj).

Moreover, the Laplacian, ∆̃j on Zj with respect to the metric g̃j, satisfies

∆̃j = wj(pj)
−2∆Z ,

so

∆̃j f̃j =
ε2j

wj(pj)2
λ(εj)f̃j +O(εj) on (Zj, g̃j).

In this case,
ε2j

wj(pj)2
λ(εj)f̃j + O(εj) goes to 0 as j → ∞, and so we have a locally

uniform C∞ limit of {f̃j}, fC defined on C satisfying

|fcrδ| ≤ 1 on C,

∆CfC = 0 on C.

Since the points p̃j stay at a bounded radial distance with respect to the radial

variable rj on Zj, we may assume p̃j → pC for some pC ∈ C. At this point,

|fC(pC)r(pC)δ| = 1 so fC is not identically zero. By separation of variables (see,

for example, [20]), fC has an expansion in an orthonormal eigenbasis of L2(Y, h),

fC =
∑
j≥0

aj,+r
γj,+φj(y) + aj,−r

γj,−φj(y)

where γj,+/− are indicial roots corresponding to φj and aj,+/− ∈ C. In order

for |fcrδ| ≤ 1 globally on C, we must have only one term in this expansion,

fC = ajr
−δφj(y). Because the indicial roots are discrete, we may choose δ so that
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−δ is not an indicial root. This is a contradiction and completes Step One.

1.16 Proof Step 2: σ(∆0) ⊂ Accumulation σ(∆ε)

Here we show the reverse inclusion of Step 1. We use the Rayleigh-Ritz character-

ization of the eigenvalues. Let λl(εj) be the lth eigenvalue of ∆j. Let

Rj(f) :=
〈Of,Of〉j
〈f, f〉j

.

The subscript j denotes that the inner product is taken with respect to the L2

norm on M with the gj metric. The eigenvalues are characterized using Mini-Max

by

λl(εj) = infdim L = l, L⊂C1(M) supf∈LRj(f).

Similarly this characterization holds for the eigenvalues of the (Friedrich’s exten-

sion of the) conic Laplacian which are known to be discrete (see [3], for example).

Because C∞0 (M0) is dense in L2(M0) we may restrict to subspaces contained in

C∞0 (M0). Then, the lth eigenvalue of ∆0 is

λ̄l = infdim L = l, L⊂C∞0 (M0) supf∈LR0(f)

Let λ̄l be the lth eigenvalue in the spectrum of ∆0. Fix ε > 0. Then there exists

L ⊂ C∞0 with dim(L) = l and

supf∈LR0(f) < λ̄l + ε.

Since any f ∈ L is also in C∞0 (M) and because L is finite dimensional, by the

convergence of gj to g0, for large j we have

|Rj(f)−R0(f)| < ε for any f ∈ L.
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Since λl(εj) is the infimum we have

λl(εj) ≤ λ̄l + 2ε.

This implies that {λl(εj)} is bounded in j and so we extract a convergent subse-

quence. Then from Step One, for each l

λl(εj) → µl ≤ λ̄l

fj,l → ul, ∆0ul = µlul.

We now show that these limit eigenfunctions ul are orthogonal to one another.

Fix l, k, with fj,k → uk and fj,l → ul. Since C∞0 (M0) is dense in L2(M0) we may

choose a smooth cutoff function χ vanishing identically near the conic tip of M0

such that

||χuk − uk||L2(M0) < ε,

||χul − ul||L2(M0) < ε,

V olj(M − support(χ)) < ε.

Then on the support of χ, gj → g0 uniformly and so for large j,

|〈uk, ul〉0 − 〈χuk, χul〉0| < ε,

|〈χuk, χul〉0 − 〈χuk, χul〉j| < ε,

|〈χuk, χul〉j − 〈χuk, χfj,l〉j| < ε,

|〈χuk, χfj,l〉j − 〈χfj,k, χfj,l〉j| < ε.

Finally for large j, because the eigenfunctions for ∆j were chosen to be orthonormal

and the volume of M− support (χ) is small with respect to gj,

|〈χfj,k, χfj,l〉j| < 2ε.
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This shows that 〈uk, ul〉0 can be made arbitrarily small and so these eigenfunctions

are orthogonal. We then complete this basis to form an eigenbasis of L2(M0). Let

f̄l be an arbitrary element of this eigenbasis, with eigenvalue λ̄l. We wish to show

that this f̄l is actually the ul above, defined to be the limit of (a subsequence of)

{fj,l}, and hence the corresponding µl is equal to λ̄l. Again, assume the smooth

cut-off function χ is chosen so that

||χf̄l − f̄l||L2(M0) < ε.

For each j we expand χf̄l in eigenfunctions of ∆j,

χf̄l =
∞∑
k=0

aj,kfj,k, where aj,k = 〈χf̄l, fj,k〉j.

Now, fix k and choose χ such that

||χuk − uk||L2(M0) < ε.

Then,

|〈χf̄l, fj,k〉0 − 〈χf̄l, fj,k〉j| < ε,

|〈χf̄l, fj,k〉j − 〈χf̄l, uk〉j| < ε,

|〈〈χf̄l, uk〉j − 〈χf̄l, uk〉0| < ε,

|〈χf̄l, uk〉0 − 〈f̄l, uk〉0| < ε.

We have shown above 〈f̄l, uk〉0 = 0 if f̄l 6= uk, and otherwise is 1. This implies

that for each k, aj,k → 0 since j → ∞ for all k with uk 6= f̄l. Because fl is

not identically zero there must be some k with uk = f̄l. This shows that every

eigenfunction of ∆0 is the limit of (a subsequence of) {fj,k} and the corresponding

eigenvalue λ̄k is the corresponding limit of eigenvalues. This completes Step Two

of the proof.
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1.17 Proof Step 3: Correct Multiplicities

Let λ be an eigenvalue for ∆0 with k dimensional eigenspace spanned by u1, . . . , uk.

First, we show that the multiplicity of λ as an accumulation point is at least k. As-

sume the multiplicity is k−1. The Rayleigh-Ritz characterization of the eigenvalues

in Step Two shows that u1, . . . , uk−1 are limits of (subsequences of) fj,1, . . . , fj,k−1.

Moreover, as shown in Step Two, the limit of fj,k, f̄k has eigenvalue λ̄ ≤ λ. Since

the limit of fj,k−1, uk−1 has eigenvalue λ, λ ≤ λ̄. Therefore, λ̄ = λ and the limit

of fj,k, f̄ is orthogonal to {u1, . . . , uk−1}, which implies that the multiplicity of λ

as an accumulation point is at least k, the dimension of its eigenspace.

Conversely, we show that the multiplicity of an accumulation point cannot be

larger than the dimension of the eigenspace. Assume the multiplicity is k + 1.

Then, fj,1, . . . , fj,k+1 converges to u1, . . . , uk+1, all with eigenvalue λ. However,

as we showed in Step Two, these limit eigenfunctions are all orthogonal, which

implies that the dimension of the eigenspace of λ must be at least k + 1. Hence,

the multiplicity of λ as an accumulation point is at most the dimension of its

eigenspace.

Altogether this shows that the eigenvalues of ∆0 are achieved with the correct

multiplicities as accumulation points of {σ(∆(ε))} as ε → 0. This completes the

proof of the theorem.

♥



Chapter 2

Heat Kernels

For each of the geometries of asymptotically conic convergence we construct the

heat space and on this space define a heat operator calculus that contains the heat

kernel. We describe the asymptotic behavior of each of these heat kernels on the

corresponding heat space. These constructions are key ingredients in the proof of

the main result in chapter three.

2.1 Heat Kernel for a Smooth, Compact Mani-

fold

While a summary for the case of a smooth, compact manifold is provided here,

the full details are in [24]. Let (M, g) be a smooth, compact Riemannian manifold

with Hermitian vector bundle (E,∇). Let ∆ be a geometric Laplacian1 associated

to (M, g,E,∇). The associated heat operator is

∂t + ∆.

1A geometric Laplacian is an operator of the form ∇∗∇ + R such that R is a self adjoint
endomorphism of E. Note that the square of the Dirac operator is a geometric Laplacian as is
the Hodge Laplacian on k-forms, by the Bochner Theorem (cf. [26]).

29
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The Schwartz kernel H for the solution operator is called the heat kernel. It is a

tempered distributional section of M ×M × R+ that satisfies

(∂t + ∆)H(z, z′, t) = 0, t > 0,

H(z, z′, 0) = δ(z − z′),

where (z, z′) are coordinates on M ×M and t is the time variable on R+. The heat

operator is self-adjoint and consequently has symmetry in the space variables

H(z, z′, t) = H(z′, z, t)∗.

A parametrix for the heat operator on a smooth compact manifold is constructed

from the Euclidean heat kernel (cf. [26]). Recall the Euclidean heat kernel

G(z, z′, t) = (4πt)−
n
2 exp

(
−|z − z′|2

2t

)
.

This kernel is smooth away from the diagonal {z = z′} at t = 0. Similarly, the

heat kernel for (M, g) is smooth on M ×M ×R+ away from the diagonal at t = 0.

2.1.1 The Heat Space for a Smooth, Compact Manifold

The heat space, M2
h , is a manifold with boundary obtained fromM×M×R+ = M2

+

by performing a t-parabolic blow up along the submanifold,

Sd2 = {z = z′, t = 0}.

The resulting face, Fd2 is the inward pointing t-parabolic normal bundle of Sd2 with

defining function ρd2. The subscript indicates that Fd2 is the diagonal blow up at

which the scalar variable t vanishes to order 2. There is another boundary face at

t = 0, F1 with defining function ρ1. When the coordinate t on M×M×R+ is lifted

to the interior of M2
h , it is no longer a defining function for F1. Let β∗ : M2

+ →M2
h
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be the blow-up map and β∗ : M2
h →M2

+ be the blow-down map. Then,

β∗(t) = ρ1(ρd,2)
2.

The F1 face is diffeomorphic to M ×M −∆ where ∆ is the diagonal in M ×M.

2.1.2 The Smooth, Compact Heat Calculus

We construct the heat kernel using a heat operator calculus. One may also con-

struct the heat kernel locally as in [26]. The heat calculus consists of the Schwartz

kernels of operators which lift to the heat space, M2
h , to have polyhomogeneous

expansions up to each boundary face. For normalization purposes, we define cal-

culus elements using half densities. Each element is the product of a distributional

section and a half density on M2
+. We fix a half density on M2

+, for example,

µ = |dzdz′dt| 12 , where dz and dz′ represent the smooth measure induced by g on

each copy of M. Any other smooth half density on M2
+ differs from this one by

conjugation with a smooth nonvanishing function. Due to the use of half densities,

the definition of the heat calculus includes certain normalizing factors to facilitate

the composition rule.

Definition 2.2 The kth order heat calculus on a smooth, compact manifold, (M, g),

written Ψk
H consists of distributional section half densities of M2

+ that lift to M2
h

to satisfy three properties. Let A be such a distribution section half density of M2
+.

Then, A ∈ Ψk
H if the following hold.

1. The lift of A to M2
h is smooth on the interior of M2

h .

2. A vanishes to infinite order at F1.

3. A ∈ (ρd2)
− 1

2
(n+3)−kC∞(Fd2).

The action of an element A ∈ Ψk
H on a smooth section half density f is

Af(z, t) =

∫
M

〈A(z, z′, t), f(z′)〉dz′.
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We require elements of Ψk
H to act as convolution in the time variable, so for a

smooth section of M × R+,

Af(z, t) =

∫ t

0

∫
M

〈A(z, z′, t− s)f(z′, s)〉dz′ds.

Two elements of the heat calculus compose as follows.

Theorem 2.3 Let A be an element of Ψk1
H and B be an element of Ψk2

H . Then, the

composition A ◦B is an element of Ψk1+k2
H .

For the proof of this composition rule, see [24]. Since the heat operator ∂t + ∆

is of order 2 we expect the heat kernel to be an element of Ψ−2
H . To construct the

heat kernel, take the lift of the Euclidean heat kernel as a first approximation.

Call this H1. Applying the heat operator to H1 one has

(∂t + ∆)H1 = K1,

where K1 vanishes to one order higher on the boundary faces of M2
h . Let H2 =

H1 −H1 ◦K1. H2 satisfies

(∂t + ∆)H2 = K2,

where the error term K2 vanishes to yet one order higher on the M2
h boundary

faces. This process is repeated to obtain H∞ satisfying

(∂t + ∆)H∞ = K∞,

where K∞ ∈ Ψ∞
H ; K∞ vanishes to infinite order on the boundary faces of M2

h . This

is achieved using Borel summation to construct a sum whose asymptotic expansion

is H1, H2, H3, . . . . For details on this construction, see [28].

Formally, it is known that a tempered distribution satisfying

(∂t + ∆)H(z, z′, t) = 0, t > 0,

H(z, z′, 0) = δ(z − z′),
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exists. We call this H. By construction, H∞ satisfies the same initial condition,

H∞(z, z′, 0) = δ(z − z′).

The difference, H∞ −H = K then satisfies

K|t=0 = 0,

(∂t + ∆)K vanishes to infinite order on all boundary faces of M2
h .

By parabolic regularity K ∈ Ψ∞
H , consequently, H∞ + K ∈ Ψ−2

H with the above

asymptotic expansion and moreover, H∞ +K = H.

2.4 b-Heat Kernel

The geometries of ac convergence are closely related to the b-geometry of [24].

Consequently, the operators studied in ac convergence are closely related to b-

operators. Here is a brief summary of the geometry of b-manifolds and the b-heat

kernel.

2.4.1 b-Geometry and b-Operators

A b-manifold (M, g) is a complete manifold with asymptotically cylindrical ends.

It is compactified as a manifold with boundary having a product decomposition

near the boundary such that, if x is a boundary defining function,

g =
dx2

x2
+ h(x).

Above, {Y, h(x)} is a smoothly varying family of metrics on Y, a compact n −
1 manifold and h(x) converge to (Y, h) as x → 0; equivalently, h extends to a

symmetric 2 cotensor on [0, x1)x × Y for some x1 > 0. In a neighborhood of the
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boundary define the b-vector fields,

Vb = {x∂x, ∂y},

which form a basis for the b-tangent bundle, bTM. The co-vectors,

{dx
x
, dy},

form a basis for the b-cotangent bundle, bT ∗M.

A b-operator, L, on (M, g) is a partial differential operator on the interior of

M that can be expressed using the b-vector fields in a neighborhood of ∂M as,

L =
∑

j+|α|≤m

aj,α(x)(x∂x)
j(∂y)

α

where α is a multi-index and aj,α(x) ∈ C∞([0, x1)) for some x1 > 0. A b-operator

is b-elliptic if it is elliptic in the usual sense on the interior of M and is an elliptic

combination of the b-vector fields in a neighborhood of the boundary of M. An

example of an elliptic b-operator is a geometric Laplacian, ∆, associated to a

Hermitian vector bundle (E,∇) over (M, g) such that E retracts onto a Hermitian

bundle (Ey,∇y) over (Y, h). Such a geometric Laplacian is of the form

∆ = (x∂x)
2 + ∆y + lot

where ∆y is the induced Laplacian on (Y, h) and lot are lower order terms. A conic

geometric Laplacian, ∆0, is a re-scaled b-Laplacian,

∆0 = (∂x)
2 + x−2(∆y + lot)

where x = 0 defines the singularity and Y is the cross section. Factoring out the

x−2,

∆0 = x−2((x∂x)
2 + ∆y + lot) = x−2∆b,

where ∆b is a b-geometric Laplacian. Similarly, we may express an asymptotically
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conic geometric Laplacian as a re-scaled b-Laplacian. Let x = 0 define the bound-

ary, (Y, h), of the compactified ac space, Z̄. Then, a geometric Laplacian on Z̄,

∆z, near ∂Z̄ has the form

∆z = x4∂2
x + x2(∆y + lot) = x2((x∂x)

2 + ∆y + lot) = x2∆b

where ∆b is a b-geometric Laplacian.

2.4.2 The b-Heat Kernel

We construct the b-heat kernel by first constructing the b-heat space, then defining

the b-heat calculus, and finally using a first approximate model operator together

with the composition rule of the calculus to produce the b-heat kernel.

The b-heat space

The b-heat space is a manifold with corners constructed from M ×M ×R+. First

we take M ×M and blow up radially at ∂M × ∂M. This is the b-double space,

M2
b = [M ×M ; ∂M × ∂M ],

see also figure 1.5.

We now include the time variable and blow up t-parabolically the diagonal in

M ×M at t = 0. The resulting manifold with corners is the b-heat space,

M2
b,h =

[
M2

b × R+
t ; ∆(M ×M)× {t = 0}

]
t-parabolic

,

where ∆(M ×M) is the diagonal.

The b-heat space has five boundary faces as follows.2

2The subscript notation used throughout indicates the order to which each of the scalar
variables vanish at that face. For example, at F110 the first two scalar variables, x and x′, vanish
to first order while the third scalar variable, t does not vanish (vanishes to 0 order).
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F_d2

t=0
F_001

x=0
F_100

x’=0
F_010

t to infinity

The b Heat Space

t=0
F_001

F_110

Figure 2.1: The b-heat space.



CHAPTER 2. HEAT KERNELS 37

Face Blow up of/locally defined by Defining Function

F110 S110 = {x = 0, x′ = 0} ρ110

Fd2 Sd2 = {z = z′, t = 0} ρd2

F100 {x = 0} − F110 ρ100

F010 {x′ = 0} − F110 ρ010

F001 {t = 0} − Fd2 ρ001

The b-heat calculus consists of distributional section half density kernels on the

b-heat space, M2
b,h.

Definition 2.5 For any k ∈ R and index set E110, A is an element of the b-heat

calculus, ΨE110,k
b,H , if the following hold.

1. A ∈ A− 1
2
+E110

phg (F110).

2. A vanishes to infinite order at F001, F100, and F010.

3. A ∈ ρ−
n+3

2
−k

d2 C∞(Fd2).

Because the heat calculus is defined with half densities, the normalizing factors

at F110 and Fd2 simplify the composition rule.

Theorem 2.6 Let A ∈ Ψka,A
b,H and let B ∈ Ψkb,B

b,H . Then the composition, A ◦ B is

an element of Ψka+kb,A+B
b,H .

The b-heat kernel asymptotics on the b-heat space

The construction of the b-heat kernel is similar to the construction of the smooth

compact heat kernel. The b-heat kernel behaves like the Euclidean heat kernel

on the interior of M2
h and near Fd2. To determine an appropriate model kernel

at F110, the heat operator ∂t + ∆b is lifted to the b-heat space and restricted to

F110. This restriction is called the normal operator of ∂t + ∆b. The model kernel

at F110 is the kernel of a first order parametrix of this normal operator and is

smooth at this face. At F100, F010, and F001 the model kernel vanishes to infinite

order. The approximations at each face are smoothly extended to the interior.

As in the smooth case, the composition rule is used to solve away the error and
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the model kernel determines the asymptotic behavior of the b-heat kernel on M2
b,h.

This behavior is summarized here and concludes our study of the b-heat kernel.

Face Leading order

F110 0; as t→∞, decays like t−
1
2

Fd2 −n+3
2
− (−2)

F100 ∞
F010 ∞
F001 ∞

2.7 The Conic Heat Kernel

Let (M0, g0) be a compact manifold with isolated conic singularity and let (E0,∇0)

be a Hermitian vector bundle over (M0, g0). Let ∆0 be the Friedrich’s extension of a

geometric Laplacian on (M0, g0). Associated to ∆0 is the heat operator ∂t+∆0 and

the corresponding heat kernel which we call the conic heat kernel. The conic heat

kernel is smooth on the interior of M0×M0×R+ = M2
+ by parabolic regularity (cf.

[28]); away from the conic singularity it behaves like the heat kernel for a smooth,

compact manifold. Near the conic singularity, however, the behavior of this heat

kernel is more subtle.

2.7.1 The Conic Heat Space

This construction comes from [25]. The conic heat space is a manifold with corners

obtained from M0 ×M0 × R+ = M2
+ by blowing up along two submanifolds. In a

neighborhood of the conic singularity, M0 has a product structure with coordinates

z = (x, y) where x ∈ (0, x1] and y = (y1, . . . , yn−1) are coordinates on (Y, h). In

terms of the local coordinates (z, z′, t) = (x, y, x′, y′, t) onM2
+ the two submanifolds

are

S112{x = 0, x′ = 0, t = 0},

Sd2 = {(z, z, 0) : z ∈M0
0}.
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S112 is the codimension 3 corner at t = 0 at the intersection of the singularity

in each copy of M0. Sd2 is the singular set for the initial data, the diagonal of

M0 ×M0 at time t = 0. These submanifolds are blown up parabolically in the

direction of the conormal bundle, dt, replacing each submanifold by its inward

pointing t-parabolic normal bundle. The boundary faces created by these blow

ups are F112 and Fd2, respectively. The resulting manifold with corners is the

conic heat space and denoted M2
0,h.

In the local coordinates, (x, y, x′, y′, t, ), the defining function for F112 is

ρ112 = (x4 + (x′)4 + t2)
1
4 .

In a neighborhood of this face, we have coordinates (θ, θ′, r, y, y′, τ), where x = rθ,

x′ = rθ′, and t = r2τ . We do not actually need the θ′ coordinate because θ, θ′, τ

satisfy

θ4 + (θ′)4 + τ 2 = 1.

The second blown up face, Fd2, has defining function

ρd2 = (|z − z′|4 + t2)
1
4 .

There are three additional boundary faces in the conic heat space,

F100 = {x = 0} − F112,

F010 = {x′ = 0} − F112,

F001 = {t = 0} − (F112 ∪ Fd2).

The defining functions for these faces are respectively ρ100, ρ010, ρ001. Using stan-

dard blow-up notation the conic heat space is

M2
0,h = [M0 ×M0 × R+;S112;Sd2]t- parabolic.

The blow up construction of M2
0,h from M2

+ induces blow up and blow down
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x=0 face x’=0 face

t=0 face

t-axis

M_0  x  M_0  x  R+  :  First Step in construction of conic heat space

Figure 2.2: Construction of the conic heat space: M2
+.
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maps, β∗ : M2
+ → M2

0,h and β∗ : M2
0,h → M2

+, which are isomorphisms on the

interiors of these spaces. The coordinates (x, x′, t) lift via β∗ to

(β∗)(x) = ρ100ρ112,

(β∗)(x′) = ρ010ρ112,

(β∗)(t) = ρ001(ρ112)
2.

The boundary faces of M2
0,h are defined in terms of β∗ by

F100 = cl{β∗ ((Y ×M0 × [0,∞)t)− S112)},
F010 = cl{β∗ ((M0 × Y×[0,∞)t)− S112)},
F0,0,1 = cl{β∗(S112 − Sd2)},
Fd2 = cl{β∗(Sd2)},
F112 = cl{β∗((M0 ×M0 × {0})− Sd2)}.

In the above cl{.} denotes the closure in M2
0,h.

2.7.2 Conic Heat Kernel First Approximation

We construct the conic heat kernel by building its Taylor expansion at each bound-

ary face of M2
0,h. First, an approximate solution to the heat equation at each face is

chosen so that the error term vanishes to some positive order. We then use the heat

calculus to iterate this process, constructing a parametrix with error term vanish-

ing to infinite order at the F112, Fd2, and F001 boundary faces of M2
0,h. Finally,

Duhamel’s Principle is used to construct the full heat kernel from this parametrix.

Away from the conic singularity the Euclidean heat kernel is a good first ap-

proximation, so this is our first approximation on the interior of M2
0,h and at the

Fd2 and F001 faces. Near the F100, F010 and F112 faces, however, this is not a good

first approximation. Instead, we take the heat kernel for the exact cone over (Y, h)

and transplant it to F112. This kernel is then extended to the F100 and F010 faces.

Convenient local coordinates on F112 are the projective coordinates, (s, s′, y, y′, τ)
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The Conic Heat Space

    F_112

F_100 F_010

F_002
F_002

F_{d, 2}

Figure 2.3: The conic heat space, M2
0,h.
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with s = x
x′

, s′ = x′, and τ = t
(x′)2

. These are valid away from F010. Since we are us-

ing the Friedrich’s extension of ∆0 the heat kernel satisfies H(z, z′, t) = H(z′, z, t)∗.

This symmetry allows us to study the heat kernel using these projective coordi-

nates because the leading orders at F010 and F100 are the same. In projective

coordinates, the variable s′ is a defining function for F112 and the heat kernel

becomes

∂t + ∆0 = (s′)−2(∂τ + ∆0,s) + E. (2.1)

Here, ∆0,s is a geometric Laplacian for the exact cone over (Y, h) and E is an error

term with leading order (s′)−1 at F112. We express the heat kernel as an expansion

near F112 as follows

H(z, z′, t) ∼
∑
j≥0

(s′)αjhj(s, s
′, y, y′, τ)

where the exponents αj ∈ C depend on the eigenvalues of the induced geometric

Laplacian on the cross section (Y, h). The heat kernel H must satisfy

(∂t + ∆0)H = 0, t > 0.

In the projective coordinates this becomes

(s′)−2(∂τ + ∆0,s)H + EH = 0, t > 0.

Applying the heat operator to the Taylor expansion of H gives

∑
j≥0

(s′)αj−2(∂τ + ∆0,s)hj(s, s
′, y, y′, τ) + (s′)αjEhj(s, s

′, y, y′, τ) = 0.

The first term gives the equation

(s′)α0−2(∂τ + ∆0)h0(s, s
′, y, y′, τ) = 0.
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Therefore, h0 should be some power of (s′) times the heat kernel H0 for ∂τ + ∆0,s,

h0 = (x′)βH0.

Recall the initial conditions that H must satisfy

H(x, x′, y, y′, 0) = δ(x− x′)δ(y − y′) = (s′)−1δ(s− 1)δ(y − y′).

The heat kernel for the exact cone, H0, satisfies

H0(s, 1, y, y
′, 0) = δ(s− 1)δ(y − y′).

So the first term in the expansion of H should be

(s′)−1H0(s, 1, y, y
′, τ).

This shows that the leading order term of H at F112 is

H1(x, y, x
′, y′, t) = (ρ112)

−1H0(s, 1, y, y
′, τ),

where H0 is the heat kernel for the exact cone over (Y, h).

The Heat Kernel on the Exact Cone

Let (X, gx) be the exact cone over (Y, h) with coordinates (x, y) and metric

gx = dx2 + x2h.

For the existence and construction of the heat kernel for (X, gx) we refer to [20].

The heat kernel H0 for (X, gx) has a polyhomogeneous conormal expansion on

X2
h with leading orders at F100, F010 and F112 given by a complicated expression

involving the eigenvalues of the induced geometric Laplacian on (Y, h), the rank of

the bundle, and the dimension of X. For a detailed description of this dependence

see [2].
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A direct calculation on the exact cone gives the homogeneity property for H0,

H0(cx, cx
′, y, y′, c2t) = cnH0(x, x

′, y, y′, t).

The homogeneity of H0 and symmetry in x, x′ imply

H1(x, y, x
′, y′, t) = (ρ112)

−1(ρ100ρ010)
−nH0(x, x

′, y, y′, t).

The following table shows the leading orders of H1 on the boundary faces of M2
0,h.

Boundary Face of M2
0,h Leading order

F112 −1 + ν0

F100 −n+ µ0

F010 −n+ µ0

Fd2 −n
F001 ∞

Above, ν0 and µ0 are the leading terms in the polyhomogeneous conormal

expansion of H0 at F112 and F100, respectively. The following is a brief review of

polyhomogeneity.

Polyhomogeneous Expansions

On manifolds with boundary having a product structure near the boundary, a

natural class of functions (or sections) with good regularity near the boundary

are the polyhomogeneous conormal functions (or sections). For a more complete

reference on polyhomogeneity, see [21]. In a neighborhood of the boundary of

M0, or equivalently, in a neighborhood of the conic singularity of M0, we have

coordinates (x, y) with the metric g0 expressed in these coordinates as

g0 = dx2 + x2h(x).

The b-tangent bundle, Vb, in a neighborhood of the singularity, is spanned by the

vector fields,

{x∂x, ∂αy }.
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The basic conormal space of sections is

A0(M0) = {φ : V1...Vlφ ∈ L∞(M0),∀Vi ∈ Vb, and ∀ l}.

Let α and p be multi indices with αj ∈ C and pj ∈ N0. Then we define

Aα,p(M0) = xα(log x)pA0.

The space A∗ is the union of all these spaces, for all α and p. The space A∗
phg(M0)

consists of all conormal distributional sections which have an expansion of the

form

φ ∼
∑

Re(αj)→∞

pj∑
p=0

xαj(log x)paj,p(x, y), aj,p ∈ C∞.

We define an index set to be a discrete subset E ⊂ C× N0 such that

(αj, pj) ∈ E, |(αj, pj)| → ∞ =⇒ Re(αj) →∞.

Then, the space AE
phg(M0) consists of those distributional sections φ ∈ A∗

phg having

polyhomogeneous expansions with (αj, pj) ∈ E.

2.7.3 The Conic Heat Calculus

The construction of the conic heat calculus is originally due to [25]. This calculus

gives a rule for composing kernels that are smooth on the interior of M2
0,h with

specified regularity, vanishing, or polyhomogeneous expansions at each boundary

face.

The heat calculus is defined using half densities. Let µ be a conic half density

on M0 ×M0 × R+. We may assume

µ = (xx′)
n−1

2

√
dzdz′dt =

√
dVcdt.

Any other choice of conic half density on M0×M0×R+ is obtained from µ by con-

jugation with a nonvanishing smooth function. We also fix a smooth, nonvanishing
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half density, ν, on M2
0,h.

Definition 2.8 Let k ∈ R and E100 E010 E112 be index sets. A distributional

section half density, A, of M2
+ is an element of the heat calculus Ψk,E100,E010,E112

0,H if

its lift to M2
0,h, which we also call A, has the following behavior at the five boundary

faces of M2
0,h.

1. A ∈ AE100
phg (F100).

2. A ∈ AE010
phg (F010).

3. A ∈ AE112
phg (F112).

4. A vanishes to infinite order at F001.

5. A ∈ ρ−
n+3

2
−k

d2 C∞(Fd2).

With this normalization the conic heat kernel has order k = −2 and the compo-

sition rule works out nicely. To prove the composition rule we must first construct

the conic triple heat space, M3
0,h.

The Conic Triple Heat Space

The conic triple heat space, M3
0,h, is a manifold with corners obtained by perform-

ing a series of blow ups on M0 ×M0 ×M0 × R+ × R+. To each copy of M0 we

associate a copy of the Hermitian vector bundle, (E,∇). We refer to the three

copies of M0 as M0, M
′
0, and M ′′

0 and the corresponding three copies of E as E,

E ′, and E ′′. Given two kernels, A and B, of the conic heat calculus, A induces

an operator taking sections of E to sections of E ′ ×R+, while B takes sections of

E ′×R+ to sections of E ′′×R+. For example, if f is a smooth half density section

of M, then A acts on f by

A(f)(z, t) =

∫
M0

〈(β∗A)(z, z′, t), f(z′)〉dz′
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where β∗ is the blow down map from M2
0,h to M2

+. These kernels act in another

way, by convolution in the t variable,

A(f)(z, t) =

∫
M0

∫ t

0

〈(β)∗A(z, z′, s), f(z′, t− s)〉dsdz′.

Because of the special action of elements of the heat calculus on the time variable

as convolution operators, the triple heat space construction involves only 2 copies

of R+.

Formally, the composition of two elements of the conic heat calculus is obtained

by lifting both elements to the triple heat space, taking their product and pushing

forward to the heat space. It is then necessary for the triple heat space to have

partial blow-down/projection maps to three identical copies of M2
0,h and full blow-

down maps to three identical copies of M2
+. The three copies of M2

0,h and M2
+ will

be called the left, right and center and the blow up or down maps corresponding

to each are βL, βR, βc. An upper ∗ denotes the lift to the triple heat space and the

lower ∗ denotes the push forward to the heat space. In other words, (βR)∗ is the

lift of the right heat space to the triple heat space. In the composition of A and

B, the kernel A is lifted from the left copy of M2
0,h to the triple heat space while

the kernel B is lifted from the right copy of M2
0,h where their product is taken and

pushed forward to the center copy of M2
0,h. We would like the maps, βL, βR, βc to

preserve polyhomogeneity so that the lifted product of A and B on the triple heat

space pushed forward under (βC)∗ is again an element of the conic heat calculus

with expansions determined by those of A and B. Such maps on manifolds with

corners which preserve polyhomogeneity are called b-fibrations.

b-Maps and b-Fibrations

For a complete reference, see [21]. The maps βL,R,C from M3
0,h to the three copies

of M2
0,h must be a special kind of map, known as a b-fibration, in order to preserve

polyhomogeneity and prove the composition rule for the conic heat calculus. The

first definition is a more general class of maps, of which a b-fibration is one specific

type.
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Definition 2.9 Let M1 be a manifold with boundary hypersurfaces, {Nj}kj=1, and

defining functions rj. Let M2 be a manifold with boundary hypersurfaces, {Li}li=1,

and defining functions ρi. Then f : M1 →M2 is called a b-map if for every i there

exist nonnegative integers e(i, j) and a smooth nonvanishing function h such that

f ∗(ρi) = hΠr
e(i,j)
j .

The image under a b-map of the interior of each boundary hypersurface of

M1 is either contained in or disjoint from each boundary hypersurface of M2 and

the order of vanishing of the differential of f is constant along each boundary

hypersurface of M1. The matrix (e(i, j)) is called the lifting matrix for f.

In order for the map, f, to preserve polyhomogeneity, stronger conditions are

required. Associated to a manifold with corners are the b-tangent and cotangent

bundles, bTM and bT ∗M.3 The map f may be extended to induce the map bf∗ :b

TM1 →b TM2.

Definition 2.10 The b-map, F : M1 →M2, is called a b-fibration if the associated

maps bf∗ at each p ∈ ∂M1 are surjective at each p ∈ ∂M1 and the lifting matrix

(e(i, j)) has the property that for each j there is at most one i such that (e(i, j)) 6= 0.

In other words, f does not map any boundary hypersurface of M1 to a corner of

M2.

These conditions guarantee that pushforward by f preserves polyhomogeneity.

We proceed with the construction of the triple heat space so that the blow down

maps, (βL)∗, (βR)∗, and (βC)∗, to M2
0,h will be b-fibrations.

In a neighborhood of the conic singularity in each copy of M we have the local

coordinates (x, y, x′, y′, x′′, y′′, s, s′) on (M×M ′×M ′′×R+×R+). In general when

performing blow ups, if one has several submanifolds to blow up symmetrically,

the corner where these submanifolds intersect is blown up first. This separates the

submanifolds so that when each of them is subsequently blown up, the order of

blow up does not matter and symmetry is preserved. With this in mind, we first

blow up the codimension 5 submanifold,

S11122 = {x = x′ = x′′ = s = s′ = 0}.
3These are also called the totally characteristic tangent and cotangent bundles.
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We blow up parabolically in the s, s′ directions, and radially in the x, x′, x” direc-

tions. The defining function is

ρ11122 = (x4 + (x′)4 + (x′′)4 + s2 + (s′)2)
1
4 .

We call this face F11122. After performing this blow up we have the following radial

coordinates

(θ, θ′, θ′′, y, y′, y′′, σ, σ′, ρ11122)

where

x = (ρ11122)θ, s = (ρ11122)
2σ,

and the coordinates x′, x′′, σ′ satisfy analogous relations.

Next we consider the time variables. The three b-fibration maps onto three

identical copies of M2
0,h each require a time variable, but there are only two copies

of R+. The three maps down to M2
0,h will have time variables, s, s′, s′′, where the

coordinates (s, s′) are on R+ × R+ and

s′′ = s′ − s.

In order to have b-fibrations to the three copies of M2
0,h we must blow up the

submanifold

F00011 = {σ = 0, σ′ = 0} − F11122.

This blow up is radial in both directions with defining function

σ′′ = (σ2 + (σ′)2)
1
2 .

Different notation is used for the defining function of this face because it plays the

role of the third time variable.

The next step in the construction of M3
0,h is to blow up the three codimension 3

corners corresponding to F112 in each of the three copies of M2
0,h. If (z, z′, z′′, s, s′)

are local coordinates on M3
+, then the interior of the left M2

0,h has local coordi-

nates (z, z′, s), the right has coordinates (z′, z′′, s′), and the center has coordinates
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(z, z′′, s′′) with s′′ = s − s′. The next three blow ups are parabolic in the time

directions and create the following faces.

Face Submanifold to be blown up Defining Function

F11020 S11010 = {θ = 0, θ′ = 0, s = 0} − F11122 ρ11020 = (θ4 + (θ′)4 + σ2)
1
4

F01102 S01102 = {θ′ = 0, θ′′ = 0, σ′ = 0} − F11122 ρ01102 = ((θ′)4 + (θ′′)4 + (σ′)2)
1
4

F10122 S10111 = {θ = 0, θ′′ = 0, σ′′ = 0} − F11122 ρ10122 = (θ4 + (θ′′)4 + (σ′′)2)
1
4

These three faces meet at F11122 and share edges with each other. By blowing

up the codimension 5 corner first, the order of blow up of these three faces does

not matter.

Next we blow up the codimension 2n+ 2 submanifold at which the lifts of the

three diagonals meet and the time variables vanish. Let

Sd3 = {z = z′, z′ = z′′, σ = 0, σ′ = 0, σ′′ = 0} − (F11122 ∪ F11020 ∪ F01102 ∪ F10111).

Sd3 is blown up parabolically in σ, σ′, and σ′′ creating the face Fd3 with defining

function

ρd3 = (|z − z′|4 + |z′ − z′′|4 + σ2 + (σ′)2 + (σ′′)2)
1
4 .

Now we blow up the diagonal faces corresponding to Fd2 in the left, right and

center copies of M2
0,h. These are as follows.

Face Submanifold to be blown up Defining Function

Fd20 Sd20 = {z = z′, σ = 0} − (F11122 ∪ F11020), ρd20 = (|z − z′|4 + σ2)
1
4

Fd020 Sd02 = {z′ = z′′, σ′ = 0} − (F11122 ∪ F01102) ρd02 = (|z′ − z′′|4 + (σ′)2)
1
4

Fd22 Sd22 = {z = z′′, σ′ = 0} − (F11122 ∪ F10122) ρd22 = (|z − z′′|4 + (σ′′)2)
1
4

The conic heat triple space has five additional boundary submanifolds.

Face Local defining set away from blow ups Defining Function

F10000 {x = 0} ρ100000

F01000 {x′ = 0} ρ010000

F00100 {x′′ = 0} ρ00100

F00010 {s = 0} ρ00010

F00001 {s′ = 0} ρ00001

Now we are ready to state and prove the composition rule for the conic heat

calculus.
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Theorem 2.11 Let A ∈ ΨA100,A010,A112,ka

0,h , and B ∈ ΨB100,B010,B112,kb

0,H with the lead-

ing index terms satisfying

β112 + α010 > 0, α112 + β100 > 0, −ka > 0, −kb > 0, β100 + α010 > −1.

Then, the composition B◦A is an element of ΨA100,B010,Γ112,k
0,H with Γ112 = A112+

B112 and k = (ka + kb).

Proof

Let ν be a smooth half density on M2
0,h. Then we may write A = κAν and B = κBν.

The composition of A and B is formally given by

κB◦A = (βC)∗ ((βR)∗(κAν)(βL)∗(κBν)) . (2.2)

In verifying the composition theorem, we will refer to (2.2) often. First, we

multiply both sides of (2.2) by ν. Using the fact that (βc)∗(βc)
∗(ν) = ν we have

κB◦Aν
2 = (βC)∗ ((βR)∗(κAν)(βL)∗(κBν)(βc)

∗(ν)) . (2.3)

Now we calculate the lift to M3
0,h of the smooth, nonvanishing half density ν

on M2
0,h. First, we determine the relationship between ν and the conic half density

µ on M2
+. Recall the conic heat space M2

0,h has five boundary faces with defining

functions ρ100, ρ010, ρ112, ρd2, and ρ001. In terms of these,

ν = (βh)
∗
(
(ρ100ρ010)

1−n
2 (ρ112)

− 2n+1
2 (ρd2)

−n+1
2 µ
)
.

Next, we compute the lifts of the defining functions on M2
0,h to the triple heat

space.
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Lifting map Defining function on M2
h Lift to M3

h

(βL)∗ ρ100 ρ10000ρ10122

(βL)∗ ρ010 ρ01000ρ01102

(βL)∗ ρ112 ρ11122ρ11020

(βL)∗ ρd2 ρd3ρd20

(βL)∗ ρ001 ρ00010ρ00011ρd22ρ10122

(βR)∗ ρ100 ρ01000ρ01102

(βR)∗ ρ010 ρ00100ρ10122

(βR)∗ ρ112 ρ11122ρ01102

(βR)∗ ρd2 ρd3ρd02

(βR)∗ ρ001 ρ00001ρ00011ρd22ρ10122

(βC)∗ ρ100 ρ10000ρ11020

(βC)∗ ρ010 ρ001000ρ01102

(βC)∗ ρ112 ρ11122ρ10122

(βC)∗ ρd2 ρd3ρd22

(βC)∗ ρ001 ρ00022ρ00011ρd22ρ10122

We will use the fact that

(βL)∗(µ)(βR)∗(µ)(βC)∗(µ) = µ2
3.

Here, µ2
3 is the smooth conic density on M0 ×M0 ×M0 × R+ × R+, so we may

assume

µ2
3 = dVcdtdt

′ = (xx′x′′)n−1dzdz′dz′′dtdt′.

A calculation of Jacobians gives the lift of µ2
3 to the triple heat space. First

note

(β3)
∗(x) = ρ11122ρ11020ρ10122ρ10000,

(β3)
∗(x′) = ρ11122ρ11020ρ01102ρ01000,

(β3)
∗(x′′) = ρ11122ρ10122ρ11020ρ00100.

In the Jacobian calculations we observe that the exponent of each defining function

is −1+ the number of space dimensions + twice the number of time dimensions
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in that defining function. This is because the blow ups in the t-directions are

parabolic while the other directions are blown up radially.

µ2
3 lifts to M3

0,h as follows

(β3)
∗(µ2

3) = (ρ11122)
3n−3((ρ11020)(ρ01102)(ρ10122))

2n+1(ρd3)
2n+3

((ρd20)(ρd02)(ρd22))
n+1((ρ10000)(ρ10000)(ρ10000))

n−1(ρ00022)ν
2
3 .

Here, ν2
3 is a smooth, nonvanishing density on M3

0,h. These calculations show

(βL)∗(ν)(βR)∗(ν)(βC)∗(ν) =

((ρ11122)(ρ11020)(ρ01102)(ρ10122))
3
2 (ρd3)

n+3
2 ((ρd20)(ρd02)(ρd22))

n+1
2 ρ00022ν

2
3 .

We use this result in to obtain

κB◦Aν
2 = (βC)∗((βR)∗(κA)(βL)∗(κB)((ρ11122)(ρ11020)(ρ01102)(ρ10122))

3
2 (2.4)

(ρd3)
n+3

2 ((ρd20)(ρd02)(ρd22))
n+1

2 (ρ00022)ν
2
3).

To use the push forward theorem of [21], we must write this as a b-density. On

the center copy of M2
0,h

bν2 = (ρ100ρ010ρ112ρd2ρ001)
−1ν2.

Then, we have
bν2 = (βc)∗(βc)

∗(ρ100ρ010ρ112ρd2ρ001)
−1ν2).

We observe

(βc)
∗ ((ρ100ρ010ρ112ρd2ρ001)

−1
)

=

((ρ10000)(ρ10000)
′′(ρ11020)(ρ01102)(ρ10122)(ρ11122)(ρd3)(ρd22)ρ00011)

−1.

So now in (2.4) we must multiply both sides by (βc)∗(βc)
∗ ((ρ100ρ010ρ112ρd2ρ001)

−1)
−1

to obtain

κB◦A
bν2 = (βC)∗[κ̃Aκ̃B((ρ10000)

−1((ρ10000))
−1 (2.5)
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(ρ11122)(ρ11020)(ρ01102)(ρ10122))
1
2 ((ρd3)(ρd20)(ρd02))

n+1
2 (ρd22)

n−1
2 ν2

3 ].

Here, we are using κ̃A and κ̃B to denote the lifts of κA and κB, respectively, to the

triple heat space, M3
h .

To use the push forward theorem, we must also change the density ν2
3 to a

b-density. We observe

bν2
3 = ((ρ11122)(ρ11020)(ρ01102)(ρ10122)(ρ10000)θ

′
0θ
′′
0(ρd3)(ρd20)(ρd02)(ρd22)τ0σ0σ

′
0)
−1
ν2

3 .

So, we now have

κB◦A
bν2 = (βC)∗[κ̃Aκ̃B((ρ11122)(ρ11020)(ρ01102)(ρ10122))

3
2 (2.6)

((ρd3)(ρd20)(ρd02))
n+3

2 (ρd22)
n+1

2 (ρ10000)σ0σ
′
0τ0

bν2
3 ].

Now, we may use the push forward theorem. The boundary faces F11020, F01102,

Fd20, Fd02, and F01000 are all mapped to the interior of M2
0,h by (βC)∗. The theorem

demands the quantity to be pushed forward be integrable with respect to the b-

density at these boundary faces. By hypothesis κA is smooth in the interior of

M2
0,h and has the following expansions on the boundary faces of M2

0,h

Face κA Index Set/Leading Order

F112 A112

F100 A100

F010 A010

Fd2 −n+3
2
− ka

F001 ∞
Then, by the previous calculations determining the lifts of the defining func-

tions of M2
0,h under (βL)∗ we have the following orders of κ̃A on M3

0,h.
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Face κ̃A Index Set/Leading Order

F11122, F11020 A112

F01102, F01000 A010

F10122, Fd22, F00010, F00011 ∞
Fd3, Fd20 −n+3

2
− ka

F10000 A100

F00100 0

The expansions and leading order terms of κB on M2
0,h are as follows.

Face κB Index Set/Leading Order

F112 B112

F100 B100

F010 B010

Fd2 −n+3
2
− kb

F001 ∞
Similarly, for κ̃B we have orders as follows.

Face κ̃B Index Set/Leading Order

F11122, F11010 B112

F01102, F01000 B010

F10122, Fd22, F00001, F00011 ∞
Fd3, Fd02 −n+3

2
− kb

F10000 B100

F00100 0

Now, recalling the formula,

κB◦A
bν2 = (βC)∗[κ̃Aκ̃B((ρ11122)(ρ11020)(ρ01102)(ρ10122))

3
2 ((ρd3)(ρd20)(ρd02))

n+3
2

(ρd22)
n+1

2 (ρ10000)ρ00010
bν2

3 ],

we see that the quantity on the right hand side to be pushed forward by (βc)∗ has

the following behavior on the boundary faces.
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Face Index Set/Leading Order

F11122 −3
2

+ A112 +B112

F11020 A112 +B100

F01102 A010 +B112

F10122, Fd22, F00010, F00001, F00011 ∞
Fd3 −n+3

2
− (ka + kb)

Fd20 −ka
Fd02 −kb
F10000 A100

F01000 A010 +B100 + 1

F00100 B010

The following table shows the leading order of the quantity to be pushed for-

ward and where the boundary faces of M3
0,h are pushed forward by (βC)∗ in M2

0,h.

M3
0,h Face M2

0,h Face or Interior Leading Order of Composition

F11122 F112 −3
2

+ α112 + β112

F11020 Interior α112 + β100

F01102 Interior β112 + α010

F10122 F112 ∞
Fd3 Fd2 −n+3

2
− (ka + kb)

Fd20 Interior −ka
Fd02 Interior −kb
Fd22 Fd2 ∞
F10000 F100 α100

F01000 Interior β100 + α010 + 1

F00100 F010 β010

F00010, F00001 Interior ∞
F00011 F001 ∞

Note that by hypotheses of the theorem,

α112 + β100 > 0, β112 + α010 > 0, −ka > 0, −kb > 0, and β100 + α010 > −1.

Therefore, the quantity to be pushed forward is integrable with respect to bν2
3 at
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F01102, F11020, Fd02, Fd20, and F01000. This allows us to apply the push forward

theorem using (βC)∗. The kernel of the composition κB◦A then pushes forward to

M2
0,h to have the following index sets and leading orders.

Face Index Set/Leading Order

F112 −3
2

+ A112 +B112

F100 A100

F010 B010

Fd2 −n+3
2
− (ka + kb)

F001 ∞
This completes the proof of the composition rule. We conclude that the com-

position B ◦ A is an element of ΨA100,B010,Γ112,k
0,H with Γ112 = −3

2
+ A112 + B112 and

k = (ka + kb).

♥

Parametrix Construction of Conic Heat Kernel

Since the first approximation to the conic heat kernel is an element of the calculus

we can use the composition rule to produce a parametrix for the heat operator with

error term vanishing to infinite order on F112, Fd2, and F001. As seen previously, the

first approximation for the heat kernel is of the form (ρ112)
−1(ρ100ρ

′
010)

−nH0(x, x
′, y, y′, t).

It has leading orders on M2
0,h as follows.

Boundary Face of M2
0,h Leading order

F112 −1 + ν0

F100 −n+ µ0

F010 −n+ µ0

Fd2 −n
F001 ∞

The density factor has not yet been included. The lift of the conic half density

to the heat space is (βh)
∗(µ) = (ρ100ρ010)

n−1
2 (ρ112)

2n+1
2 (ρd2)

n+1
2 ν. Therefore, on the

heat space the model operator is

(ρ100ρ010)
−n−1

2 (ρ112)
2n−1

2 (ρd2)
n+1

2 H0ν.
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As an element of the heat calculus the kernel κ0 of the first parametrix has the

following leading orders at the boundary faces of M2
0,h.

Face Leading Order

F112 −3
2

+ 2n+1
2

+ ν0

F100
−n−1

2
+ µ0

F010
−n−1

2
+ µ0

Fd2 −n+3
2
− (−2)

F001 ∞

Theorem 2.12 Let (M0, g0) be a compact manifold with isolated conic singularity,

with geometric Laplacian ∆ associated to the Hermitian vector bundle (E,∇) over

(M0, g0). Assume the bundle retracts onto a bundle over the cross section, (Y, h).

Then there exists H ∈ ΨE100,E010,E112,−2
0,H satisfying

(∂t + ∆)H(z, z′, t) = 0, t > 0,

H(z, z′, 0) = δ(z − z′),

where ∆ is the Friedrich’s extension of this geometric Laplacian. The index

sets E100, E010 have leading order −1−n
2

+ µ0 and the index set E112 has leading

order 2n−1
2

+ ν0. Here, µ0 and ν0 are determined by the eigenvalues of the induced

geometric Laplacian on the cross section of M, the dimension n of M , and the

rank of the bundle.

Proof

The first order approximation is defined locally near the boundary faces of M2
0,h

as above and on the interior by the lift of the Euclidean heat kernel to M2
0,h, using

smooth cut-off functions to patch these approximations together. The result is an

element of the heat calculus, H1. Applying (∂t + ∆) to H1 gives

(∂t + ∆)H1 = EH1 =: K1.
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Here, E is the error term seen previously. As an element of the heat calculus, K1

has leading orders

Face Leading Order

F112 −3
2

+ 2n−1
2

F100
−1−n

2
+ ν0

F010
−1−n

2
+ ν0

Fd2 −n+3
2
− (−2)

F001 ∞
Motivated by Duhamel’s Principle, let

H2 = H1 −H1K1.

By the composition formula, H2 has leading orders

Face Leading Order

F112 −3
2

+ 2n−1
2

+ 2n+1
2

F100
−1−n

2
+ ν0

F010
−1−n

2
+ ν0

Fd2 −n+3
2
− (−2− 2)

F001 ∞
Continuing this construction, let

H3 = H1 −H1 ∗K1 +H1 ∗K1 ∗K1,

Hj = H1 +

j∑
i=1

(−1)iH1(K1)
i.

The last term in the sum has leading orders

Face Index Set/Order of Vanishing

F112 −3
2

+ 2n−1
2
j + 2n+1

2

F100
−1−n

2
+ ν0

F010
−1−n

2
+ ν0

Fd2 −n+3
2

+ 2(j + 1)

F001 ∞
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Borel summation gives existence of H∞ with asymptotic expansion such that

H∞ = lim
j→∞

Hj.

H∞ solves the heat equation up to infinite order on M2
0,h. Let H be the full conic

heat kernel. Then, H − H∞ = K vanishes to infinite order at the F112, Fd2, and

F001 boundary faces of M2
0,h, has a polyhomogeneous expansion up to F100 and

F010 and vanishes to infinite order at t = 0. Parabolic regularity implies that K is

smooth on the interior of M2
0,h and consequently is an element of the conic heat

calculus. The full heat kernel is

H = H∞ +K.

By construction, H is an element of the heat calculus, H = κν with κ having

leading orders

Face κ Leading Order

F112 −3
2

+ 2n+1
2

F100
−1−n

2
+ ν0

F010
−1−n

2
+ ν0

Fd2 −n+3
2
− (−2)

F001 ∞
This completes our construction of the conic heat kernel. For a detailed study

of the special case of the scalar heat kernel on the exact cone over (Y, h), see

appendix A.

♥

2.13 AC Heat Kernel

Let Z̄ be a compactified ac space with boundary defined by {x = 0} and local

coordinates (x, y) near the boundary. Let ∆z be the Friedrich’s extension of a

geometric Laplacian on Z. The heat kernel for (∂t + ∆z) has the usual behavior

away from the boundary of Z̄ and at t = 0. The interesting behavior occurs near
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the boundary of Z̄. Our first approximation for the ac heat is the Euclidean heat

kernel lifted to a neighborhood of the boundary in Z̄×Z̄×R+. Recall the Euclidean

heat kernel for Rn,

G(z, z′, t) = (4πt)−
n
2 e−

|z−z′|2
2t .

Here the coordinate z = (r, y) has not been compactified. With the compacti-

fication of Z, x = 1
r

and in the local coordinates, (x, y, x′, y′, t) on Z̄2
+ near the

boundary of Z̄ the Euclidean heat kernel has the following form

G(x, y, x′, y′, t) = (4πt)−
n
2 exp

(
−
(
| 1
x
− 1

x′
|2 + |y − y′|2

)
2t

)
.

This motivates blowing up

S110 = {(x, y, x′, y′, t) : x = 0, x′ = 0}.

In the projective coordinates s = x
x′
, s′ = x′ the Euclidean heat kernel is

G(s, y, s′, y′, t) = (4πt)−
n
2 exp

(
−
(
| s−1
ss′
|2 + |y − y′|2

)
2t

)
.

This motivates a second blow up at s = 1, along the submanifold where the

diagonal in Z̄ × Z̄ meets the first blown up face

S220 = {(x, y, x′, y′, t) : x = 0, x′ = 0, y = y′}.

2.13.1 The AC Heat Space

As motivated above, the ac heat space is constructed from Z̄×Z̄×R+ by performing

three blow ups.

First we construct the ac double space, Z̄2
sc.

4 This construction comes from [12].

We take Z̄ × Z̄ and blow up the codimension two corner {x = 0, x′ = 0} = (∂Z̄)2.

This is the b-blow up of Z̄ × Z̄, Z̄2
b . The new face created by this blow up is F110

4The subscript “sc” in Z̄2
sc is for scattering because ac spaces are also called scattering spaces.



CHAPTER 2. HEAT KERNELS 63

The diagonal

x=0

x’=0

The AC Double Space

F_110 F_220

F_100

F_010

Figure 2.4: The ac double space.

with defining function

ρ110 = (x2 + (x′)2)
1
2 .

We have new coordinates (ρ110, θ, θ
′, y, y′) near the blow up with x = (ρ110)θ,

x′ = (ρ110)θ
′, where θ, θ ∈ S1 and θ2 + (θ′)2 = 1. Next we blow up the intersection

of the diagonal with this face, creating the face F220 with defining function

ρ220 = ((ρ110)
2 + (θ − θ′)2 + |y − y′|2)

1
2 .

The result of these two blow ups is the ac double space,

Z̄2
sc = [Z̄2

b ; ∂diagb] =
[
[Z̄ × Z̄; ∂Z̄ × ∂Z]; ∆(Z × Z) ∩ F110

]
.

Finally, we take Z̄2
sc×R+ and blow up the diagonal at t = 0, creating the face Fd2

with defining function

ρd2 = (|z − z′|4 + t2)
1
4 for z, z′ /∈ F110, F220.

The ac heat space, Z̄2
h, has six boundary faces described in the following table.
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F_d2

t=0
F_001

x=0
F_100

x’=0
F_010

t to infinity

The AC Heat Space

t=0
F_001

F_110 F_110

F_220

Figure 2.5: The ac heat space.

Boundary face of Z̄2
h Blow up of/ Locally defined by

F110 Blowup of {x = 0, x′ = 0}
F220 Blowup of {y = y′} ∩ F110

F100 {x = 0} − F110, F220

F010 {x′ = 0} − F110, F220

Fd2 Blowup of {x = x′, y = y′, t = 0} − F220

F001 {t = 0} − Fd2
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2.13.2 AC Heat Calculus

Elements of the ac heat calculus are distributional section half densities of Z with

polyhomogeneous expansions up to the boundary faces of the ac heat space and

specified leading order at each boundary face. Let µ be a smooth, non-vanishing

half density on Z̄ × Z̄ × R+ and let ν be a smooth, non-vanishing half density on

the ac heat space.

Definition 2.14 For any k ∈ R and index sets E110, E220, A is an element of the

ac heat calculus ΨE110,E220,k
ac,H if the following hold.

1. A ∈ A− 1
2
+E110

phg (F110).

2. A ∈ A−n+2
2

+E220

phg (F220).

3. A vanishes to infinite order at F001, F100, and F010.

4. A ∈ ρ−
n+3

2
−k

d2 C∞(Fd2).

As with the conic heat calculus, we view elements of the ac heat calculus

as Schwartz kernels of operators acting on sections of Z. To prove the com-

position rule we must construct the ac triple heat space to have partial blow

down/projection maps to three identical copies of the ac heat space as well as full

blow down/projection maps to identical copies of Z̄2
+.

The AC Triple Heat Space

As with the construction of the ac double space, we begin with three copies of

Z̄ and include the time variables after performing a sequence of blow ups. In a

neighborhood of the boundary in each copy of Z̄ we have the local coordinates

(x, y), which provide the local coordinates (x, y, x′, y′, x′′, y′′) on Z̄3. First we blow

up the codimension three corner defined by {x = 0, x′ = 0, x′′ = 0}. We call this

face F11100 with defining function

ρ11100 = (x2 + (x′)2 + (x′′)2)
1
2 .
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Next, we blow up the three codimension two corners corresponding to the F110

faces in each of the three copies of the ac heat space. These faces are as follows.

Face Submanifold to be blown up Defining Function

F11000 S11000 = {x = 0, x′ = 0} − F11100 ρ11000 = (x2 + (x′)2)
1
2

F01100 S01100 = {x′ = 0, x′′ = 0} − F11100 ρ01100 = ((x′)2 + (x′′)2)
1
2

F10100 S10100 = {x = 0, x′′ = 0} − F11100 ρ10100 = ((x)2 + (x′′)2)
1
2

The next step in constructing the ac triple heat space is to blow up the codi-

mension 2n+ 1 corner where the diagonals meet F11100. After the F11100 blow up,

we have coordinates (θ, θ′, θ′′, y, y′, y′′, ρ11100), with

x = (ρ11100)θ, x′ = (ρ11100)θ
′, x′′ = (ρ11100)θ

′′, (θ)2 + (θ′)2 + (θ′′)2 = 1.

Using these coordinates, we next blow up

S22200 = {θ = θ′ = θ′′, y = y′ = y′′, r0 = 0}.

The face created by this blow up is called F22200 with defining function

ρ22200 = ((θ − θ′)2 + (θ′ − θ′′)2 + |y − y′|2 + |y′ − y′′|2 + r2
0)

1
2 .

After this we blow up the three codimension n corners corresponding to the

F220 faces in the three copies of the double heat space. These are as follows.

Face Submanifold to be blown up Defining Function

F22000 S22000 = {θ = 0, θ′ = 0, y = y′} ρ22000 = (θ2 + (θ′)2 + |y − y′|2) 1
2

F02200 S02200 = {θ′ = 0, θ′′ = 0, y′ = y′′} ρ02200 = ((θ′)2 + (θ′′)2 + |y′ − y′′|2) 1
2

F20200 S20200 = {θ = 0, θ′′ = 0, y = y′′} ρ20200 = ((θ)2 + (θ′′)2 + |y − y′′|2) 1
2

We have now constructed the ac triple space, Z̄3
sc. We next introduce the time

variables and perform the parabolic temporal diagonal blow ups. We must first

blow up the codimension 2 corner of R+ × R+ to preserve symmetry. Let

T 2
0 = [R+ × R+; t = t′ = 0],

where this is a standard radial blow up. The defining function for the blow up of
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{t = t′ = 0} is ρ00011, which we call t′′ because it plays the role of the third time

variable. We now take Z3
sc × T 2

0 and blow up the temporal diagonal faces. First,

we blow up the codimension 2n+ 3 triple diagonal, Sd3, defined by

{z = z′ = z′′, t′′ = 0}.

The defining function of this face is ρd3,

ρd3 = (|z − z′|4 + |z − z′′|4 + (t′′)2)
1
4 .

Next, we blow up the three temporal diagonals corresponding to the diagonal faces

in the three copies of the double heat space. These are as follows.

Face Submanifold to be blown up Defining Function

Fd20 Sd20 = {z = z′} ρd20 = (|z − z′|4 + t2)
1
4

Fd02 Sd02 = {z′ = z′′} ρd02 = (|z′ − z′′|4 + (t′)2)
1
4

Fd22 Sd22 = {z = z′′} ρd22 = (|z − z′′|4 + (t′′)2)
1
4

This completes our construction of the ac triple heat space.

Theorem 2.15 Let A ∈ ΨA110,A220,ka

ac,H , and B ∈ ΨB110,B220,kb

ac,H .

Then, the composition B ◦ A is an element of ΨA110+B110,A220+B220,ka+kb

ac,H .

Proof

To prove this theorem, as with the conic case, we work with the equation,

κB◦Aν = (βC)∗ ((βR)∗(κAν)(βL)∗(κBν)) . (2.7)

Multiplying both sides of (2.7) by ν and using the fact that (βc)∗(βc)
∗(ν) = ν

we have

κB◦Aν
2 = (βC)∗ ((βR)∗(κAν)(βL)∗(κBν)(βc)

∗(ν)) . (2.8)

We next calculate the lifts of the defining functions and half densities from the

heat space to the triple heat space. A calculation gives the half density on the

heat space, ν, in terms of the half density, µ, on Z̄2
+
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ν = (βh)
∗
(
(ρ110)

− 1
2 (ρ220)

−n
2 (ρd2)

−n+1
2 µ
)
.

As with the conic triple heat space, the ac triple heat space has partial blow

down/projection maps βL, βR, and βC to three identical copies of Z̄2
h. If we denote

the three copies of Z̄ by Z̄, Z̄ ′, Z̄ ′′, and the three time variables (t, t′, t′′) where t′′

is from the blow up of R+ × R+ then the three copies of Z̄2
h are as follows.

Copy of Z̄2
h Associated to in Z̄3

h

Left Z̄ × Z̄ ′ × R+
t

Right Z̄ ′ × Z̄ ′′ × R+
t′

Center Z̄ × Z̄ ′′ × R+
t′′

Next, we compute the lifts of the defining functions for the boundary faces of

the heat space to the triple heat space.

Lifting map Defining function on Z̄2
h Lift to Z̄3

h

(βL)∗ ρ100 ρ10000ρ10100

(βL)∗ ρ010 ρ01000ρ01100

(βL)∗ ρ110 ρ11100ρ11000

(βL)∗ ρ220 ρ22200ρ22000

(βL)∗ ρd2 ρd3ρd20

(βL)∗ ρ001 ρ00010ρ00011ρd22

(βR)∗ ρ100 ρ01000ρ01100

(βR)∗ ρ010 ρ00100ρ10100

(βR)∗ ρ110 ρ11100ρ01100

(βR)∗ ρ220 ρ22200ρ02200

(βR)∗ ρd2 ρd3ρd02

(βR)∗ ρ001 ρ00001ρ00011ρd22

(βC)∗ ρ100 ρ10000ρ11000

(βC)∗ ρ010 ρ001000ρ01100

(βC)∗ ρ110 ρ11100ρ10100

(βC)∗ ρ220 ρ22200ρ20200

(βC)∗ ρd2 ρd3ρd22

(βC)∗ ρ001 ρ00022ρ00011ρd22



CHAPTER 2. HEAT KERNELS 69

Then, we have

(βL)∗(ν) = (βL)∗((ρ110)
− 1

2 (ρ220)
−n

2 (ρd2)
−n+1

2 µ).

Next, we will use the fact that

(βL)∗(µ)(βR)∗(µ)(βC)∗(µ) = µ2
3.

Here, µ2
3 is a smooth density on Z̄ × Z̄ × Z̄ × R+ × R+, so we may assume

µ2
3 = dzdz′dz′′dtdt′.

A Jacobian calculation gives the lift of µ2
3 to the triple heat space. First note

(β3)
∗(x) = (ρ11100)(ρ11000)(ρ10100)(ρ10000),

(β3)
∗(x′) = (ρ11100)(ρ11000)(ρ01100)(ρ01000),

(β3)
∗(x′′) = (ρ11100)(ρ01100)(ρ10100)(ρ00100).

This implies

(β3)
∗(µ2

3) = (ρ11100)
2(ρ11000ρ01100ρ10100)(ρ22000ρ02200ρ20200)

n

(ρ22200)
2n+1(ρd20ρd02ρd22)

n+1ρ2n+3
d3 (t′′)ν2

3 .

Here, ν2
3 is a smooth, nonvanishing density on the triple heat space, Z̄3

h. Com-

bining this with the above lifts, we arrive at the following formula

(βL)∗(ν)(βR)∗(ν)(βC)∗(ν) = (ρ11100)
1
2 (ρ10100ρ01100ρ10100)

1
2

(ρ22000ρ02200ρ20200)
n
2 (ρ22200)

n+1
2 (ρd3)

n+3
2 (ρd20ρd02ρd22)

n+1
2 (t′′)ν2

3 .

To use the push forward theorem, we need to write each of these in terms of
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b-densities. First, we have on the center copy of Z̄2
h

bν2 = (ρ100ρ010ρ110ρ220ρ001ρd2)
−1ν2.

Then, we have

bν2 = (βc)∗(βc)
∗((ρ100ρ010ρ110ρ220ρ001ρd2)

−1ν2).

We observe

(βc)
∗ ((ρ100ρ010ρ110ρ220ρ001ρd2)

−1
)

=

(ρ10000ρ00100ρ11000ρ01100ρ10100ρ11100ρ22200ρ02200ρ20200ρd3ρd22ρ00011)
−1.

So now we multiply both sides of (2.8) by (βc)∗(βc)
∗(ρ100ρ010ρ110ρ220ρ001ρd2)

−1)

and inside the right side of (2.8) we have

(ρ11100ρ11000ρ01100ρ10100)
− 1

2 (ρ22000ρ02200ρ22200)
n
2 (ρ20200)

n−2
2 ,

(ρd3)
n+1

2 (ρd20ρd02)
n+1

2 (ρd22)
n
2 (ρ10000ρ00100)

−1ν2
3 .

To use the push forward theorem, we must change the density ν2
3 to a b-density.

We observe

bν2
3 = (ρ11100ρ11000ρ01100ρ10100ρ22200ρ22000ρ02200ρ20200

ρ10000ρ01000ρ00100ρd3ρd20ρd02ρd22ρ00011ρ00010ρ00001)
−1ν2

3 .

So, we now have for the composition formula

(βc)∗(κ̃Aκ̃B(ρ11100ρ11000ρ01100ρ10100)
1
2 (ρ22200ρ22000ρ02200)

n+2
2

(ρ20200)
n
2 (ρd3ρd20ρd02)

n+3
2 (ρd22)

n+1
2 ρ01000ρ00011ρ00010ρ00001(

bν2
3)).

We observe the following orders of κ̃A on Z̄3
h.
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Face κ̃A Index Set/Leading Order

F11100 −1
2

+ A110

F11000 −1
2

+ A220

F01100, F10100, F02200, F20200, Fd22 ∞
F22200, F22000 −n+2

2
+ A220

Fd3, Fd20 −n+3
2
− ka

F10000, F01000, F00100, F00010, F00011 ∞
Similarly, for κ̃B we have orders as follows.

Face κ̃B Index Set/Leading Order

F11100 −1
2

+B110

F01100 −1
2

+B220

F11000, F10100, F22000, F20200, Fd22 ∞
F22200, F02200 −n+2

2
+B220

Fd3, Fd02 −n+3
2
− kb

F10000, F01000, F00100, F00010, F00011 ∞
Now, recalling the formula:

(βc)∗(κ̃Aκ̃B(ρ11100ρ11000ρ01100ρ10100)
1
2 (ρ22200ρ22000ρ02200)

n+2
2

(ρ20200)
n
2 (ρd3ρd20ρd02)

n+3
2 (ρd22)

n+1
2 ρ01000ρ00011ρ00010ρ00001(

bν2
3))

We see that the quantity on the right hand side to be pushed forward by (βc)∗

has the following indices on the boundary faces.

Face Index Set/Leading Order

F11100 −1
2

+ A110 +B110

F11000, F01100, F10100, F22000, F02200, F20200 ∞
F22200 −n+2

2
+ A220 +B220

Fd3 −n+3
2
− (ka + kb)

Fd20, Fd02, Fd22 ∞
F10000, F01000, F00100, F00010, F00001, F00011 ∞

The push forward under (βc)
∗ sends the boundary faces of Z̄3

h to Z̄2
h as follows.
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Z̄3
h Face Boundary face of Z̄2

h or Interior

F11100 F110

F10100 F110

F22200, F20200 F220

Fd3, Fd22 Fd2

F10000 F100

F00100 F010

F00011 F001

F11000, F01100 F22000, F02200, Interior

Fd20, Fd02, F01000, F00010, F00001 Interior

The quantity to be pushed forward is integrable with respect to bν2
3 at the faces

that are mapped to the interior, so we may apply the push forward theorem (cf

[21]) to arrive at the result of the composition rule. The kernel, κB◦A will have the

following polyhomogeneous index sets and leading orders on Z̄2
h.

Face of Z̄2
h Index Set/Leading Order

F110 −1
2

+ A110 +B110

F220 −n+2
2

+ A220 +B220

Fd2 −n+3
2
− (ka + kb)

F100 ∞
F010 ∞
F001 ∞

This concludes the proof of the composition rule: B ◦ A is an element of

ΨA110+B110,A220+B220,ka+kb

ac,H .

♥

Now, we may give a precise description of the full heat kernel for the ac space.

Theorem 2.16 Let (Z, gz) be an asymptotically conic manifold with cross section

(Y, h) at infinity. Let (E,∇) be a Hermitian vector bundle over (Z, gz) that retracts

to a bundle over (Y, h). Let ∆ be a geometric Laplacian on (Z, gz) associated to

the bundle (E,∇). Then there exists H ∈ ΨE110,E220,−2
ac,H satisfying:

(∂t + ∆)H(z, z′, t) = 0, t > 0,
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H(z, z′, 0) = δ(z − z′).

Moreover, H vanishes to infinite order at F110 and is smooth up to F220.

The proof of this theorem is identical to that in the conic case; we begin with

the first approximation, use Duhamel’s principle and the composition formula to

construct a parametrix up to infinite order. We then solve away the error obtaining

the ac heat kernel whose leading orders on the boundary faces of the ac heat space

are given by those of the first approximation.

♥



Chapter 3

Heat Kernel Convergence

3.1 Introduction

The preliminary result in the first chapter was convergence of the spectrum of the

scalar Laplacian under asymptotically conic convergence. In this chapter we prove

the main result: the asymptotic behavior under ac convergence of the heat kernels

for the geometric Laplacians. We construct the asymptotically conic convergence

(acc) heat space and acc heat calculus. The acc heat space contains as boundary

faces and submanifolds the heat spaces studied in chapter two, while the acc heat

calculus is constructed using the corresponding heat calculi from chapter two. We

lift the heat operators ∂t + ∆ε to the acc heat space and construct the acc model

heat kernel as an element of the acc heat calculus. The acc model heat kernel

describes the asymptotic behavior of the heat kernels under ac convergence up to

an error term of order O(εt∞) as ε, t→ 0.

3.2 Preliminary Geometric Constructions

3.2.1 The ACC Single Space Revisited

The construction of the acc single space here is equivalent to the definition in chap-

ter one. The construction of the more complicated acc double space and acc heat

74
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epsilon =1

epsilon=0

ACC Single Space Construction Step 1

(M, g_1)

(M, g_epsilon)

(M_0 , g_0)

Figure 3.1: Construction of the acc single space: Sc

space are modeled after this construction of the single space as a compactification

of M ×M × (0, 1]ε using resolution blow ups.

Let

S0 =
⋃
ε>0

Mε ∪M0
0 ,

where for each ε > 0, Mε is the resolution blow up of M0 by Z as in chapter one.

S0 is a smooth manifold with metric gε on each fixed ε slice induced by the metrics

on M0 and Z. The completion with respect to the metric dε2 + gε is a singular

space which we call Sc, having one singular point P at ε = 0 at the cone point

p ∈M0.

We write Sc − {P} as a union of open sets,

Sc − {P} = A ∪B,
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where

A =
⋃
ε>0

M0,ε and B =
⋃
ε>0

Z1/ε × {ε}.

These sets overlap:

A ∩B =
⋃
ε>0

(Z1/ε − Z̄1).

The acc single space S is the compactification of Sc − {P} :

S = Z̄ × [0, 1)τ ∪ψ (Sc − {P})

where ψ is a patching map from Z̄ × (0, 1) → S0 defined as follows.

First, we write Z̄ as an overlapping union of open sets, Z̄ = Z2 ∪ (Z̄ − Z̄1),

where Z1 and Z2 were defined above as ZR for R = 1, 2 respectively. For z ∈ Z2

and τ ∈ (0, 1) define

ψ(z, τ) = (z, ε = τ) ∈
⋃
ε>0

Mε × {ε} ⊂ A.

For z /∈ Z̄1 and τ ∈ (0, 1) we may write z = (x, y) with y ∈ Y and x = 1/ρ < 1 for

ρ > 1, then

ψ(x, y, τ) = ((xχ(x) + (1− χ(x))τ, y, τx) = (r, y, ε) ∈
⋃
ε>0

M0,ε = B,

where χ is a smooth cutoff function with

χ(x) =

1, x ≥ 1

0, x < 1/2

Note that x = 0 defines the boundary Y of Z̄ and when x < 1/2, r = τ and

ε = τx. With this construction S is a manifold with one corner of codimension

two having two hypersurface boundary faces F0 = M0 and F1 = Z̄ that meet

at the codimension two corner Y. The hypersurface boundary faces have defining

functions ρ0 = x, ρ1 = τ. The radial distance r on M0 and the parameter ε are
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Asymptotically Conic Convergence Single Space

(M, g_1)

(M, g_e)

(Z, g_z)
(M_0 , g_o)

(Y, h)

e=1

e=0

Figure 3.2: Acc single space

related by

r = τ, ε = τx.

For τ > 0, ψ is a diffeomorphism and in the region x < 1, ψ is a standard radial

blowdown map.

One of the key features of the acc single space is that it contains a submanifold

diffeomorphic to a truncated cone over Z̄. The map ψ identifies the interior of Z̄

with slices of S at ε > 0, and the boundary of Z̄ with slices of the F0 boundary face.

In the conic submanifold τ acts as the radial variable and F1 is the boundary of this

submanifold at τ = 0. The more complicated acc double space and acc heat space
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ACC Single Space:  Resolution Blow Up

(M, g_1)

(M, g_e)

(Z, g_z)
(M_0 , g_o)

(Y, h)

e=1

e=0

tau

Conic Submanifold:  Cone over Z

Figure 3.3: Acc single space: submanifold diffeomorphic to truncated cone over Z̄.

are modeled after the single space and also contain submanifolds diffeomorphic to

a truncated cone over a manifold with corners.

3.2.2 The ACC Double Space

We take

(M ×M × (0, 1]ε) ∪ (M0 ×M0 × {ε = 0})

and perform a resolution blow up at ε = 0 along the singular set in each copy of

M0 and at the intersection of these. This is analogous to the resolution blow up
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used to create the acc single space. The result is a manifold with four hypersurface

boundary faces at ε = 0 called the acc double space D. The boundary faces are

described in the following table. Note that in the case Z̄ is a disk, these are

standard radial blow ups with the first at the intersection of the singular sets and

the next two at the single set in each copy of M0.

Face Geometry of Face Defining Function

F1 Z̄2
b = [Z̄ × Z̄; (∂Z̄ × ∂Z̄)] ρ1

F0 M2
b = [M0 ×M0; {x = 0, x′ = 0}] ρ0

F10 Z̄ ×M0 ρ10

F01 M0 × Z̄ ρ01

The edges of these boundary faces meet in corners described in the following

table. Below SN+(X) is the inward pointing spherical normal bundle of X.

Corner Geometry of Corner Defining Function Contained in Faces

C111 N+(Y × Y ) ρ111 F1 and F0

C110 Y × Z̄ ρ110 F1 and F01

C101 Z̄ × Y ρ101 F1 and F10

C001 M0 × Y ρ001 F0 and F01

C010 Y ×M0 ρ010 F0 and F10

In figure 3.4, F1 looks like an igloo attached to tubes F01 and F10 above F0. The

boundary faces are color coded. In the picture there appear to be four distinct F0

but this is a dimensional artifact.

Like the single space, the double space contains a submanifold diffeomorphic

to a truncated cone over a manifold with corners. In this case, the link of the cone

is Z̄2
b , the b-blow up of Z̄. Recall the b-blow up of Z̄,

Z̄2
b = [Z̄ × Z̄; (∂Z̄)× (∂Z̄)].

Boundary face of Z̄2
b Geometry of Face

Z11 SN+(Y × Y )

Z10 Y × Z̄

Z01 Z̄ × Y

The acc double space contains for each ε > 0 a submanifold diffeomorphic to
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epsilon axis

F_1

F_01 F_10

F_0

C_111

C_101

C_110

C_001
C_010

The ACC Double Space

epsilon=0 faces

Figure 3.4: The acc double space.
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the interior of Z×Z in M×M×{ε}. The interior of the link of the cone lies in the

region of D with ε > 0. The boundary faces of the link of the cone are contained

in F0 near the corners of this face. The Z11 boundary of Z̄2
b lies in a neighborhood

at ε = 0 of the C111 corner. The Z10 and Z01 boundary faces of Z̄2
b lie respectively

in F0 in a neighborhood of the C110 and C101 corners.

Due to the different geometries there are no global coordinates on D. Instead

we consider local coordinates in different regions of D. For each (M, gε) we may

in a neighborhood V ⊂ U define the coordinate x = ε/(φ−1
ε )∗r where r = 0

defines the boundary of Z̄. Note that these coordinates are only valid on the

neighborhood V and that in this neighborhood, ε < x < x1. These coordinates

induce local coordinates (x, y, x′, y′, ε) on a neighborhood in D. From these we

define the following projective coordinates

(s, y, s′, y′, η) : s =
x

x′
, s′ = x′, η =

ε

x′
.

These coordinates are valid away from F01. In these coordinates, η = 0 at F0 and

F10. F1 is defined by s′ = 0. It will be useful to express the geometric Laplacians

for (M, gε), (Z, gZ), and (M0, g0) in these projective coordinates. We denote these

geometric Laplacians respectively by ∆ε, ∆Z , and ∆0. In projective coordinates,

∆ε = (s′)−2(∂2
s + s−2(∆y + lot)).

Here, we have used ∆y to denote the induced geometric Laplacian on (Y, h) and

lot for lower order terms. Similarly, we have

∆Z = (η)2(∂2
s + s−2(∆y + lot)) = ε2(s′)−2(∂2

s + s−2(∆y + lot)).

Finally, for the conic Laplacian we have

∆0 = (s′)−2(∂2
s + s−2(∆y + lot)).

These calculations and the construction of the acc double space will be helpful

in understanding the acc heat space, which we now introduce.
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3.3 The Asymptotically Conic Convergence (ACC)

Heat Space

Analogous to the acc single and double spaces, the acc heat space is a compactifi-

cation of M ×M × R+ × (0, 1]ε as a manifold with corners. We take

(
M ×M × R+ × (0, 1]ε

)
∪
(
M0 ×M0 × R+ × {ε = 0}

)
and perform a resolution blow up along the singular set in each copy of M0 and at

the intersection of these at t = 0, where the t direction is parabolically blown up.

This is analogous to the resolution blow up in the acc double space construction.

This creates the faces F11
∼= PN+(Z̄ × Z̄), F01

∼= M0 × Z̄, and F10
∼= Z̄ ×M0. We

next perform standard radial and parabolic blow ups. Inside F11 = PN+(Z̄ × Z̄)

we perform a standard radial blow up at the codimension two corner ∂Z̄ × ∂Z̄

creating the corner C1111
∼= SN+(Y × Y ). Next, we blow up the diagonal in F11.

Let σ = t/(ε2). We blow up the diagonal in Z × Z at σ = 0 parabolically in the σ

direction. The resulting corner we call C1d2 and is diffeomorphic to the parabolic

normal bundle of the diagonal in Z × Z.

For each ε > 0, we blow up t parabolically the diagonal in M × M × R+
t .

The corners created by these blow ups are Cεd2. Finally, at ε = 0 we blow up

t parabolically the diagonal at t = 0 away from the previously blown up faces.

This final blow up creates the corner C0d2 which is diffeomorphic to the parabolic

normal bundle of the diagonal in M0 ×M0 and completes our construction of the

acc heat space.

The boundary faces of the acc heat space are described in the following table.

∆(X) is the diagonal in X × X. Z̄2
b,h is the b-heat space of Z̄, M2

0,h is the conic

heat space for M0, and M2
ε,h is the heat space for (M, gε). The first four boundary

faces occur at ε = 0, while the last two occur at t = 0. The face F001 is the acc

double space in which the diagonal has been blown up t-parabolically.
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Face Geometry of Face Defining Function

F11 Z̄2
b,h ρ11

F00 M2
0,h ρ00

F10 Z̄ ×M0 × R+ ρ10

F01 M0 × Z̄ × R+ ρ01

F001 D −∆(D) ∪ PN+(∆(D)) ρ001

Fε M2
ε,h ρε

The boundary faces of the acc heat space meet in corners described in the

following table. We use X2
b to denote the b-blowup of X.

Corner Geometry of Corner Contained in H boundary faces

C1110 PN+(Y × Y ) F11, F00, F001

C1111 Z̄2
b −∆(Z) F11, F001

C1d2 PN+(∆(Z)) F11, F001

C1101 Z × Y × R+
σ F11, F01, F001

C1110 Y × Z × R+
σ F11, F10, F001

C0010 Y ×M0 × R+
t F00, F10

C0001 M0 × Y × R+
t F00, F01

C0d2 PN+(∆(M0)) F00, F001

C001 (M0)
2
b −∆(M0) F00, F001

Cεd2 PN+(∆(M)) Fε, F001

Cε1 M ×M −∆(M) Fε, F001

As with the acc single and double spaces, the acc heat space contains a sub-

manifold diffeomorphic to the truncated cone over a manifold with corners; in this

case the link of the cone is Z̄2
b,h. The conic submanifold of H has radial variable

ρ = ρ11, the defining function for F11, the boundary of the conic submanifold.

Note that ε lifts to the acc heat space via

β∗ : M ×M × R+ × (0, 1]ε ∪M0 ×M0 × R+ × {ε = 0}

as

β∗ε = ρ11ρ00ρ10ρ01.
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C1101
C1110

C001
C001

F10

F01

F11

F00

time axis

epsilon axis

ACC Heat Space:  Epsilon = 0 faces Sketch

Figure 3.5: Schematic diagram of acc heat space ε = 0 faces and corners.
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Z_d2

t=0
Z_001

x=0
Z_100

x’=0
Z_010

t to infinity

t=0
Z_001

Z_110

The Asymptotically Conic b-Heat Space

Figure 3.6: The ac b-heat space, Z̄2
b,h.
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So ε is not a defining function for any of these faces in the acc heat space. The

interior of the link of the cone is at ε > 0, while the boundary faces of the link of

the cone each correspond to a corner in F00. Z̄
2
b,h has five boundary faces described

below with the corresponding F00 corners.

Boundary face of Z̄2
bh Geometry of face Corresponding H corner in F00

Z110 N+(Y × Y )× R+ C1110

Z100 Y × Z × R+ C0010

Z010 Z × Y × R+ C0001

Z001 Z × Z −∆(Z) C001

Zd2 PN+(∆(Z)) C0d2

We are now equipped to introduce the acc heat calculus, a parameter dependent

heat operator calculus defined on the acc heat space.

3.4 The ACC Heat Calculus

The acc heat calculus incorporates the heat operator calculi studied in chapter two.

Let Ψk
ε,H be the heat calculus of order k for the smooth compact manifold (M, gε).

As defined in chapter two, Ψk,E110

b,H is the b-heat calculus of order k consisting of

Schwartz kernels with index set E110 at F110, and Ψk,E112,E100,E010

0,H is the conic heat

calculus of order k consisting of kernels with index sets E112, E100, E010 at F112,

F100, F010, respectively. The acc heat calculus consists of kernels that restrict on

each ε slice of H to an element of Ψk
ε,H and which have an expansion at the ε = 0

faces of H in terms of elements of Ψk,E110

b,H and Ψk,E112,E100,E010

0,H .

Definition 3.5 The asymptotically conic convergence heat calculus of order k,

written Ψk,E11,E00,E10,E01

acc,H consists of kernels A such that the following hold.

1. For each ε > 0 A restricts to an element of Ψk
ε,h.

2. In a neighborhood of F11, A has an asymptotic expansion in ρ11 with index

set E11 such that the coefficients are elements of the b-heat calculus of order
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k. Such an expansion is of the form

A ∼
∑
j≥1

∑
p0≤p≤pj

(ρ11)
αj(log ρ11)

pAj,

with Aj ∈ Ψ
k,Ej

110
b,H . Above, if for some j there are no log terms then p0 = pj =

0.

3. In a neighborhood of F00, A has an asymptotic expansion in ρ00 with index

set E00 such that the coefficients are elements of the conic heat calculus of

order k. Such an expansion is of the form

A ∼
∑
l≥1

∑
p0≤p≤pl

(ρ00)
αl(log ρ00)

pBl,

with Bl ∈ Ψ
k,El

112,E
l
100,E

l
010

0,H .

4. A has asymptotic expansion in ρ10 at F10 with index set E10 and asymptotic

expansion in ρ01 at F01 with index set E01.

We next state the expected composition rule for this calculus.

Conjecture 3.6 Let A be an element of Ψka,A11,A00,A10,A01

acc,H and B be an element

of Ψkb,B11,B00,B10,B01

acc,H . Then the composition A ◦B is an element of Ψk,E11,E00,E10,E01

acc,H

with the following index sets and leading orders.

k = ka + kb,

E11 = A11 +B11, E00 = A00 +B00,

E10 = A10 +B10, E01 = A01 +B01.
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Leading Orders Calculation

We use the composition rule on each of the heat calculi. For each ε > 0, the

restrictions of A and B to the ε slice of H compose to give

(A ◦B)|ε ∈ Ψka+kb
ε,H .

At the ε = 0 faces, we have the following.

At F11, A is of the form

A ∼
∑
j≥1

∑
p0≤p≤pj

(ρ11)
αj(log ρ11)

pAj,

with Aj ∈ Ψ
ka,A

j
110

b,H and {αj, pj} = A11. Similarly, B is of the form

B ∼
∑
l≥1

∑
p0≤q≤pl

(ρ11)
βl(log ρ11)

qBl,

with Bl ∈ Ψ
kb,B

l
110

b,H and {βl, ql} = B11. At this face the composition A ◦ B has the

form

A ◦B ∼
∑
m≥1

∑
j+l=m

∑
r0≤r≤rm

(ρ11)
αj+βl(log(ρ11))

rAj ◦Bl.

By the composition rule for the b-heat calculus, Aj◦Bl is an element of Ψ
ka+kb,A

j
110+Bl

110

b,H .

This shows that the composition A ◦B has expansion of the form

A ◦B ∼
∑
m≥1

∑
p0≤r≤rm

(ρ11)
γm(log(ρ11))

rCm

with index set {γm, rm} = A11 + B11 and Cm is an element of the b-heat calculus

of order ka + kb.

At the F00, A has an expansion of the form

A ∼
∑
j≥1

∑
r0≤r≤rj

(ρ00)
aj(log(ρ00))

rRj



CHAPTER 3. HEAT KERNEL CONVERGENCE 89

with index set {aj, rj} = A00 and Rj is an element of Ψ
ka,A

j
112,A

j
100,A

j
010

0,H . Similarly,

at F00, B has an expansion of the form

B ∼
∑
l≥1

∑
s0≤s≤sl

(ρ00)
bl(log(ρ00))

sSl

with index set {bl, sl} = B00 and Sl is an element of Ψ
kb,B

l
112,B

l
100,B

l
010

0,H . The compo-

sition A ◦B then has an expansion at F00 as follows

A ◦B ∼
∑
m≥1

∑
j+l=m

∑
p0≤p≤pj

(ρ00)
aj+bl(log(ρ00))

pRj ◦ Sl.

By the composition rule for the conic heat calculus, Rj ◦ Sl is an element of the

conic heat calculus, Rj ◦ Sl ∈ Ψ
ka+kb,A

j
112+Bl

112,A
j
110+Bl

100,A
j
010+Bl

010
0,H . This shows that

the composition A ◦B has an expansion of the form

A ◦B ∼
∑
m≥1

∑
p0≤p≤pm

(ρ00)
cm(log(ρ00))

pGm

with index set {cm, pm} = A00 + B00 and Gm is an element of the conic heat

calculus of order ka + kb.

Finally, at the F10 face A and B have expansions with index sets A10 and B10,

respectively. The composition then has an expansion up to F10 with index set

A10 + B10. Similarly, at F01 the composition has index set given by the sum of

those of A and B at this face, namely, A01 +B01.

3.7 ACC Heat Kernel Convergence

Main Theorem: ACC Heat Kernel Convergence 3.8 Let (M, gε) be a fam-

ily of smooth compact Riemannian n manifolds, (M0, g0) be a compact n manifold

with isolated conic singularity and (Z, gz) be an asymptotically conic space of di-

mension n. Assume that (M, gε) converges asymptotically conically to (M0, g0),

(Z, gZ). Let (E,∇) be a Hermitian vector bundle over (M, gε) for each ε. Note that

by the definition of ac convergence, specifically by the structure of the acc single
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space, this induces bundles over (Z, gz) and (M0, g0). Assume that the induced bun-

dle over (M0, g0) retracts onto a bundle over the cross section (Y, h). Associated to

the bundle (E,∇) let ∆ε, ∆0, and ∆Z be geometric Laplacians on (M, gε), (M0, g0)

and (Z, gz), respectively. Assume that each of these operators of the form

∇∗∇+R,

with R a positive self adjoint endomorphism of E.

Then the heat kernels Hε have the following asymptotic behavior on the acc

heat space as ε→ 0.

Hε(z, z
′, t) → H0(z, z

′, t′) +O(εtN) at F00 ∀N > 0

Hε(z, z
′, t) → (ρ11)

2Hb(z, z
′, τ) +O(εtN) at F11 ∀N > 0,

Hε has leading order (ρ10)
2, (ρ01)

2 at F10, F01, respectively.

In the above, H0 is the heat kernel for ∆0, Hb is the b-heat kernel associated to

∆z and t′ and τ are rescaled time variables with

t′ =
t

(ρ11)2
, τ =

t

(ρ10ρ01)2
.

Moreover, the error term in this approximation, E(z, z′, t, ε) is O(εt∞) as ε→
0, t→∞.

Proof

The first step is to determine the leading orders as ε → 0 of ∂t + ∆ε lifted to the

acc heat space. We also require that ∂t + ∆ε restricts to ∂t + ∆z on F11 and to

∂t + ∆0 on F00.

First we compute ∂t + ∆ε in the local coordinates (x, y, x′, y′, t, ε) for ε > 0,

∆ε = (∂2
x + x−2(∆y + lot)).
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In projective coordinates this becomes

∆ε = (s′)−2(∂2
s + s−2(∆y + lot)).

hence

∂t + ∆ε = ∂t + (s′)−2(∆0,s) = (s′)−2(∂t′ + ∆0,s),

where t′ = t
(x′)2

and ∆0,s is a conic Laplacian in the coordinates (s, y). Because s′

is a defining function for F11, this calculation shows that ∂t+∆ε has leading order

ρ−2
11 at F11. It also shows the leading term of ∂t + ∆ε at F00 is

(ρ11)
−2(∂t′ + ∆0,s).

The use of rescaled time variables is a result of the compactification of M2
0,h.

Next, we compute leading orders near F11. Define the rescaled time variable,

τ = t
η2 . On F11 we have the coordinates

(s, y, η, y′, τ),

where s, y, η, y′ are the same projective coordinates as above. Note that η = ε
x′

= r′

on F11. In the local coordinates (r, y, r′, y′, t, ε)

∂t + ∆Z = ∂t + r2((r∂r)
2 + ∆y + lot)),

where ∆y is the geometric Laplacian induced by ∆Z on the cross section (Y, h)

and lot are lower order terms. Then, with respect to the projective coordinates

∂t + ∆Z =
(η
s

)2

(∂τ + ∆b,s)

where ∆b = ((s∂s)
2 + ∆y + lot). Since we require ∂t + ∆ε to restrict to ∂t + ∆z on

F11 and because s
η

is a boundary defining function for F10, by symmetry (which

follows because we are working with Friedrich’s extensions) ∂t + ∆ε has leading

order −2 at F10 and F01. These calculations are summarized in the following table.
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H Boundary Face/Region ∂t + ∆ε Time Variable

F11 (ρ10ρ01)
−2 (∂τ + ∆b,s) τ = t

(ρ10ρ01)2

ε > 0 (ρ11)
−2(∂t′ + ∆0,s) t′ = t

(ρ11)2

F00 (ρ11)
−2(∂t′ + ∆0,s) t′ = t

(ρ11)2

We now have the leading order terms of ∂t + ∆ε at the ε = 0 boundary faces

of H and construct the acc model heat kernel H1 to be an element of the acc heat

calculus that solves the heat equation at the boundary faces (and interior) of H
to at least first order.

The ACC Model Heat Kernel

At the F00, let H1 have expansion

H1 ∼ H0(z, z
′, t′),

where H0 is the heat kernel constructed in chapter two for the conic manifold

(M0, g0) and t′ is the rescaled time variable

t′ =
t

(ρ11)2
.

At the F11, let H1 have expansion

H1 ∼ (ρ11)
2Hb(z, z

′, τ),

where Hb is the b heat kernel constructed in chapter two and τ is the rescaled time

variable

τ =
t

(ρ10ρ01)2
.

Finally, let H1 have expansions up to F10 and F01 with leading terms

(ρ10)
2, (ρ01)

2,

where the remaining terms in the expansion are determined by H1|F11 and H1|F00 .

Extend H1 smoothly off these boundary faces so that for ε > ε0 > 0, H1 is the
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heat kernel for (M, gε). As t → 0 away from the corners of H we require that H1

vanishes to infinite order. At the diagonal where t = 0, namely C0d2, C1d2 and

Cεd2 away from the corners of these faces a local construction with the Euclidean

heat kernel solves the heat equation up to O(t) and similar to the standard heat

parametrix construction this can be improved to solve to infinite order in t as

t → 0 uniformly down to ε = 0. Let E(z, z′, t, ε) = Hε(z, z
′, t)−H1(z, z

′, t, ε). Let

K be defined for each ε > 0 by

(∂t + ∆ε)E(z, z′, t, ε) = K(z, z′, t, ε).

The way we have definedH1, K = O(εt) as ε, t→ 0. Moreover, a local construction

similar to the standard heat parametrix construction improves this a priori O(εt)

error to O(εt∞). This means that for anyN ∈ N, there is C > 0 such that for any

(z, z′) ∈M ×M, |K(z, z′, t, ε)| < CεtN .

For each ε > 0 E is smooth on H for t, ε > 0 by parabolic regularity, applied

for each ε > 0, since K is O(t∞). By construction E is smooth down to t = 0, so

E(z, z′, t, ε) is smooth on the blown down space, M ×M × R+ × (0, 1]ε. We can

now use a maximum principle argument on M × [0, T ]t that will show that E is

also O(εt∞) as ε, t→ 0 in the same sense as K.

Fix ε > 0, z′ ∈ M. Since K = O(εt∞), fix C > 1 and N 3 N >> 1 such that

|K(z, z′, t, ε)|2 ≤ Cε2t2N for all z ∈ M. Let u(z, t) = |E(z, z′, t, ε)|2. Let ∆ be the

scalar Laplacian for (M, gε). Then u satisfies

(∂t + ∆)u = 2〈(∂t +∇∗∇)E,E〉 − |∇E|2 = 2〈K −RE,E〉 − |∇E|2

≤ 2〈K,E〉 ≤ 2|K||E| ≤ |K|2 + |E|2 = |K|2 + u.

Above we have used the positivity of R and the compatibility of the bundle con-

nection with the metric. Now, let ũ = e−tu. Then ũ satisfies

(∂t + ∆)ũ ≤ e−t|K|2 ≤ Cε2t2N .

Let w = ũ− Cε2t2N+1. Since E and hence u and ũ vanish at t = 0, w|t=0 = 0 and
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w satisfies

(∂t + ∆)w ≤ Cε2t2N − C(2N + 1)ε2t2N < 0.

Fix T > 0 and consider w on M × [0, T ]t. If w has a local maximum for z ∈ M

and t ∈ (0, T ) then

(∂t + ∆)w > 0,

and this is a contradiction. If w has a maximum at t = T then ∂tw ≥ 0 at that

point and

(∂t + ∆)w > 0,

which is again a contradiction. Therefore, the maximum of w occurs at t = 0 and

so

w ≤ Cε2t2N+1.

This implies

u ≤ eTCε2t2N ,

which in turn implies that E = O(εtN) as ε, t→ 0, for any N ∈ N. This completes

the proof of the theorem.

The leading orders and local behavior of the acc model heat kernel H1 are

summarized in the following table. We have also shown that this is the behavior

of the heat kernels for (∂t + ∆ε) as ε→ 0 with error term E = O(εt∞).

H Boundary Face/Region ACC Heat Kernel Leading Term Time Variable

F00 H0(z, z
′, t′) t′ = t

(ρ11)2

F11 (ρ11)
2Hb(z, z

′, τ) τ = t
(ρ10ρ01)2

F01 (ρ01)
2

F10 (ρ10)
2

C0d2 (ρ0d2)
−n

C1d2 (ρ1d2)
−n

Cεd2 (ρεd2)
−n

{t = 0} off Diagonal vanishes to infinite order

♥
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Corollary: ACC Heat Kernel Asymptotics 3.9 Assume the hypotheses of The-

orem 1.8. Then the heat kernels Hε have the following asymptotic behavior on the

corners acc heat space.

H Corner Contained in H Boundary face Leading order

C001 F00 vanishes to infinite order

C0d2 F00 leading order −n
C0010, C0001 F00 phg. conormal index set E

C1110 F00 phg. conormal index set F

C1111 F11 vanishes to infinite order

C1d2 F11 leading order −n
C1101, C1110 F11 vanishes to infinite order

C1110 F11 smooth up to this face

Cεd2 Fε leading order −n
Cε1 Fε vanishes to infinite order

First we consider ε > 0. At each of the Cεd2 the acc heat kernel has leading

order ρ−nεd2. At each of the Cε1 faces the acc heat kernel vanishes to infinite order.

Next we consider the face F00. The acc heat kernel has leading term

H0(z, z
′, t′)

at F00, where H0(z, z
′, t′) is the heat kernel for (M0, g0) with rescaled time variable

t′ = t
(ρ11)2

. This rescaled variable vanishes at C001 and C0d2. The C001 is associated

to the F001 in the conic heat space on which H0 vanishes to infinite order. At

C0d2, H0 has leading order ρ−n0d2. At C0010 and C0001 the conic heat kernel has

polyhomogeneous expansion determined by the rank of the vector bundle, the

dimension n, and the eigenvalues of the Laplacian on (Y, h). Let E be the index

set for this expansion. The rescaled time variable does not vanish at C1110. At this

face the conic heat kernel has polyhomogeneous expansion determined by E, and

we call the index set for this face F. These leading orders are summarized in the

following table.
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Corner in F00 Leading order of acc Heat Kernel

F001 ∞
F0d2 −n
F0010 and F0001 E

F1110 F

Next we consider the face F11. The acc heat kernel has leading term

(ρ11)
2Hb(z, z

′, τ),

with rescaled time variable

τ =
t

(ρ10ρ01)2
.

Then τ vanishes at the C1d2 and C1111 corners. At C1d2, H has leading term

(ρ1d2)
−n and at C1111 H vanishes to infinite order. The rescaled time variable

τ →∞ at the C1101 and C1110 corners. The behavior of H at these corners is that

of the b heat kernel as t→∞ on the side faces F10 and F01 of the b heat space, so

H vanishes to infinite order at these faces. At the C1110 corner H has a smooth

expansion with leading order 0 and decays like τ−1 as τ → ∞. This behavior is

summarized in the following table.

Corner in F11 Leading order of acc Heat Kernel

C1111 ∞
C1d2 −n
C1101 and C1110 ∞
C1110 0

Finally, at the F10 and F01 faces H vanishes to order 2. The corners of these

faces are shared with those of the F00 and F11 faces and the behavior of H at these

corners is determined by the expansion of H at F00 and F11.

This completes the proof of the corollary.

♥

The following is a summary of the heat kernel behavior as ε → 0 for the heat

kernels Hε as (M, gε) converge asymptotically conically to (M0, g0), (Z, gz).
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Corner Leading Term Boundary Face Leading Term at Boundary Face

C1110 ⊂ F00, F11 F0 F00 H0(z, z
′, t′)

C1111 ⊂ F11 ∞ F11 Hb(z, z
′, τ)

C1d2 ⊂ F11 −n F10 (ρ10)
2

C1101 ⊂ F11, F01 ∞ F01 (ρ01)
2

C1110 ⊂ F11, F10 ∞
C0010 ⊂ F00, F10 E0

C0001 ⊂ F00, F01 E0

C0d2 ⊂ F00 −n
C001 ⊂ F00 ∞

To construct the full heat kernel the composition rule would be used as follows.

Let

H2 = H1 −H1 ◦K

and

Hj = H1 +

j−1∑
l=1

(−1)lH1 ◦l K,

where H1 ◦l K is H1 composed with K, l times. By the composition formula Hj

vanishes to one order higher than Hj−1 on the boundary faces of H. Then Borel

summation gives the existence of H̃ which has expansion asymptotic to {Hj} and

satisfies

(∂t + ∆ε)H̃ = K∞(z, z′, t, ε),

H̃(z, z′, t, ε)|t = 0 = δ(z − z′),

where K∞ vanishes to infinite order on all boundary faces of H. The difference,

Hε − H̃,

H − H̃ = K̃,

vanishes on all boundary faces of H and satisfies (∂t + ∆ε)K̃ vanishes identically

on H, so by parabolic regularity, K̃ is also an element of the acc heat calculus and

Hε = H̃ + K̃.
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This calculation would provide a full asymptotic expansion of Hε as ε → 0 uni-

formly in t. The leading terms of the expansion at the boundary faces of H would

be given by the leading terms of the acc model heat kernel.

♥



Appendix A

Scalar Heat Kernel on the Exact

Cone

The heat kernel for the scalar Laplacian on an exact cone has an expansion in

special functions which we study in detail here.

A.1 Geometric Preliminaries

Let (X, g) be the exact cone over (Y, gy), a smooth compact n− 1 manifold. Then

(X, g) ∼= R+
x × Y with coordinates (x, y) and metric

g = dx2 + x2gy.

The scalar Laplacian, ∆ on (X, g) is

∆ = −∂2
x −

n− 1

x
∂x +

1

x2
∆y.

Let (x, y, x′, y′, t) be coordinates onX×X×R+. The scalar heat kernel,H(x, y, x′, y′, t),

is a tempered distribution on X ×X × R+ satisfying

(∂t + ∆)H(x, y, x′, y′, t) = 0, t > 0,

99
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H(x, y, x′, y′, 0) = δ(x− x)′δ(y − y′).

Here, as in chapter one, we use the Friedrich’s extension of the Laplacian so the

heat kernel has the following homogeneity and symmetry properties,

H(cx, y, cx′, y′, c2t) = c−nH(x, y, x′, y′, t), H(z, z′, t) = H(z′, z, t).

The conic heat kernel is smooth on the interior of X×X×R+. Away from the

conic singularity it behaves like the Euclidean heat kernel. To analyze its behavior

as t→ 0,∞ and near the the conic singularity, we introduce the conic heat space,

a manifold with corners obtained from X ×X × R+ by blowing up along the two

submanifolds

S112 = {(x, y, x′, y′, t) : x = 0, x′ = 0, t = 0, y, y′ ∈ Y },

Sd2 = {(x, y, x′, y′, 0) : x = x′, y = y′}.

S112 is the product of the singular set from the two copies of X at the initial time

t = 0, and Sd2 is the singular set for the initial data, the diagonal of X × X

at time t = 0. The submanifolds are blown up parabolically in the direction of

the conormal bundle dt. This blow up replaces S112 by the t-parabolic normal

bundle of Y × Y and we call this boundary face F112 with defining function ρ112.

Similarly, the submanifold Sd2 is replaced by the t-parabolic normal bundle of the

diagonal at t = 0 away from the first blown up face. This second face is called Fd2

with defining function ρd2. The resulting manifold with corners will be called X2
h

and is the conic heat space. When lifted to this space, the conic heat kernel is a

conormal function with polyhomogeneous expansions at each boundary face and

at the corners.

The projective coordinates, (s, y, s′, y′, τ) with s = x
x′
, s′ = x′, and τ = t

(x′)2
are

convenient because of the symmetry and homogeneity of the heat kernel. In these

coordinates the heat kernel is

H(x, y, x′, y′, t) = (s′)−nH(s, y, 1, y′, τ).
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We will study H(s, y, 1, y′, τ) and use the symmetry and homogeneity properties

to describe the heat kernel on the heat space.

A.2 Analytic Preliminaries

The product structure of the manifold induces to a product decomposition of the

heat kernel. Let {φj} be a complete orthonormal eigenbasis for L2(Y ) such that

∆yφj = µjφj, ||φj||L2(Y ) = 1,

where µj ∈ σ(∆y). With respect to this basis H has the following expansion

H(x, y, x′, y′, t) =
∑
j≥1

φj(y)φj(y
′)Hj(x, x

′, t).

In the above decomposition, the functions Hj will be given in terms of special

(Bessel) functions. To construct the heat kernel and study its asymptotic behavior

on the conic heat space, X2
h, we require two technical lemmas.

A.2.1 Technical Lemmas

Operator Inequality Technical Lemma A.3 Let (X, g) be the exact cone over

(Y, gy) with scalar Laplacian ∆. Assume uj(x, t) and uk(x, t) are in the Friedrich’s

Domain of ∆ for each t as a function of x. Let µj > µk >> 0 and let f(x) be a

non-negative, compactly supported distribution.

Then, if uj(x, t) and uk(x, t) satisfy

(∂t − ∂2
x −

n− 1

x
∂x +

µj
x2

)uj(x, t) = 0,

uj(x, 0) = f(x) ≥ 0,

(∂t − ∂2
x −

n− 1

x
∂x +

µk
x2

)uk(x, t) = 0,

uk(x, 0) = f(x) ≥ 0,
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the following conclusions hold.

uj(x, t) ≥ 0,

uj ≤ uk.

Proof

This is a Maximum Principle argument. First we prove the Lemma for smooth

initial data. By the hypothesis that uj is in the Friedrich’s Domain of the conic

Laplacian,

uj = O(x
2−n

2
+δ) for some δ > 0, as ε→ 0,

as in chapter one. Let α = n−1
2

. Then,

xα(−∂2
x −

n− 1

x
∂x +

µj
x2

)x−α = −∂2
x +

(4µj + n2 − 4n+ 2)

4x2
.

This conjugation kills the linear ∂x term. Let

cj =
4µj + n2 − 4n+ 2

4
.

From the hypothesis µj >> 0, cj > 0. Let

vj = xαuj.

Then, since ∂t commutes with powers of x,

xα(∂t − ∂2
x −

n− 1

x
∂x +

µj
x2

)x−αvj = (∂t − ∂2
x +

cj
x2

)vj = 0 t, x > 0.

Note the initial condition satisfied by vj is

vj(x, 0) = xαf ≥ 0.

Since uj is in L2(xn−1dx) and uj = O(x
2−n

2
+δ) as x → 0, vj is in L2(dx)
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and vj = O(x
1
2
+δ) as x → 0. So the conjugation achieves two goals: it removes

the linear term so we may use energy estimates and it eliminates the possibility

that uj blows up as x → 0. We prove the lemma for vj and it will then follow

immediately for uj. Note that for smooth initial data parabolic regularity implies

that uj and vj are smooth.

Define the energy function

Ej(t) =

∫
x≥0

v2
j (x, t)dx.

Differentiating with respect to t gives

E ′
j(t) = 2

∫
x≥0

∂t(vj(x, t))vj(x, t)dx = 2

∫
x≥0

(∂2
xvj(x, t)−

cj
x2
vj(x, t))vj(x, t)dx.

An integration by parts gives

E ′
j(t) = −2

∫
x≥0

(∇vj(x, t))2 +
cj
x2

(vj(x, t))
2dx.

This is clearly non-positive. There are no boundary terms because vj decays as

x→ 0. Therefore, the L2 norm of vj is decreasing in t, so for large t, the pointwise

norm of vj is small because vj is a smooth function in L2(dx). This means that

for ε > 0 there is some t0 with |vj(x, t)| < ε for all (x, t) with t ≥ t0. For each

t, vj ∈ L2(dx) and is smooth so for 0 ≤ t ≤ t0 there is x0 with |vj(x, t)| < ε for

all x ≥ x0. Any strictly positive or negative extrema must then lie in a finite x, t

rectangle. Because vj(x, t) → 0 as x→ 0 non-zero extrema must occur for x > 0,

but restricted to the rectangle x ≤ x0, t ≤ t0.

The differential equation satisfied by vj is

(∂t − ∂2
x +

cj
x2

)vj = 0 (A.1)

At a local maximum (resp. minimum) ∂tvj = 0, and ∂2
xvj ≤ 0 (resp. ≥ 0).

If the maximum or minimum is strictly positive (resp. negative), the left side

of A.1 will be strictly positive (resp. negative) while the right side is 0, giving a
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contradiction. Therefore, vj attains its maximum and minimum when t = 0. Since

uj(x, t) = x−αvj(x, t), the same is true for uj(x, t). This shows that for positive

smooth initial data, uj ≥ 0.

Now, assume we have uj and uk as in the statement of the Lemma. Let vj

and vk be defined as above, with µj > µk >> 0 as in the hypothesis. The same

argument applied to vk shows vk > 0. Let v = vk − vj. v satisfies

(∂t − ∂2
x +

ck
x2

)v =
cj − ck
x2

vj, (A.2)

v(x, 0) = 0.

Note that µj > µk implies cj−ck > 0. Since vj, vk → 0 as x→ 0 the same holds for

v. The energy argument shows that any strictly positive or negative extrema for

v occur in some finite x, t rectangle. For strictly negative local minimum, ∂tv = 0,

∂2
x ≥ 0, and v < 0 would make the left side of A.2 strictly negative, whereas the

right side is non-negative. This is a contradiction. Therefore,

vk ≥ vj =⇒ uk ≥ uj.

We have proven the Lemma under the assumption that the initial data was

smooth. To remove this restriction, let {fε} be a sequence of smooth, compactly

supported non-negative functions so that fε → f as distributions. Then, let uj,ε

be the solution with initial data fε. We have shown uj,ε ≥ 0, and since uj,ε → uj

as distributions, this implies uj ≥ 0. For the second conclusion, uk,ε − uj,ε ≥ 0 for

each ε > 0 and uk,ε − uj,ε converges distributionally to uk − uj, so uk − uj ≥ 0,

which gives the second conclusion: uk ≥ uj.

♥

We require one more technical lemma which will be used to control the tail of

the heat kernel expansion in special functions.
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Technical Estimate Lemma A.4

∞∑
j=1

xj
1
n

Γ(j
1
n + 1)

≤ Ce2x ∀x > 0, (A.3)

where the constant C depends only on n.

First note, for n = 1, the sum is ex−1. This is the motivation for the estimate.

Define

Rn(x) =
∞∑
j=1

xj
1
n

Γ(j
1
n + 1)

.

There are no more than Cjn−1 terms between xj

Γ(j+1)
and xj+1

Γ(j+2)
where C depends

only on n. This gives the following estimate,

Rn(x) ≤
∞∑
j=1

C
jn−1xj

Γ(j + 1)
=

∞∑
j=1

C
jn−2xj−1

(j − 1)!
.

There is some fixed j0 depending only on n such that for j ≥ j0, j
n−2 ≤ 2j−1. This

implies

Rn(x) ≤
∞∑
j=1

C
jn−2xj−1

(j − 1)!
≤

∞∑
j=1

C
(2x)j−1

(j − 1)!
= Ce2x.

♥

A.4.1 Special Functions

Here we recall some useful identities and bounds on Bessel functions. These are

from [16] and [29].

We denote by Jν and Iν the Bessel functions of real and imaginary argument,

respectively, both of order ν ∈ C. These are defined as follows.

Jν(x) =
(x

2

)ν ∞∑
j=0

(−1)j
(
x2

4

)j
j!Γ(ν + j + 1)

. (A.4)
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Iν(x) =
(x

2

)ν ∞∑
j=0

(
x2

4

)j
j!Γ(ν + j + 1)

. (A.5)

The real and imaginary Bessel functions are related by

Iν(z) = e−
νiπ
2 Jν(iz). (A.6)

The following asymptotics and bounds for the Bessel functions will be useful.

Jν(x) ∼
xν

2ν Γ(1 + ν)
x→ 0. (A.7)

Iν(x) ∼
xν

2ν Γ(1 + ν)
x→ 0. (A.8)

Jν(x) ∼
√

2

πx
cos(x− νπ

2
− π

4
) x→∞. (A.9)

|Jν(z)| ≤
C|z|ν

2ν Γ(ν + 1
2
)Γ(1

2
)

∀ z ∈ C. (A.10)

From the representation of the imaginary Bessel function, (A.6), and the esti-

mate on the real Bessel function, (A.10), we have the following global estimate on

Iν :

|Iν(x)| ≤ C
|x|νe|ν|

2νΓ(ν + 1)
∀x ≥ 0. (A.11)

Finally, we will need a rough estimate on the Gamma function, essentially,

Stirling’s Formula:

Γ(x) ∼ C
xx

x
1
2 ex

x→∞. (A.12)

The expansion of the conic heat kernel from [16] and [29] is,

H(x, x′, y, y′, t) =
∞∑
j=0

Hj(x, x
′, t)φj(y)φj(y

′). (A.13)
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The Hj are defined in terms of these special functions by (see [16], [29])

Hj(x, x
′, t) = (xx′)

2−n
2

∫ ∞

0

e−tλ
2

Jνj
(λx)Jνj

(λx′)λ dλ. (A.14)

We also have three additional representations of Hj.

Hj(x, x
′, t) ∼ (xx′)

2−n
2

(
xx′

4t

)νj

2tΓ(νj + 1
2
)Γ(1

2
)
. (A.15)

Hj(x, x
′, t) = (xx′)

2−n
2 exp

(
−(1 + (xx′)2)

4t

)∫ π

0

exp

(
xx′ cos(θ)

2t

)
sinνj(θ)dθ.

(A.16)

Hj(x, x
′, t) = (xx′)

2−n
2

1

2t
exp

(
−(1 + (xx′)2)

4t

)
Iνj

(
xx′

2t
). (A.17)

We are now equipped to study the scalar heat kernel on the heat space for the

exact cone over Y .

A.5 Conic Heat Kernel Asymptotics

We first bound the sup norm of the eigenfunctions φj on the cross section, (Y, h).

The bound follows from elliptic regularity and Sobolev embedding.

−∆yφj = µjφj on (Y, gy) dimension n− 1.

Then, ellipticity of ∆y on (Y, gy), a smooth compact manifold, gives the estimate

||φj||H2k ≤ C (||∆yφj||H2k−2 + ||φj||H0) ≤ C
(
|µj|k + 1

)
.

The Sobolev Embedding Theorem gives

||φj||C0 ≤ C||φj||
H

n+1
2
≤ C|µj|

n+1
4 .
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We can also use Sobolev Embedding to estimate the norm of ∂αy φj for a multi-

index α of order |α| = k,

||∂αy φj||C0 ≤ C||φj||Hk+ n+1
2
≤ C|µj|

k
2
+n+1

4 .

So we now have the estimate on |φj(y)φj(y′)|,

|φj(y)φj(y′)| ≤ C|µj|
n+1

2 .

We also have, for multi-indices α and β of order k and j, respectively, the following

estimates on |∂αy φj(y)∂
β
y′φj(y

′)|.

|∂αy φj(y)∂
β
y′φj(y

′)| ≤ C|µj|
k
2
+ j

2
+n+1

2 .

Let νj = (µj + (n−2
2

)2)
1
2 . One final observation is that by Weyl Asymptotics

for the compact smooth manifold (Y, gy), we have the estimate

|νj|2 ∼ |µj| ∼ j
2

n−1 j →∞.

Now we can examine the behavior at the boundary faces of the heat space.

There are five boundary faces which meet along edges and corners. The boundary

faces are as follows in terms of the coordinates (z, z′, t) = (x, x′, y, y′, t).

Face Locally defined by/blowup of Local Defining Function

F112 Blowup of S112 ρ112 = (x4 + (x′)4 + t2)
1
4

Fd2 Blowup of Sd2 ρd2 = (|z − z′|4 + t2)
1
4

F100 Locally defined by {x = 0} − F112 ρ100

F010 Locally defined by {x′ = 0} − F112 ρ010

F001 Locally defined by {t = 0} − (Fd2 ∪ F112) ρ001

Using the representationHj(x, x
′, t) = (xx′)

2−n
2

∫∞
0

exp(−tλ2)Jνj
(λx)Jνj

(λx′)dλ

and the asymptotics of Jνj
as x → 0, the leading order term of H at F100 is

(ρ100)
2−n

2
+ν0 and by symmetry at F010 the leading term is (ρ010)

2−n
2

+ν0 .

Since the conic heat kernel behaves locally like the Euclidean heat kernel away

from the conic singularity, it must vanish to infinite order at F001 and have leading
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order (ρd2)
−n at Fd2.

The interesting behavior of the conic heat kernel occurs at F112. The projective

coordinates (s, s′, y, y′, τ) with

s =
x

x′
, s′ = x′, τ =

t

(x′)2

are valid away from F010. In these coordinates, s′ is a defining function for F112

and the heat kernel becomes

H(x, x′, y, y′, t) = (s′)−nH(s, 1, y, y′, τ).

We see that the heat kernel has leading order (ρ112)
−n at F112. We now show

that the heat kernel is polyhomogeneous at the edges and corners of this face and

compute its leading orders.

Consider the corner of F112 and F100 away from t = 0. This is locally given by

s → 0, τ 9 0. Using the formula (A.15) for Hj and the bound on φj we have the

following estimate for the tail of the series

|
∑
j≥J

Hj(s, 1, τ)φj(y)φj(y
′)| ≤

∑
j≥J

(νj)
n+1( s

4τ
)νj

2tΓ(νj + 1
2
)
s

2−n
2 .

From the estimate on Γ and νj ∼ µ
1
2
j ∼ j

1
n−1 , for τ > ε > 0, as s → 0, this

tail can be made arbitrarily small uniformly for s < 1. Therefore, H(s, 1, y, y′, τ)

has a polyhomogenous conormal expansion for s→ 0 with leading order 2−n
2

+ ν0.

By symmetry, this is also the behavior of H(1, s′, y, y′, t) at the edge of F112 which

meets F010.

Next, we consider the corners of F112 where t → 0 and t → ∞. The represen-

tation (A.17) of Hj gives

Hj(s, 1, τ) =
1

2τ
exp

(
−(1 + s2)

4τ

)
Iνj

(
s

2τ
).



APPENDIX A. SCALAR HEAT KERNEL ON THE EXACT CONE 110

The bound on Iνj
gives the following estimate

|
∑
j≥1

Hj(s, 1, τ)φj(y)φj(y
′)| ≤ C

s
2−n

2

2τ
exp

(
−(1− s)2

4τ
+

s

2τ

)∑
j≥1

νn+1
j

2νj

(
s
2τ

)νj

Γ(νj + 1)
.

Combining the terms in the exponential,

|
∑
j≥1

Hj(s, 1, τ)φj(y)φj(y
′)| ≤ C

s
2−n

2

2τ
exp

(
−(1− s)2

4τ

)∑
j≥1

νn+1
j

2νj

(
s
2τ

)νj

Γ(νj + 1)
.

For j large
νn+1

j

2νj is very small, so we can bound all these terms by one indepen-

dent constant, C. Next, we use the Technical Estimate Lemma and the growth of

νj,

νj ∼ µ
1
2
j ∼ j

1
n−1 .

The Lemma lets us replace the sum with

Cexp

(
2s

2τ

)
,

giving the final estimate

|H(s, 1, y, y′, τ)| ≤ C
s

2−n
2

2τ
exp

(
−(1− s)2

4τ
+
s

τ

)
.

The roots of the quantity in the exponential are r+ = (3 + 2
√

2), and r− =

(3 − 2
√

2) both of which are positive. As s → 0, s > 0, we can assume s < r−

and s < r+. Therefore, the exponential will have rapid decay as τ → 0. So,

at the corner of F112 and F100 as τ → ∞ and also as τ → 0, the heat kernel

vanishes to infinite order. We can also see from the above estimates that H has

a polyhomogeneous conormal expansion at these corners because we may bound

the tail of the series in the same way. Note that by symmetry, this asymptotic

behavior is mirrored at the corner of F112 and F010 as τ → 0,∞.

Finally, we consider t → ∞. Away from F100 and F112, the behavior of H

is locally that of the Euclidean heat kernel which decays like (t)−
n
2 as t → ∞.
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Therefore, the same is true for H.

For t→∞, x→ 0, we use (A.15) to write H as the following sum

H(x, x′, y, y′, t) =
(xx′)

2−n
2

2t

∑
j≥1

φj(y)φj(y
′)

4νj

(xx′)νj

(t)νjΓ
(
νj + 1

2

)
Γ
(

1
2

) .
For large j,

φj(y)φj(y
′)

4νj → 0. This gives

|
∑
j≥J

Hj(x, x
′, t)φj(y)φj(y

′)| ≤ C
(xx′)

2−n
2

2t

∑
j≥J

(xx′)νj

(t)νjΓ
(
νj + 1

2

)
Γ
(

1
2

) .
The Technical Lemma gives

|
∑
j≥J

Hj(x, x
′, t)φj(y)φj(y

′)| ≤ C(J)
(xx′)

2−n
2

2t
exp

(
2xx′

t

)
.

Above, C(J) is a constant that depends only on J and can be made arbitrarily

small for sufficiently large J. As x → 0 and t → ∞, the exponential term con-

verges to 1. The tail of the series can be made arbitrarily small and so there is a

polyhomogeneous conormal expansion at this corner with leading order 2−n
2

+ ν0

in x and leading order −1 in t. Similarly, as x′ → 0 and t → ∞ the heat kernel

behaves like t−1(x′)
2−n

2
+ν0 .

The following table summarizes the behavior of the heat kernel at the faces

and corners of the conic heat space.
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Face/Region/Corner of X2
h Leading Term/Asymptotic Behavior

F100 (ρ100)
2−n

2
+ν0

F010 (ρ010)
2−n

2
+ν0

F001 vanishes to infinite order

F112 (ρ112)
−n

Fd2 (ρd2)
−n

F112, F100 corner, τ 9 0,∞ Leading order 2−n
2

+ ν0

F112, F010 corner, τ 9 0,∞ Leading order 2−n
2

+ ν0

F112, F100 corner, τ → 0,∞ vanishes to infinite order

F112, F010 corner, τ → 0,∞ vanishes to infinite order

F112, τ →∞ vanishes to infinite order

F112, τ → 0 Leading order −n
Interior of X2

h as t→ 0 and x, x′ → 0 t−1(xx′)
2−n

2
+ν0

This completes our study of the heat kernel for the scalar Laplacian on the

exact cone over (Y, h).

♥
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