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Introduction

The object of these notes is to provide an introduction to several subjects connected with
statistical inference from images and spatial data. Image analysis and spatial statistics
are sister fields, which both are extensive and grow at considerable speed. Thus only
some selected parts can be covered here and the choice of subjects is, of course, heavily
influenced by my experience and interests.

The first part “Images” includes a very brief introduction to basic digital image pro-
cessing, including image acquisition, image filtering and object feature measurements.
Pattern recognition, for instance based on features obtained from objects identified in
images, is treated at some length. Both the case with known classes, called discrim-

ination or supervised learning and the case with unknown classes, called clustering or
unsupervised learning are covered. The first part is concluded by a chapter on statistical
models for images. One class of models discussed consists of Bayesian models with a
Markov random field prior and with observation noise that is pixel-wise independent and
identically distributed.

The second part “Spatial Statistics” starts with some basic properties of spatial random
processes: covariance properties and prediction (kriging). Spatial point processes are
treated in some detail including image models constructed from point processes. The
second part is concluded by a brief introduction to shape analysis and the related problems
of image warping and image matching.

The third part “Applications” contains examples of image analysis applied to problems
in biology, bioinformatics and remote sensing. The examples cover analysis of data from
microarray (DNA chip) images, two-dimensional electrophoresis and aerial photographs
of forests.
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PART 1. IMAGES

1 Digital images

A digital image may be regarded as a matrix of pixels (picture elements), f = (fij) =
(fij, i = 1, . . . , m, j = 1, . . . , n). Here fij ∈ V where V is the set of possible pixel values,
e.g. V = {0, 1} for a binary image, V = {0, . . . , 255} for a grey level image with 256 grey
levels, conveniently coded as bytes, and V = {0, . . . , 255}3 for a colour image with 256
levels in each of the three colours Red, Green and Blue. Thus each pixel is specified both
by a location (i, j) and a pixel value fij . The first location index i specifies the row and
the second index j the column. Rows are counted either from above (most common in
the image processing literature) or from below, while columns are counted from the left.

1.1 Examples of images

Example 1.1. Aerial photographs of a thinning experiment.

Figure 1: Aerial photograph of the thinning experiment KU in northern Sealand with
Norway spruce trees. The position of the airplane at image acqusition was 560 m above
“Nadir”.
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Figure 2: Detail of the aerial photograph in Figure 1 covering the subplot D with very
heavy thinning.

Figure 1 shows an aerial photograph of the thinning experiment KU, in northern
Sealand, with six subplots which were subject to different thinning treatments (Dralle &
Rudemo, 1996). The six treatments were

A No thinning
B Light thinning
C Medium-heavy thinning
D Very heavy thinning
D–B In the youth very heavy thinning, later light thinning
R Heavy row thinning

The photograph was acquired from an airplane at the altitude 560 m above the point
”Nadir” in Figure 1. An enlargement of the subplot D is shown Figure 2.
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Figure 3: Detail of the aerial photograph in Figure 2 showing part of the southeastern
corner of subplot D.

A further enlargement of the southeast corner of subplot D is shown in Figure 3. Here
the individual pixels, each corresponding to a square of about 15 cm × 15 cm at ground
level, are visible.

In Figure 4 we see subplot D from a photograph acquired with the airplane in a position
to the northwest of the experimental area. The time of acquisition was August 4 at 10:08
AM, which implies that the sun was in the direction southeast, and the trees were thus
backlighted in Figure 4.

One object of the image analysis of the photographs obtained in this experiment was
to estimate the number of trees in the different subplots and to estimate the positions of
the tree tops. This application is further discussed in Chapter 10 in Part 3.
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Figure 4: Detail of aerial photograph of subplot D of backlighted Norway spruce trees
acquired from an oblique angle with the airplane located to the northwest of the experi-
mental area shown in Figure 1.

�
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Example 1.2. Weed seeds.

Figures 5 and 6 show images of 25 seeds of each of two weed species: curly dock, Rumex

crispus, and thyrse sorrel, Rumex thyrsiflorus. The images were obtained in the study
Petersen (1992), where seeds from 40 weed species were studied. The object was to find
features from images of the weed seeds which enable recognition of the individual species.
Problems of this type will be discussed in Chapter 2 on pattern recognition.

Figure 5: Images of seeds of Rumex crispus.
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In Figures 5 and 6 we see varying orientations and sizes of the seeds but also some
additional variation in the form of the contours. An important problem for series of
images of this type, in addition to the previously mentioned pattern recognition, is to
estimate some kind of average shape of a seed from a given species, and also to quantify
in terms of statistical distributions the probable deviations from this average shape. In
Chapter 7 on image warping and image matching such problems will be treated.

Figure 6: Images of seeds of Rumex thyrsiflorus.

�
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Example 1.3. Weed plants at an early stage.

Mattias Andersson (1998) studied weed and crop classification using a dataset with 27
images from each of 8 species: carrot, Daucus carota, which was the crop, and 7 weed
species. Figure 7 shows photographs of two carrot plants and two ladythumb smartweed
plants. Similarly, Figure 8 shows photographs of two fumitory plants and two corn spurry
plants.

Figure 7: Above two images of plants of carrot, Daucus carota, L., and below two images
of plants of ladythumb smartweed Polygonum persicaria, L.
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The images were obtained with a Canon EOS500N still camera with a 80 mm zoom
lens and mounted on a tri-pod pointing directly towards ground. The images obtained
were in colour, although they are shown as grey-level images in Figures 7 and 8. The
corresponding colour images may be obtained from
http://www.math.chalmers.se/˜rudemo/Images/WeedPlants/WeedPlants.html

The number of pixels of the images was originally 512×768 but was reduced to 512×512
by cutting. The pixel width corresponds to 0.195 mm at ground level.

Figure 8: Above two images of plants of fumitory, Fumaria officinalis, L., and below two
images of plants of corn spurry, Spergula arvensis, L.

�
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Example 1.4. Two-dimensional electrophoresis images.

Yeasts are uni-cellular fungi which reproduce rapidly and thus are highly suitable as
model systems for more complicated eucaryotic species such as mammals. In particular,
the genome of baker’s yeast , Saccharomyces cervisiae, was fully sequenced by Goffeau et
al. (1996).

Figures 9 and 10 show four images from an experiment with baker’s yeast and two
treatments corresponding to growth under normal conditions and growth under stress
with salt added to the nutrition solution, see Alipour et al. (2000) and Gustafsson et al.
(2002). In the experiment there were five repetitions both for the standard treatment,
corresponding to growth in a standard solution, and the treatment with growth under
salt stress, which in this experiment corresponds to growth in a 1 M sodium chloride
solution. Figure 9 shows the images obtained from two repetitions with the standard
treatment and Figure 10 shows images from two repetitions with salt added.

Each spot in a 2D electrophoresis image such as in Figures 9 and 10 corresponds to
a protein with a specific isoelectric point (pI) determined by isoelectric focusing in the
horizontal direction as a first step and a specific molecular weight determined by vertical
separation in a second step. For instance, under ideal conditions the protein molecules
perform in the second

Figure 9: Images from 2D gel electrophoresis of baker’s yeast grown in a standard solution.
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step a vertical Brownian motion with drift from a starting position at the top such that
small molecules travel a longer way than large molecules. Typically one can separate
proteins in the pH range, or more precisely the pI range, 4–7 and with molecular weights
in the range 5–200 kDa. Under favourable conditions thousands of proteins may thus be
resolved, and the size of a spot in the electrophoresis image is a measure of the level of
the corresponding protein.

The basic problem in an experiment such as the one described with yeast grown under
standard conditions and under salt stress is to find those proteins that are upregulated
and those that are downregulated under stress. As a first step we need to find those
spots in the four images in Figures 9 and 10 that correspond to each other, that is, which
measure the same protein. This is called matching of the images and may be performed
by a warping of images onto each other. It is clear from an inspection of the two images
in Figure 9, and similarly the two images in Figure 10, that also for experimental units
that have received the same treatment the locations of spots corresponding to one protein
can vary considerably due to random variation. And this random variation seems to be
more complicated than the variation corresponding to a Brownian motion as referred to
above.

Figure 10: Images from 2D gel electrophoresis of baker’s yeast grown under stress in a
solution with salt added.

�
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Example 1.5. Two-colour spotted microarrays.

In microarray analyses the expression level of thousands of genes can be estimated simulta-
neously. In two-colour spotted microarray analysis DNA fragments corresponding to different
genes are typically arrayed on glass slides in spots with a diameter of the order 100 µm.

Gray scale image, 020725cy53x8l30g40avg4.tif, log−transformed Gray scale image, 020725cy3wtl30g40avg4.tif, log−transformed

Figure 11: Images from an experiment with two varieties of Arabidopsis, Cy5 channel (left) for
a transgenic line and Cy3 channel (right) for the wild-type in a two-colour spotted microarray
experiment with 452 genes. The upper half with 20 rows contains all the 452 genes and the
lower half is a repetition of the upper half. The images are shown inverted (high intensity shown
as black) and a logarithmic scale transformation of intensities is also used.

Complementary DNA (cDNA) is synthesized from two sources of RNA of different origins and
labeled with different fluorescent dyes, for instance, one with the green dye Cy3 and the other
with the red dye Cy5. The pools of labeled cDNA are mixed together and allowed to hybridize
with the DNA fragments in the different spots on the glass slide. The slide is illuminated with
two laser light sources exciting the two fluorescent dyes and the intensity of emitted fluorescent
light is measured at two suitably chosen wavelengths.

Figure 11 shows grey-level images for the two channels of one array in an experiment com-
paring RNA from two varieties of Arabidopsis plants, transgenic line 3x8 and wild-type wt
(Kristensen et al. 2005). For clarity of display the images are shown inverted, that is black cor-
responds to high intensity levels and before inversion a logarithmic transformation is also used.
Data transformations and spot shape models for spotted microarrays are discussed in (Ekstrøm
et al. 2004) and applied to data from this experiment.
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Gray scale image, 020725cy53x8l30g40avg4.tif

Gray scale image, 020725cy3wtl30g40avg4.tif

Figure 12: Blow-up of rows 6–8 and columns 1–4 in Figure 11 with the Cy5 channel for the
transgenic line above and the Cy3 channel for the wild-type below.

Figure 12 shows a blow-up with 3 rows and 4 columns for both channels. One crucial question

analysed in experiments of this type is to find out which genes that are differentiably expressed,

that is show significantly higher or lower intensities. In this experiment it turned out that

remarkably few genes in the transgenic line were affected in the comparison with the wild-type.

One of the few genes affected was the gene that corresponds to the first spot in the middle row in

Figure 12. As indicated in the figure it was upregulated in the transgenic line. However, random

errors are large in this type of experiments and typically one needs to repeat the experiment for

several slides and make a subsequent statistical analysis of the results, cf. Chapter 8. �
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Example 1.6. Diffusing particles.

Colloidal particles in a suspension perform random motion essentially as a three-dimensional
Brownian motion with the diffusion coefficient as a crucial parameter. However, as the
particles come close they interact and this interaction may be described by an interaction
potential.

A series of images were obtained by video microscopy, see Kvarnström (20002a,2002b),
in a joint project with Lennart Lindfors, AstraZeneca, Mölndal. The object in this project
was to estimate the diffusion coefficient and, if possible, also the particle interaction
potential.

Figure 13: Image obtained by video microscopy showing diffusing particles. Particles in
phocus are shown as small distinct black objects.

Images of the diffusing particles were obtained with a time interval of 0.02 seconds
between images, and two consecutive images are shown

shown as small distinct black objects, while particles out of phocus are extended, the
degree of extension depending on the distance to the phocal plane. An object corre-
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sponding to a particle out of phocus is further either white or black in its central part
corresponding to the particle being above or below phocus, respectively.

Figure 14: Image obtained by video microscopy showing diffusing particles. This image
was obtained 0.2 seconds after the image in Figure 13.

�
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Example 1.7. Handwritten digits.

The MNIST database of handwritten images consists of a training set with 60000 digits
and an evaluation set of 10000 digits, see

http://yann.lecun.com/exdb/mnist/

Examples of images from this set is given in Figure 15, actually the first 100 digits from
the training set. The digit images are 28x28 pixel grey level images obtained from 20x20
pixel binary black and white images. The MNIST dataset has been used extensively as
a proving ground for pattern recognition methods and it will also be used in these notes
in Chapter 2.

Figure 15: Examples of 100 handwritten digits from the MNIST database.

�

16



1.2 Image filtering

Let w = (wk,l) = (wk,l, k = −p,−p + 1, . . . p, l = −p,−p + 1, . . . , p) be a matrix of real
numbers. A new image g may be constructed from a given image f by linear filtering,

gij =

p
∑

k=−p

p
∑

l=−p

wk,lfi+k,j+l. (1)

A simple filter example is a 3×3 averaging filter

w =





w−1,−1 w−1,0 w−1,1

w0,−1 w0,0 w0,1

w1,−1 w1,0 w1,1



 =
1
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1 1 1
1 1 1
1 1 1



 . (2)

A more smooth averaging filter is obtained by use of circular 2D Gaussian filter with
a variance parameter σ2,

wk,l = c exp(− 1

2σ2
(k2 + l2)), (3)

where c is chosen such that
p

∑

k=−p

p
∑

l=−p

wk,l = 1, (4)

and p is chosen so that wk,l is small outside the region determined by |k| ≤ p and |l| ≤ p.
Chose, for instance, p to be the smallest integer which is at least as large as 3σ.

Care has to be taken in (1) when the indices in the summation fall outside the original
image. One possibility is to restrict the filtering to those pairs (i, j) for which all indices
i+ k and j + l in (1) fall inside the image f , another possibility is to extend the original
image in a suitable way, and a third possibility is to modify the filter close to the image
edges.

The averaging filter (2) is relatively vulnerable to large errors in individual pixels. A
more robust filter is the nonlinear median filter which for 3×3 neighbourhood is given by

gij = median{fi+k,j+l : |k| ≤ p, |l| ≤ p} (5)

with p = 1. Here median(A) denotes the median for a finite set A of real numbers.

Image filtering can also be used to emphasize edges. Thus a linear filter with

w =





w−1,−1 w−1,0 w−1,1

w0,−1 w0,0 w0,1

w1,−1 w1,0 w1,1



 =
1

6





−1 0 1
−1 0 1
−1 0 1



 . (6)

will tend to emphasize vertical edges, and similarly the filter

w =





w−1,−1 w−1,0 w−1,1

w0,−1 w0,0 w0,1

w1,−1 w1,0 w1,1



 =
1

6





−1 −1 −1
0 0 0
1 1 1



 . (7)

will tend to emphasize horisontal edges.
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Figure 16: Upper part: Smoothed version of the image in Figure 2 by use of circular
2D Gaussian filter with σ = 4.5 pixel-widths. Lower part: The same image viewn in
perspective as a 3D surface with light intensity as the vertical coordinate.

Example 1.8. Aerial photographs of a thinning experiment. Continuation.

Let us smooth the image in Figure 2 by use of a circular 2D Gaussian filter with a suitably
chosen parameter σ to see if we can estimate the locations of the trees as ’whiteness’
maxima in the smoothed image. With σ = 4.5 we find the image in Figure 16.

From Figure 16 and Figure 2 we see that maxima in the smoothed image seem to
correspond well to the location of the trees. This is also indicated by Figure 17 which
shows the locations of the maxima of the smoothed image (Here we have only included
maxima which have a distance from the nearest edge which exceeds 3σ.)
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Figure 17: Location of maxima in Figure 16.

�

1.3 Histograms, thresholding and segmentation

An important characteristic of an image is its histogram. For a grey scale image, f =
(fij) = (fij , i = 1, . . . , m, j = 1, . . . , n), where fij ∈ V with V as a set of real numbers,
the histogram is defined as

hk = card({(i, j) : fij ∈ Ik}), k = 1, . . . , K, (8)

where card(A) denotes the number of elements in the set A and {I1, . . . , IK} is a set of
disjoint intervals with V as there union.

If an image consists of two parts with grey levels that do not overlap too much the
histogram can be used to find a threshold level t which enables us to divide the image into
two segments corresponding to these parts. Thus we can define a binary image b = (bij)
with two levels, 0 and 1, by putting

bij =

{

0 if fij ≤ t
1 if fij > t.

(9)

Segmentation by use of a threshold level found by inspection of the histogram of an image
is illustrated in the following example.
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Example 1.9. Weed seeds. Continuation.

In the upper part Figure 18 we see one of the seeds from Figure 5, actually the seed
in the lower left corner rotated 90 degrees. In the lower part of the figure we see the
corresponding histogram.
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3000
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Figure 18: Above an image of a Rumex crispus seed and below the corresponding his-
togram.

It seems clear that a threshold level somewhere between t = 0.5 and t = 0.8 would
be suitable. In Figure 19 we see segmentations with the levels t = 0.5, upper left,
t = 0.8, upper right, and t = 0.65, lower left. In the lower right part of the image we
see a segmentation obtained from the lower left image by filling out the white “holes”, an
operation that can be performed in several ways.

�
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Figure 19: Binary images obtained by thresholding of the image in Figure 18 with the
levels t = 0.5 (upper left), t = 0.8 (upper right), and t = 0.65 (lower left). The lower
right image is obtained from the lower left image by filling out holes.
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1.3.1 Segmentation by a normal mixture model

In many cases, as in Example 1.9 with a bimodal histogram it is fairly easy to separate
components in a mixture. We will now describe a normal mixture model which can be
used to get a precise threshold value and which also can be used in cases where there are
not two modes in the histogram but one component only shows up as a prolonged tail.
We suppose that the sets Ik in (8) consist of consecutive intervals with midpoints xk and
equal lengths ∆. Let φ(x) = (1/

√
2π) exp (−x2/2) and put

f(x; p1, µ1, σ1, µ2, σ2) =
p1
σ1
φ((x− µ1)/σ1) +

(1− p1)

σ2
φ((x− µ2)/σ2). (10)

We note that f(·; p1, µ1, σ1, µ2, σ2) integrates to one, and if the interval length ∆ is small
we should have

∆
∑

k

f(xk; p1, µ1, σ1, µ2, σ2) ≈ 1. (11)

Let n =
∑

k hk denote the total number of pixels and assume that

hk ≈ n∆f(xk; p1, µ1, σ1, µ2, σ2). (12)

To estimate the parameters p1, µ1, σ1, µ2, σ2 we minimize

Q(p1, µ1, σ1, µ2, σ2) =
∑

k

(hk − n∆f(xk; p1, µ1, σ1, µ2, σ2))
2. (13)

Example 1.10. Weed plants at an early stage. Continuation

In the upper left part of Figure 20 we see the grey level image of a weed plant. The
original a image is colour a image with three channels, blue, green and red. To separate
plant pixels from soil pixels we first regard the green channel which is shown in the upper
right part of Figure 20. To improve the separation of plant and soil pixels we consider
the normalized green colour, which for pixel (i, j) has the pixel value

gij = Round( 255Gij / (Bij +Gij +Rij) + 1), (14)

where Bij , Gij and Rij are the blue, green and red channel values for the colour image,
and Round(·) denotes rounding to the nearest integer. The normalized green image is
shown in the lower left part of Figure 20. The histogram for the normalized green channel
is shown in the left part of Figure 21. Can you suggest why it is useful to normalize the
green channel before computing the histogram? Now we fit the normal mixture model
given by (10) and (12) for the normalized green channel by minimizing Q in (13) with
the restriction µ1 > µ2. Thus the first component should correspond to plant pixels. Let
p̂1, µ̂1, σ̂1, µ̂2, σ̂2 denote the estimated parameters. In Figure 21 we show the histogram
and the fitted normal components.

To segment an images we could then choose to consider a pixel (i, j) as a plant pixel
if gij > T , where the threshold T̂ is obtained by solving the equation

p̂1
σ̂1
φ((T̂ − µ̂1)/σ̂1) =

(1− p̂1)

σ̂2
φ((T̂ − µ̂2)/σ̂2) (15)
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(A) (B)

(C) (D)

Figure 20: Images of a weed plant, lamb’s quarter Chenopodium album, L., (A) grey scale
image, (B) green channel image, (C) normalized green channel image, and (D) binary
black and white image after thresholding.
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Figure 21: Left: histogram for the normalized green channel shown in the lower left part
of Figure 20 and the two components shown as fully drawn and dashed curves. Right:
the two components shown with a log scale on the vertical axis; here the threshold where
the the two curves cross can be seen.

and otherwise as a soil pixel. In the lower right part of Figure 20 we show the resulting
binary black and white image obtained by thresholding the normalized green channnel.
For the image shown in Figure 20 we find the following parameter estimates for the two
component normal mixture model

p̂1 = 0.263, µ̂1 = 126, σ̂1 = 7.22, µ̂2 = 79.0, σ̂2 = 3.02, T̂ = 93.6. (16)
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1.4 The Hough transform

Often one tries to find curves of specific types in images, for instance circles, ellipses or
lines. A useful method to find such curves is the Hough transform. We shall here only
look at the use of the Hough transform to find straight lines.

v

r

r = x cos(v) + y sin(v)

x

y

Figure 22: Representation of line in terms of angle and distance to origo.

Suppose that we have found a set S of points in an image, such as the set of tree tops
in Figure 17. We are interested in finding out whether some of these points lie on lines.
It is here convenient to use a representation of a line in terms of the distance r to the
origin and the angle that the normal from the origin to the line forms with the horizontal
axis,

r = xcos(v) + ysin(v), (17)

see Figure 22. A point (x, y) in the original image corresponds now to a curve in the
(r, v)-plane obtained by regarding r as a function of v in (17) for fixed (x, y). In practice
we discretize the (r, v)-plane into pixels regarding it as an image H and start by assigning
zero to all the pixels in H . Then for each point (x, y) ∈ S we add one to all pixels in H
which the curve (17) passes through.

For the set S of maxima in Figure 17 the corresponding Hough transform for finding
lines is shown in Figure 23. In particular one finds in Figure 23 three maxima in the
upper left part all corresponding to the angle v equal to 16 degrees (a corresponding
tick mark is placed on the horizontal axis) and three distances r (marked with three tick
marks on the vertical axis close to the maximal distance rmax. The corresponding three
lines are shown in Figure 24.

The three lines found in Figure 24 correspond actually to three lines in plot R in
Figure 1 with “Heavy row thinning”, that is from the original planting in rows thinning is
performed by eliminating totally some rows keeping, say, only every third row. See also
Figure 2 where the rows are clearly seen in the right part of the image.
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Figure 23: Hough transform for Figure 17 with angle v on the horizontal axis extending
from 0 to 180 degrees and distance r on the vertical axis extending from −rmax to rmax,
where rmax is the length of the diagonal in Figure 2.

Figure 24: Location of maxima in Figure 16 together with three lines found by the Hough
transform.
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1.5 Morphological operations

Morphological operations can be used to regularize or clean binary images. Here we will
only describe some of the most basic operations such as erosion, dilation, opening and
closing. These operations are defined by a structure element S consisting of a small
number of pixels with one specific pixel called reference pixel. We can, for instance,
choose S as a 3×3 set of pixels with the centre pixel as reference. Let Si,j denote the
structure element moved with reference pixel to (i, j). Let A be a set of pixels such as
the set consisting of black pixels in one of the four images in Figure 19.

The erosion of A, denoted A⊖ S, is defined by

A⊖ S = {(i, j) : Si,j ⊆ A} (18)

The dilation of A, denoted A⊕ S, is defined by

A⊕ S = (Ac ⊖ S)c, (19)

where Ac is the complement af A, that is the set of pixels outside A.

The operations opening and closing, denoted ψS(A) and φS(A), are defined by

ψS(A) = (A⊖ S)⊕ S ′, (20)

where S ′ denotes the structure element rotated 180o around the reference pixel, and

φS(A) = (A⊕ S)⊖ S ′. (21)

Thus an opening consists of an erosion followed by a dilation.

1.6 Object feature measurements

In connection with pattern recognition as mentioned in examples 1.2 and 1.3 we seek
features of the objects, in the examples seeds and plants, which would enable us to
distinguish between different classes of objects. Examples of such features are areas
and perimeters of objects. Consider a set A of pixels as in the previous section on
morphological operations. The area of A is typically defined as the number of pixels in
A, possibly with some regularization operation first applied to A.

To define the perimeter we need the concept of neighbouring pixels. Typically we con-
sider neighbourhoods consisting of either four or eight neighbours. The 4-neighbourhood
of pixel (i, j) consists of the four pixels (i− 1, j), (i+ 1, j), (i, j − 1) and (i, j + 1). The
8-neighbourhood of pixel (i, j) consists of the aforementioned pixels and in addition the
pixels (i− 1, j − 1), (i− 1, j + 1), (i+ 1, j − 1) and (i+ 1, j + 1).

Edge pixels of a set A may be defined as those pixels of A that have at least one
neighbour from Ac, the complement of A. Let N(A) denote the number of edge pixels of
A with at least one 4-neighbour in Ac. Then one can show that

perimeter(A) = N(A)/k4, (22)

where

k4 =
4

π

∫ π/4

0

cos θ dθ =
4

π/
√
2
≈ 0.900, (23)
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is an approximately unbiased estimate of the perimeter of A provided that all orientations
of the perimeter are approximately equally common. The unit of the perimeter estimate
(22) is pixel width. As with the area, it may be useful to regularize A in some way
before evaluating the perimeter. For more accurate perimeter estimates, see Glasbey and
Horgan (1995), pp 165–168, and further references given there.

A feature often used is the compactness of an object defined to be

compactness(A) = 4π
area(A)

(perimeter(A))2
. (24)

Sometimes it is useful to compare a set A of pixels with the convex hull of A, that is
the smallest convex set containing A. Some care has to taken in defining convexity for a
set of pixels; one possibility is to define convexity for the point set of pixel centres. The
convex perimeter of a set A is then defined to be the perimeter of the convex hull of A.
One useful feature is the convexity of A defined by

convexity(A) =
convex_perimeter(A)

perimeter(A)
. (25)

1.7 Moment features

Consider a grey level or binary image f = (fij) = (fij), and let A ⊆ {1, . . . , m}×{1, . . . , n}
be a subset of pixels, typically corresponding to an object but sometimes the whole image.
The moment of order (p, q) in A is defined as

mpq = mpq(A) =
∑

(i,j)∈A

ipjqfij, p = 0, 1. . . . , q = 0, 1, . . . , (26)

and the centroid is defined as

centroid = centroid(A) = (
m10

m00
,
m01

m00
). (27)

We also consider central moments (with respect to the centroid)

µpq = µpq(A) =
∑

(i,j)∈A

(i− m10

m00

)p(j − m01

m00

)qfij , p+ q > 0. (28)

One could note that central moments are invariant with respect to translation of objects.
It is possible to construct moments that are also invariant with respect to rotations. Two
such second order moments are

µ20 + µ20 and (µ20 − µ20)
2 + 4µ2

11. (29)

An informative discussion of different types of moments with literature references can be
found in Glasbey & Horgan (1994), pages 156–161.

In Example 1.10 we saw how we could discriminate between plant and soil pixels
quite well by yse of a suitable feature, the normalized green colour. To discriminate
between classes of objects we can as will be seen in detail in the next chapter on pattern
recognition use a number of suitable chosen feature variables. In the following example
we will consider two feature variables and a suitable plotting technique.
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Example 1.11. Handwritten digits. Continuation

In this example we will consider discrimination between digits “one” and “two” by use
of two second order moments. We use digits “one” and “two” among the first 400 digits in
MNIST. Plotting moment µ11 on the vertical axis versus moment µ20 on the horizontal
axis we get the plot shown in Figure 25. Try to draw by free hand first a straight line
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Figure 25: Plot of µ11 versus moment µ20 for handwritten digits digits 1 and 2 among
the the first 400 digits in the MNIST data base.

and then an ellipse that gives as good a discrimination as possible betweens the “one”
and “two” digits. In the next chapter we shall describe systematic methods to draw such
boundaries.

1.8 Exercises

The images used in the exercises below may be found at
http://www.math.chalmers.se/˜rudemo/images.html

Exercise 1.1. Let R, G and B denote the values in the red, green and blue channels for one
of the images from Example 1.3. Get the grey-level image corresponding to normalized
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green,

g =
G

R +G+B
.

Exercise 1.2. Find the histogram for the image of Exercise 1.1. Try to segment the image
by use of the histogram.

Exercise 1.3. Compute area, perimeter and compactness for the green segment for the
image of the two previous exercises.

Exercise 1.4. Get one of the seed images from Example 1.2. Note that one has to resample
the image to get the correct form of the seed. How can that be done? After resampling,
reduce the number of columns to get a square image.

Exercise 1.5. Apply the averaging filter (2), the median filter (5) and the edge emphasizing
filters (6) and (7) to the image of the previous exercise.

Exercise 1.6. Consider the image from Exercise 1.4. Compute the histogram and trans-
form to a binary image. Zoom in to see the individual pixels at the object edge. Apply the
operations erosion, dilation, opening and closing. What is the effect of theses operations?
What happens when one iterates these operations?

1.9 Literature on image analysis

There is a wealth of books on digital image processing. Glasbey and Horgan (1995) give
an excellent treatment from a statistical point of view focussing on examples from biology.
A mathematically oriented text is Rosenfeld and Kak (1982), which is now a bit old but
still quite useful. A comprehensive introduction to image processing and analysis may be
found in Sonka, Hlavac and Boyle (1999).
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