6 Marked point processes and patterns of ran-
domly placed objects

Point processes are natural building blocks for more complicated spatial pro-
cesses such as patterns of random objects, for instance disks of random sizes.
Let us consider a point process X and associate with each point X; of X a
random mark M;, which could be the radius of a disk centered at X;. By
letting the mark be a vector with several components we could model more
complex objects.

For the 2D gel electrophoresis images in Figures 9 and 10 we could as-
sociate with a protein at position X; = [X1;Xo]" the mark M; = (S;, C)),
where S; is the expression level of the corresponding protein and C; could
describe the shape of the spot at X;. A simple model would be to assume
that the spot shape is a two-dimensional normal distribution with 2x2 co-
variance matrix C;. The observed pixel gray level Y, at a pixel with location
z could then modeled by

Yo=Y Sif(2,Xi,Ci) + a, (75)

where ¢, is the observation noise at pixel x and

1

X;,Ci) = 5
f(xg C) 27T(det Ci)l/Q

exp(—%(w _X)TC M — X)) (76)

For the diffusing particles in Figures 14 and 15 we could consider a model

Yo=> f(z,Xi,z)+ 6, (77)

where again €, is the observation noise at pixel z, but the mark consists of
the scalar z; representing the vertical position of a particle relative to the
focal plain. The function f could be assumed to be the same for all particles
but needs to be estimated from data or by applying optical theory for the
light scattering of the diffusing objects.

Similar models could be considered for the aerial photographs in Figures 2
and 4 where we could assume a similar shape for trees in a given view. This
shape function could then be estimated from data combined with a simulation
model based on the geometry and illumination of the trees from the sun
(Larsen & Rudemo, 1998).

A specific problem is interaction between objects that overlap partly. In
2D gel electrophoresis it is natural to assume an additive model as in (75), but
in the aerial photographs, and particularly for the diffusing particles, objects
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Figure 26: Binary images of two cuts in cast iron showing approximately
disk-shaped defects. Data from Beretta (2000) and Méansson and Rudemo
(2002).

may occlude each other and then an additive model may be an untenable
approximation. In some applications such as the one shown in Figure 26
objects do not overlap.

Let us regard models for random placed disks. For disks of constant size
we can then use the inhibition point process of Section 5.2 by placing disks
of diameter d centered at the points of the thinned point process. In the
following section we shall regard two modifications of this model.

6.1 Two processes of varying-sized disks

Let us regard marked point processes constructed in two steps as follows.

In the first step we generate a Poisson point process with constant intensity
A in the plane, and to each point in this point process we generate identically
distributed radii with a proposal distribution function Fj,. The radii are
independent mutually and of the point process.

In the second step we thin the generated point process by letting all pairs
of points whose associated disks intersect 'compete’. A point is kept if it
has higher weight in all pairwise comparisons, where the, possibly random,
weights are assigned to the points according to two different approaches:

1) Pairwise assignment of weights: For each comparison, weights are assigned
to the involved pair of points, and assignments are independent both within
and between pairs.

2) Global assignment of weights: Weights are assigned once and for all to all
points, and assignments to different points are independent. These weights
are then used in all comparisons.
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In both cases the weight of a point may depend on the associated radius.
(When the weights are constant or deterministic functions of the radii, the
two approaches coincide.)

It is possible to compute both the intensity of the point process after
thinning and the radius distribution function after thinning. Details are given
in Mansson and Rudemo (2002). Let us here only show a simulation example
of disks before and after thinning with three different thinning procedure, see
Figure 29.
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Figure 27: Simulation of a disk process before and after three different thin-
ning procedures. In the first step a Poisson process with intensity 1000 in
the unit square is generated with exponentially distributed disk radii with
expectation 0.01.
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7  Warping and matching

An important problem in analysis of multiple images is to match objects
in different images. Thus we would like to know which spots in the 2D gel
electrophoresis images in Figures 9 and 10 that correspond to each other,
that is gauge the expression of the same protein. Similarly we want to match
objects in Figures 14 and 15 in to order to be able to follow the diffusing
particles and to estimate the diffusion coefficient of their motion. There is,
however, a fundamental difference between these two problems. The diffusing
particles move independently of each other except for the rare occasions when
they come very close in all three dimensions. Thus displacements of particles
that are close in the two-dimensional images are essentially independent of
each other. In contrast, displacements of nearby spots in the electrophoresis
images are highly correlated. The matching of objects in these two situations
therefore demand quite different methods. In the present section we shall
study warping methods which are useful for matching of objects in images
such as the 2D gel images.

Suppose that we have a reference image Y = Y () and another image Y’
that we want to warp (transform) into Y as closely as possible according to
some criterion by transforming locations such that Y (z') is close to Y (z).
Here we regard x and z' as 2-dimensional column vectors and put

' = f(z) (78)
for some warping function f. For the affine warping function we have
T e N R N (79)
Q21 Q22 T2 by |

A special case of the affine transformation is the Procrustes transformation

for which
, [ ccosf csinf

T = i
—csinf ccos@

]x+b (80)

A special case of the Procrustes transformation consists of a dilation (scale
change with a fixed factor ¢) and a translation

r | c 0 B
x—[o C]x—l—b-cm—l—b, (81)

and another special case of the Procrustes transformation consists of a rota-
tion and a translation,
, [ cosf sinf
Tr =

—sinf cosf ] z+b (82)
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A simple nonlinear warping is the bilinear transformation

.’L"l = Q1171 + a19T2 + C1X1%9 + bl
.’L'IQ = Q91%1 + G92X9 + Cox1To9 + bg.

(83)

We note that for fixed xo the bilinear transformation of z is linear in x;
(with slope and intercept depending on x) and, similarly, for fixed z; the
transformation of x5 is linear in 5. This means that an axes-parallell rect-
angle in the x;zo-plane is transformed into a polygon with four corners in
the z’x)-plane.

Another nonlinear warping function is the perspective transformation

i = (anx1 + a1222 + b1)/(cnzy + c1o22 + 1)

84
zy = (121 + age%s + bo)/(C2121 + Co0x0 + 1). e

The perspective transformation may be used for matching the tree tops in
Figures 2 and 4. Note that both the bilinear and the perspective transfor-
mations are generalisations of the affine transformation (79).

To choose parameters of a warping transformation 2’ = f(x) we may
consider a criterion function such as

LYY, f) =) (Y'(@) = Y (2))* + AD(f) (85)

z

where D(f) is a distortion measure of the warping function f and A is a con-
stant determining the balance between closeness of matching and distortion.
The distortion measure could for instance measure the deviation from linear-
ity of the warping function, and could be a sum of squared second derivatives
of f.

A useful type of warping consists af a net of locally bilinear transformation.
This method is used in Glasbey and Mardia (2001) to warp images fish,
haddock and whiting, see Figure 28, into each other. Similarly it is used in

Gustafsson et al. (2002) to match 2D gel electrophoresis images such as those
in Figures 9 and 10 into each other.

For reviews of image warping methods, see Glasbey and Mardia (1998,
2001).
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Figure 28: Images of fish warped into each other in Glasbey and Mardia
(2001). Haddocks in the upper row and whitings in the lower row.
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