2  Pattern recognition

Humans are particularly good at recognizing many patterns such as faces and voices of
other individuals. A possibly harmful behaviour of another person or the appearance
of a possibly dangerous animal may also be quickly identified. Obviously such pattern
recognition abilities have implied a survival advantage during the evolution of humans.

By training humans can also be astonishingly good at tasks such as recognizing the
species of a bird at a long distance, perhaps by using a combination of features such as the
bird’s shape and colours, its vocalization and its mode of flight. The human observer’s
previous knowledge of how common possible bird species are in the current environment
at the given time of the year may also be highly useful in identifying the species.

One important task in pattern recognition based on digital images is to try to mimic
human pattern recognition by choice of suitable features for recognizing and classifying
observed objects. We can divide the field of pattern classification into two disciplines
depending on the our previous knowledge of the possible classes. The most well developed
discipline is discriminant analysis where we assume that we have a given number of classes
and that we have a new object that we want to assign to one of these classes. Typically
we also assume here that we have a set of objects for which we know the classes. Such
a data set, often called a training set, will help us to choose the relevant features of the
objects and to design the algorithm for recognizing the class by use of the chosen features.
Therefore discriminant analysis is often called supervised pattern recognition or learning
with a teacher.

In the second discipline, called cluster analysis we do not assume any prior knowledge
of possible classes. However, we will typically assume that we also here have a given
data set but without any classification. The data set will be used to find clusters, and
the discipline is often referred to as unsupervised pattern recognition or learning without
a teacher.

We will start by discussing discriminant analysis. Several of the sets of images in the
previous chapter, the weed seeds in Example 1.2, the weed plants in Example 1.3 and the
handwritten digits in Example 1.7 describe problems that call for discriminant analysis.

2.1 Optimal discrimination with two classes and a one feature
variable

Suppose that we have two classes w; and wy and a real-valued feature variable X for
each object to be classified. Assume that we know how common the two classes are, that
is, we know the prior probabilities of the two classes. Assume also that we know the
distributions of the feature variable corresponding to the two classes.

For ¢« = 1,2, let 7; denote the prior probability of class w; and let f; be the probability
density of X for an observation from class w;, or the probability function, fi(z) = P(X =
x), if X is a discrete random variable.

The problem of deciding if an object comes from class w; or wy is to be based on
observation of the corresponding feature variable X. Thus we need to specify two disjoint
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sets Ay and A, with A; U Ay = R and choose class w; if X € A;. To find optimal sets
we need further specification corresponding to how costly it is to make different kinds of
errors, that is the cost of choosing class w; when ws is true and vice versa. Let us first
assume that these cost are equal, and more specifically, that we want to minimize the
probability of misclassification.

It turns out that the probability of misclassification is minimized if we use the following
rule:
choose class wy if w1 f1(x) > m fo(x), (30)

choose class ws if m f1(x) < mo fo(x). (31)

To show that a decision rule satisfying (30) and (31) is optimal we note that the proba-
bility of misclassification is generally given by

Pr(misclassification) = Pr(w; true and misclassification) + Pr(ws true and misclassification)

= Pr(w) Pr(misclassification|w; ) + Pr(wsz) Pr(misclassification|ws)

=m | filx)de+m [ folz)dx.
As Ar

In Figure 26 the set A; extends up to a threshold ¢ while A, is chosen above t. The
probability of misclassification is equal to the area of the coloured region, and it follows
that it is minimized precisely when the threshold is the horisontal location of the crossing
point of the two curves. Thus the misclassification probability is minimized if A; and A,
are chosen as in (30) and (31). (We note that z-values such that m fi(x) = my fo(x) may
be brought to either A; or A, without affecting the misclassification probability.)

Al t A2 X

Figure 26: Probability of misclassification is given by the coloured area. The set A; where
class wy is chosen extends here up to the threshold ¢, while A, is chosen above t.

Example 2.12. Two-class discriminant analysis with estimated normal densities.

Suppose that we have a training set with n; objects from class w; and ns objects from
class wy. We assume that we have obtained random samples from both classes and that
the two samples are independent. We assume further that the variable X is normally
distributed with expectation y; and variance o7 in class w;, i = 1,2, where we assume that

expectations are different in the two classes while the variances may either be assumed
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to be equal or unequal. Let the observations be denoted X;,,, m = 1,...,n;, i = 1,2.
Then it is natural to estimate the expectation in class w; by

1 &
1 = — Xim, 1=1,2. 32
i nz i (32)

m=1
If we make no assumption on equality of the variances we use the variance estimates

1 &
§2 = > (X — f1)?, i=1,2, (33)

m=1

but if we assume variance equality we use the estimate

§2 — (n1 — 1)5% + (ng — 1)5% (34)

n1+n2—2

for the common variance. O O

We note that compared to Example 2.12 we have in Example 1.10, where we have
classified pixels into soil or plant pixels, a similar but more complicated situation as we
here do not have training sets for soil and plant pixels but use the model specified by
(10) and (12) for all pixels. Also the proportions of soil and plant pixels are estimated.

2.2  Optimal discrimination with £ classes and a d-dimensional
feature vector

Suppose now that we have k classes w;,7 = 1,...,k, and a d-dimensional feature vector
X for each object to be classified. Let m; be the prior probability of class w; and let f; be
the probability density of X for an observation from class w;, i = 1,..., k. Let us further
assume that the cost of assigning an object to class w; is ¢(i]j) when the true class is w;.
Rather than minimizing the misclassification probability we now want to minimize the
expected cost.

A decision function for our problem is now specified by a partition of d-dimensional
space R? into k disjoint sets A;, ..., Ay with U¥_| A; = R%. If X € A; we assign our object
to class w;, 1 =1,...,k.

Now it turns out that the expected cost is minimized if the sets A; satisfy the following

condition
k

r € A; = subscript ¢ minimizes Zc(i|j)7rjfj(x). (35)
j=1
If the sum is minimized by several i-values for a certain x-value, then this z-value may
be allocated to A; for any of these i-values.

To show that a decision rule which satisfies (35) is optimal let us consider an arbitrary
decision function specified by a a partition A, ..., A; of R?. The expected cost for this
decision rule may be written

> [ S eliliymade,

i j=1
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from which it follows that a decision rule satisfying the condition (35) is optimal.

Let us now assume that all misclassifications have the same cost, and that the cost of a
correct decision is zero. Our criterion then implies that we shall minimize the probability
of misclassification, and it is not difficult to see that we shall prefer class w; to class w; if

mifi(z) > m; fi(z) (36)

similar to what we found previously for the case with two classes and one feature variable.

2.3 Normally distributed feature vectors, linear and quadratic
discrimination

A d-dimensional random (column) vector X is said to be N(u,C), that is have a d-
dimensional normal distribution with expectation vector p and covariance matrix C if
X has the d-dimensional density function

Fx(e) = Gy (g = 1O = ), (37)

where det C denotes the determinant of the matrix C.

An important special case in discrimination is to assume that the d-dimensional fea-
ture vector X has a multivariate normal distribution N(u;,C;) in class w;, ¢ = 1,... k.
Sometimes the covariance matrices are assumed to be equal, that is

C=C, i=1,... k (38)

Let us first assume that the covariance matrices are all equal to C' and that we want to
minimize the probability of misclassification. A computation from (36) and (121) shows
that if X = x is observed we shall prefer class w; to w; if

(1 = 1) O — 5 (4 ) > (39)

(2

We note that (39) is linear in x and this case is therefore often called linear discrimination.

Let us now find a corresponding rule without the assumption (38). It follows from (36)
and (121) that we shall prefer class w; to w; if

1 1
5 (O = O+ (O = iy O+ 5 (5 € g = 1 O )
W'(det Ci)l/Q
Ip TERT) 4
- m;(det C;)1/2 (40)

We see that the border between the two regions in d-dimensional space where we should or
should not prefer w; to w; is given by a quadratic surface. When we allow the covariance
matrices for the classes to vary we therefore talk about quadratic discrimination compared
to the linear discrimination referred to above.
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Example 2.13. k-class discriminant analysis with estimated normal densities.

Suppose that we have a training set with n; objects from class w;, ¢ = 1,..., k. From
all the classes we assume that we have obtained independent random samples of objects.
We assume further that the vector X is normally distributed with expectation vector
w; and covariance matrix C; in class w;. Let the observations vectors be denoted Xj,,,

m=1,...,n;,i=1,..., k. Then it is natural to estimate the expectation vector in class
w; by
1 &
i = — > Xim, i=12. (41)
" m=1

If we make no assumption on equality of the covariance matrices we use the covariance
matrix estimates

~ 1 i A o .

m=1
If we assume equality of the covariance matrices we use instead the estimate

k

for the common covariance matrix C. O O

2.4  Error rate estimation. Resubstitution and cross-validation

An important issue in discriminant analysis is to estimate the rates of misclassification
errors. One simple type of error estimates, often called resubstitution error-rate estimates,
is obtained by directly computing the observed error rates in the training set for the chosen
allocation rule.

However, the resubstition error-rates are typically too optimistic as the objects used to
evaluate the error rates are also used in the choice of the discriminator including estima-
tion of parameters in the discriminator. Particularly if the discriminator is complicated,
for instance if it contains many parameters, we can grossly underestimate the error-rate
corresponding to classification of a new object.

One way of avoiding the bias of resubstitution error rates is to divide the available
data into one training set and one evaluation set, for instance, by using half of the data
for estimation and half of it for evaluation. One critisism of this procedure is that it may
seem wasteful if data are scarce.

Nowadays one often uses resampling methods for evaluation of error rates. One such
method is k-fold cross-validation. Then we divide the data set consisting of n objects
into k equal or approximately equal groups, often by random choice of which objects that
should go into group 7,7 = 1, ..., k. Then we fix j temporarily and use all objects except
those in group j to estimate parameters and compute error average rates for all objects in
group j. This procedure is repeated for all groups and we finally average error rates also
over groups to get overall error rate estimates. Often kK =5 or k = 10 is recommended.
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Example 2.14. Handwritten digits. Digits 1 and 2

We use the same data as in Example 1.11 with one small modification consisting
of standardization of the two moment features by linear transformations so that they
get average zero and varince one. We now use both liner and quadratic discrimination
and get, respectively, the linear and elliptic boundaries shown in Figure 27. We also
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Figure 27: Plot of standardized moments j1; versus pgp for handwritten digits digits 1
and 2 among the the first 400 digits in the MNIST data base together with the class
boundaries corresponding to linear and quadratic discrimination.

computed the resubstitution and 5-fold cross-validation errors for the liner and quadratic
discrimination models. It turned out that all four error rate estimates were identical and
equal to 15 %. O

Example 2.15. Handwritten digits. Moment features

We use the first 8000 digits in the MNIST database, see Example 1.7, and consider
discrimination between the 10 types of digits by use of all central moment features 1,
in (28) with p+ ¢ < K. We computed the resubstitution and the 10-fold cross-validation
error estimates for all K < 13, see Figure 28. Note that both for the linear discrimination
full drawn curves and for the quadratic discrimination dashed curves the resubstitution
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errors are smaller than the cross-validation errors. For the linear discrimination the cross-
validation minimum error is 12.3 % for order 12 and for the quadratic discrimination the
cross-validation minimum error is 9.6 % for order 7.

0.8 T T T T T T

Resubstitution error linear
10-fold CV error linear

— — Resubstitution error quadratic
0.7} — — 10-fold CV error quadratic .

0.6

0.3

0.1F

Figure 28: Plot of error probabilities for linear discrimination, full drawn curves, and
quadratic discrimination, dashed curves. Resubstitution error curves are in gray and
cross-validation error curves are in black. Order K on the horizontal axis means that all
moments p,, with p + ¢ < K are used as features to discriminate between the digits.

2.5 Nearest neighbour classifaction

Suppose that we have a distance function §(z, z’) between feature vectors x and z’. Ex-
amples of distance functions for d-dimensional feature vectors are the Fuclidean distance

d

O(x,a") = (Y (a0 —a})?)'/? (44)

i=1

and 6 = 1 — r, where r are is the correlation

TR "
(0 (s — 2)2)V2 (L (af — 2/)2)1/2

r(z,2) =
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where 7 and 7’ are the arithmetic means of the vectors x and 2.

A useful discrimination method is the m-nearest neighbour rule, which proceeds as
follows. Suppose we have a training set for which we know the correct classification.
For a new observation we find the m nearest neighbours in the the training set, and we
classify the new observation by majority voting among these nearest neighbours.

Example 2.16. Handwritten digits. Nearest neighbour discrimination

We use the same data as in Example 2.14. The m-nearest neighbour classications with
m=3 and 5 are shown in Figure 29. We also computed the resubstitution and 5-fold

3-Nearest Neighbours 5-Nearest Neighbours

Figure 29: Plot of standardized moments w1, versus pugy for handwritten digits digits
1 and 2 among the the first 400 digits in the MNIST data base together classifications
from m-nearest neighbour classification for m = 3 and m = 5. Digit colours indicate
classification: black digits are classified as 1 and grey digits are classified as 2.

cross-validation errors for nearest m-neighbour methods with m ranging from 1 to 10.
the result is shown in Figure 30. The minimum crossvalidated error is obtained for m = 5
and equals 12 %. O

2.6 Selection of features

If we have a large number of possible features it is useful to make a selection of features.
One often used method is forward selection where we start by choosing the single feature
which gives the smallest error rate. Then we add that feature of the remaining ones
which together with the first chosen feature gives the best performance. The procedure
is continued a suitable number of steps. If one uses cross-validation error rate estimates,
we typically find that the error rates first decrease when we add new variables but then
a minimum is obtained and after that the error rate increases due to overfitting.

In backward selection we start by including all features. Then we eliminate one feature
so that the resulting error rate is as small as possible. The procedure is iterated a suitable
number of steps.
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Figure 30: Plot of resubstitution and 5-fold cross validation error estimates for m-nearest
neighbour classications for m = 1,...,10.

2.7 Cluster analysis, k-means clustering

Suppose that we have collected a number of colonies of bacteria of a type that has not
been studied before but which we want to order in classes corresponding species or sub-
species. That is, we want to construct a taxonomy for these bacteria. Instead of an
individual bacterial particle the natural unit here is a homogeneous colony of bacteria.

One possible procedure would be to measure a number of variables, say d for each
individual colony and to see if these variables tend produce clusters in d-space. Let X
denote the d-dimensional vector of measurements, and let f(x) denotes the corresponding
probability density (or probability function if X is discrete). Corresponding to k classes
we would then expect that f could be written as a mixture,

F(@) =3 pifia) (46)

where f; denotes the probability density in the ith class, and p; the proportion of the 7th
class.

Let n denote the number of colonies observed, and let X;, 7 = 1,...,n, denote our
observed d-dimensional vectors. The basic problem in cluster analysis can then be for-
mulated as estimation of the number k of classes and also the functions f;, 1 =1,... k,
on the basis of our observations Xi, ..., X,,. Note that this problem is much more com-
plicated than the problems previously discussed in this chapter as we neither know the
number of classes, nor which observations that belong to the different classes.
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One procedure that is often used is k-means clustering. Consider d-dimensional ob-
servations and let us for simplicity regard Euclidean distances between observations. We
assume that there are k classes and choose first randomly £ cluster centers among the
observations X;, j = 1,...,n. Then we alternate between two types of steps. In the
observation allocation step we suppose that we have cluster centers C;,i = 1,...,k, and
allocate each observation to the closest cluster center. In the cluster center recomputation
step we compute new cluster centers as averages of all observations allocated to each clus-
ter. We alternate between the two types of steps until there are no changes. Typically
we will also repeat the procedure a number of times with different (randomly chosen)
starting cluster centres and finally choose the clustering which has the the minimal total
sum of within cluster square distances to cluster centres.

Example 2.17. Handwritten digits. Cluster analysis

We use the same data as in Example 2.14 but now we cluster them by k-means clustering
with £ = 2, 3 and 4. The results are shown in Figure 31.

0

2.8 Case studies
2.8.1 Weed seed identification

In Peterson (1992) weed seed identification was studied with 25 images of seeds for each
of 40 species.

A large number of possible features were investigated and with 25 features an optimal
cross-validation error rate of 2.3% was found.

2.8.2 Weed plant identification

Andersson (1998) studied identification of plants at an early stage of carrot and seven
weed species. With 27 images for each of the eight plant species a cross-validation error
rate of about 16% was found with 7 or 8 features.

2.8.3 Comparison of discrimination methods for microarray data

In Dudoit, Friedyland and Speed (2000) different discrimation methods are compared for
classification of tumors based on gene expression data from three datasets available on
the Internet. In particular, the nearest neighbour method is found to perform well in
these examples. The number of neighbours is here determined by cross-validation.
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Figure 31: Results from k-means clustering with £ = 2, 3 and 4 of the same data as used
in Example 2.14.
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2.9 Exercises

Images and data sets for the exercises below may be found from the course home pages.

Ezxercise 2.1. Fisher’s Iris data, a classical data set. One of the famous data sets
in statistics is Fisher’s Iris data, used in Fisher (1936), where discriminant analysis was
introduced. Consider the data in Table 1 with four variables measured for 50 plants of
each of three Iris species. The data were assembled by E. Anderson, cf. Anderson (1935),
and analysed in detail by Fisher (1936).

(a). Draw scatter plots for all 150 observations and all six pairs of variables. Alternatively,
if you do not have access to a computer, draw scatter plots for subsets with, say, 5 plants
from each species, and for, say, two pairs of variables.

(b). Find the best linear discriminators using all four variables for discrimination between
all pairs of the three species. Alternatively, without a computer, describe with formulas
how the computations are made. Under what assumptions is this discrimination method
optimal.

(c). Find the best quadratic discriminators using all four variables for discrimination
between all pairs of the three species. Alternatively, without a computer, describe with
formulas how the computations are made. Under what assumptions is this discrimination
method optimal.

(d). Find the optimal combination of two variables for discriminating between the three
species. Alternatively, without a computer, describe with formulas how the computations
are made.
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5.2
5.4
5.1

Petal
width

2.5
1.9
2.1
1.8
2.2
2.1
1.7
1.8
1.8
2.5
2

1.9
2.1
2

24
2.3
1.8
2.2
2.3
1.5
2.3
2

2

1.8
2.1
1.8
1.8
1.8
2.1
1.6
1.9
2

2.2
1.5
1.4
2.3
24
1.8
1.8
2.1
24
2.3
1.9
2.3
2.5
2.3
1.9
2

2.3
1.8

Table 1. Measurements of four variables (in cm) of flowers for 50 plants each of three Iris

species, from Fisher (1936).
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FExercise 2.2. Weed seeds. Consider the weed seed images of Rumex crispus and Rumex
thyrsiflorus from Figures 5 and 6 in Example 1.2 or a subset of these 25 plus 25 images.
(a). Compute the areas of the seeds and the convexity of them for the images considered.
(b). How well can you discriminate between the two species by use of the feature con-
vexity and linear discrimination?

(c). How well can you discriminate between the two species by use of the feature convex-
ity and quadratic discrimination?

(d). How well can you discriminate between the two species by use of the features con-
vexity and area and linear discrimination?

(e). How well can you discriminate between the two species by use of the features con-
vexity and area and quadratic discrimination?

Exercise 2.3. Weed plants. Consider images of carrot and weed plants such as those
described in Example 1.3. Choose two or more species and see well you can discriminate
between them by suitably chosen featuers. Compare with the results found by Andersson
(1998).

2.10 Literature on pattern recognition

A good introductory text on statistical pattern recognition is Fukunaga (1990). Many
algorithms, including neural networks, are describe in Ripley (1996) which also contains
an extensive list of references. A highly useful review of clustering methods with particular
emphasis on applications with image data is given in Jain, Murty and Flynn (1999).
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