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3 Statistical image modelling

In Figure 32 we see two examples of images obtained by simulation from simple models
with independent pixel values. To the left we have a ’pepper-and-salt’ pattern corre-
sponding to equal probababilities for black and white. To the right we have a grey-level
image from a normal distribution (µ, σ2) with µ = 0.5, σ = 0.2 and truncated to the
interval [0, 1], that is, if a value less than 0 was generated it was replace by 0 and if a
value larger than 1 was generated it was replaced by 1.

Figure 32: Images of size 64× 64 obtained by simulation from models with independent
pixel values: to the left a black-and-white image with equal probabilities for the two
colours, and to the right a grey-level image with values from a normal distribution with
expectation µ = 0.5, a standard deviation σ = 0.2 and truncated to the interval [0, 1] .

In the following sections we will generalize to models with dependence between pixel
values. We start by considering Markov random field models defined by a neighbourhood
for each pixel and a corresponding conditional distribution for the pixel value given the
pixel values in the neighbourhood.

3.1 Markov random field models

Let us regard a random image X = (Xs, s ∈ S), where S denotes the set of sites (pixel
locations). We suppose that to each site s ∈ S there is defined a set Ns ⊂ S of neighbour
sites such that the following two conditions are satisfied:

(i) s 6∈ Ns,
(ii) t ∈ Ns if and only if s ∈ Nt.

Two often used neighbourhood systems are shown in Figure 33. To the left we see the
system where the site s = (i, j) has the neighbourhood

Ns = {(i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1)}. (47)
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In the system shown in the right part of the figure there are four additional neighbours
so that Ns consists of eight sites.

s s

Figure 33: Two often used neighbourhood systems: to the left the site s has four neigh-
bours and to the right it has eight neighbours.

Suppose that X = (Xs, s ∈ S) is a set of discrete random variables taking values in the
set V . We say that X is a Markov random field with respect to the system (Ns, s ∈ S)
of neighbourhoods if

Pr(Xs = x|Xt, t 6= s) = Pr(Xs = x|Xt, t ∈ Ns), x ∈ V, s ∈ S. (48)

This means that if we want to predict the pixel valueXs at s knowing all other pixel values
we get the same prediction as when we only know the pixel values in the neighbourhood
Ns. This will turn out to be highly useful in an iterative sampling method called Gibbs
sampling, which may be used for simulation of a Markov random field.

Neighbourhoods of border sites have to be considered separately. Suppose that the set
of sites is

S = {(i, j) : i = 1, . . . , m, j = 1, . . . , n}. (49)

One possibility is to use periodic boundary conditions which means that sites in the
leftmost column are considered as neighbours of sites in the rightmost column, and,
similarly, that sites in the top row are considered as neighbours of the bottom row.
Specifically, if (47) gives neighbourhoods for non-border sites, we define for s = (i, n)
with 1 < i < m

Ns = {(i− 1, n), (i+ 1, n), (i, n− 1), (i, 1)}, (50)

with similar definitions for other border sites. We can think of periodic boundary condi-
tions as corresponding to a folding of S like a torus (a doughnut).

Example 3.1. The Ising model. Let S be given by (49) with periodic boundary condi-
tions. In physical applications to be discussed below we are interested in large values of
m and n. Suppose that Xs can take two possible values, −1 and +1. Let X+

s and X−
s

denote the number of neighbours of s that take positive and negative values, respectively.
Thus X+

s +X−
s = 4. In the basic two-dimensional model we assume that

Pr(Xs = +1|Xt, t ∈ Ns) =
exp(2β(X+

s −X−
s ))

1 + exp(2β(X+
s −X−

s ))
. (51)

We assume that β > 0. Note that if X+
s > X−

s , that is, if the number of neighbours of s
with positive values is larger than the number of neighbours with negative values, then
the probability that s shall also have a positive value is greater than 1/2.
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An alternative way of specifying the probability distribution of X is as a Gibbs distri-
bution,

Pr(X = x) =
1

Z
exp(β

∑

s∼t

xsxt), (52)

where Z is a normalizing constant, which is notoriously difficult to compute in models
of this type, and where s ∼ t denotes that s and t are neighbours. Thus we sum in
the right member of (52) over all pairs (s, t) of sites that are neighbours. In physics the
Ising model is used as a model for ferromagnetism and β may be interpreted as inverse
temperature. It turns out that for temperature below a critical value, that is for β > βc,
there are long range dependencies and possible phase transitions, that is a clear majority
of the Xs-values will either be equal to +1 or a clear majority will be equal to −1. But
for β < βc there are no phase transitions and the value of Xs averaged over large sets of
sites is close to zero. A famous computation by Onsager (1944) gives

βc =
1

2
log(1 +

√
2) = 0.44069 (53)

An up-to-date review of Gibbs distributions and their use in mathematical physics may
be found in Georgii, Häggström and Maes (2000). 2

3.2 Autonormal random field models

Let us now also regard Markov random field models, where Xs, s ∈ S are continuous
real-valued random variables. The condition (48) needs then a modification to

Pr(Xs ∈ A|Xt, t 6= s) = Pr(Xs ∈ A|Xt, t ∈ Ns), A ⊆ R, s ∈ S, (54)

for all considered subsets A of R. We here only consider some simple autonormal models
where we assume that the conditional distribution of Xs given its neighbours is normal
with a constant variance σ2 and an expectation that is a linear combination of the neigh-
bour values. Specifically, let us consider the neighbourhood system given by the left part
of Figure 33 and denote the neighbours of s in the West, North, East and South directions
W (s), N(s), E(s), and S(s), and assume that

E(Xs|Xt, t ∈ Ns) = µ+βW (XW (s)−µ)+βN (XN(s)−µ)+βE(XE(s)−µ)+βS(XS(s)−µ).
(55)

3.3 Simulation of Markov random fields

There are several ways of simulating images from Markov random field models. We will
describe one of the most used methods, Gibbs sampling.

In Gibbs sampling we visit the sites s ∈ S in a specified way which may be random or
deterministic. An often used random method is to choose successive sites to be visited
independently and in a purely random way from the set of all sites. And an often used
deterministic visiting scheme for a set of sites such as (49) is to choose sites to be visited
row-wise from left to right starting with the first row and proceeding until all sites have
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been visited. Such a set of visits is called a sweep. The procedure is iterated a given
number of of sweeps.

Example 3.2. The Ising model. Continuation. Consider Gibbs sampling for the Ising
model by use of (51). As start configuration we use a purely random configuration as in
the left part of Figure 32. For a set of β-values we see in Figure 34 binary images obtained
by deterministic row-wise sweeps as described above. The upper two rows correspond to
β values under the critical value (53), that is to high temperature, while the two lower
rows correspond to low temperature. In the middle row we have β very close to the
critical value, actually slightly above.

It may be noted that for large β-values (the two lower rows) the number of iterations
used in Figure 34 is far too small to arrive at a stationary distribution for the Markov
chain formed by the successive iterations. 2
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Figure 34: Binary images obtained by simulation for the Ising model with β = 0.11, 0.22,
0.4407, 0.88 and 1.76 in rows 1 to 5, respectively. In the columns we have to the left a
purely random start configuration and then the result after 1 sweep, after 4 sweeps, after
16 sweeps and after 64 sweeps, respectively.
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Figure 35: Grey-scale images obtained by simulation for autonormal models. In the
columns we have to the left a purely random start configuration and then the result
after 1 sweep, after 16 sweeps, after 128 sweeps and after 256 sweeps, respectively. The
parameters in (55) are in the upper row βW = βE = βN = βS = 0.24, in the second
row βW = βE = 0 and βN = βS = 0.48, and in the third row βW = βE = −0.24 and
βN = βS = 0.24. In all three rows we have µ = 0.5 and the residual standard deviation
σ = 0.3.

Example 3.3. Simulation of an autonormal model. Consider Gibbs sampling for the
autonormal model with conditional expectations (55) and constant conditonal variance
given the neighbour values. For three sets of parameters we obtain results shown in
Figure 35. 2

3.4 Bayesian analysis of images

A common approach in Bayesian image analysis, is to assume that we start with a random
image X given by a Markov random field. Then we observe a distorted image Y and one
basic problem is to reconstruct X from Y . A simple model for the observed image Y =
(Ys, s ∈ S) is to assume that given X the Ys-variables are independent and furthermore
that the distribution of Ys only depends on Xs, that is we assume that

Pr(Y = y|X) =
∏

s∈S

Pr(Ys = ys|Xs). (56)

The reconstruction of X from Y is a difficult computional problem, and a series of
iterative algorithms have been developed for this type of problems, most of them based
on Markov chain Monte Carlo algorithms.

The use of Bayesian models for image reconstruction by use of Markov random field
models as priors for the unobserved image X has generally suffered from the problem
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that it seems difficult to specify realistic priors for images typically found in applications.
A recent interesting approach developed in particular by David Mumford and Song Chun
Zhu is based on the following type of models, see for instance Zhu & Mumford (1997) for
details and examples of which images that might be generated. Briefly the structure of
the model for the prior is a Gibbs distribution, cf. (52) above, with

Pr(X = x) =
1

Z
exp(−U(x; Λ, F )), (57)

where

U(x; Λ, F ) =
K
∑

α=1

∑

s∈S

λ(α)((F (α) ∗ x)(s)). (58)

Here F = {F (1), . . . , F (K)} is a set of linear filters and Λ = {λ(1), . . . , λ(K)} is a set of
functions, called potential functions, acting on the features extracted by the filter bank
F .

3.5 Exercises

Exercise 3.1. Simulate images with independent pixel values as in Figure 32 but with k
equi-distributed levels. Choose k = 3 and k = 256. (Note that the left image in Figure 32
corresponds to k = 2.)

Exercise 3.2. Regard the Ising model with negative β-values. (In physics this model is
used as a model for anti-ferromagnetism.) Use Gibbs sampling to simulate images as in
Figure 34 with β = -0.11, -0.22, -0.44, -0.88 and -1.76. Try also to guess what the images
will look like before making the simulations.

Exercise 3.3. Regard an autonormal model with a neighbourhood system as in the
right part of Figure 32. Choose suitable notation and write a model corresponding to
(55). Use Gibbs sampling to simulate images as in Figure 35 and suggest parameter
combinations to obtain different types of random textures.

Exercise 3.4. Show that if the distribution of X is given by (52), then (51) holds. Hint:
one can use that

Pr(Xs = +1|Xt = xt, t ∈ Ns) =
Pr(Xs = +1, Xt = xt, t ∈ Ns)

Pr(Xs = +1, Xt = xt, t ∈ Ns) + Pr(Xs = −1, Xt = xt, t ∈ Ns)
.

3.6 Literature on statistical image modelling

Bayesian models for images became popular in the eighties following work by Grenander
(1983) and Geman & Geman (1984). Markov chain Monte Carlo methods play an im-
portant role in reconstruction of images observed with noise. Important algorithms are
simulated annealing, the Metropolis algorithm and Gibbs sampling, which all are exam-
ples of randomized algorithms. A simple iterative method, iterated conditional modes,
was introduced by Besag (1986). Winkler (1995) gives a thorough treatment of these
methods from a mathematical point of view. For an up-to-date introduction to random-
ized algorithms viewed as Markov chains, see Häggström (2001), including a description
of the recently introduced exact or perfect simulation algorithms.
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PART 2 SPATIAL STATISTICS

4 Spatial random processes

Let X = (Xs, s ∈ S) be a spatial random process, where s is a spatial coordinate. In this
chapter S may either be a discrete set, as when X is a digital image, or a continuous set,
e.g. a rectangle S = {(s1, s2) ∈ R

2 : a1 ≤ s1 ≤ b1, a2 ≤ s2 ≤ b2}. In these notes we limit
ourselves to spatial processes in two dimensions, but generalizations to d dimensions are
fairly straightforward.

A spatial random process may be characterized by its mean value function,

ms = EXs (59)

and its covariance function

C(s, t) = E(Xs −ms)(Xt −mt). (60)

A Gaussian random process is completely specified by its mean value and covariance
functions. It should, however, be noted that not all functions of two variables are possible
covariance functions. In fact, a necessary and sufficient condition that C is a valid
covariance functions is that C is symmetric, that is C(s, t) = C(t, s), and that it is
positive-definite, that is satisfies

∑

i

∑

j

aiajC(si, sj) ≥ 0 (61)

for all n, a1, . . . , an, and s1, . . . , sn. Note that the necessity of the condition (61) follows
directly from the fact that

E(

n
∑

i=1

ai(Xsi −msi))
2 =

∑

i

∑

j

aiajC(si, sj). (62)

A covariance function C(s, t) is called stationary if C(s, s+ t) only depends on t, and
it is called isotropic if it can be written on the form

C(s, t) = σ2ρ(|s− t|), (63)

where |s − t| is the Euclidean distance between s and t. Examples of ρ-functions that
give valid (positive-definite) covariance functions are

ρ(r) = exp(−ar), (64)

ρ(r) = exp(−ar2) (65)

with a positive constant a, and

ρ(r) = (1 + r2/b2)−β (66)
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with positive constants b and β.

Suppose now that we have a valid covariance function C(s, t), and that σ2
0 > 0. Then

we can construct a new valid covariance function C0(s, t) by putting

C0(s, t) =

{

σ2
0 + C(s, t) if s = t
C(s, t) if s 6= t.

(67)

The constant σ2
0 in (67) is sometimes called a nugget effect with regard to applications in

mining. Another interpretation of the added quantity σ2
0 in (67) is that it just corresponds

to adding independent noise with variance σ2
0 to all our original observations.

Figure 36: Aerial photograph of Norway spruce trees.

4.1 Prediction (kriging)

Suppose that
Xs = ms + ǫs, (68)

where ms is a slowly varying trend function, known or with a known parametric form,
and that ǫs is a zero-mean random process with a covariance function, also assumed to
be either known or of a known parametric form.

Suppose that we have observed Xsi, i = 1, . . . , n, and that we want to predict Xt. In
mining this problem is often called kriging after the South African mining engineer D. G.
Krige.

Assume first that the functions m and C are known. By regarding Xs −ms instead of
Xs we can transform the problem into one where ms = 0, which we now assume.

Consider a linear predictor

X̂t =
n

∑

i=1

aiXsi = aTX(n), (69)
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where a = [a1 . . . an]
T and X(n) = [Xs1 . . .Xsn]

T denotes the observations. We choose a
to minimize the expected squared error

E(X̂t −Xt)
2 = aTGa− 2aTgt + σ2(t), (70)

where G is the n×n-matrix with elements Gij = C(si, sj), g
T
t = [C(s1, t) . . . C(sn, t)], and

σ2(t) = C(t, t). It is straightforward to show that (70) is minimized for a = G−1gt, and
the optimal predictor thus becomes

X̂t = XT
(n)G

−1gt. (71)

The corresponding expected squared error becomes

σ2
opt(t) = σ2(t)− gTt G

−1gt. (72)

It should be noted that in practice we often only assume that m and C are of known
parametric forms but with unknown parameters, and our observations X(n) have to be
used to estimate these parameters.

4.2 Exercises

Exercise 4.1. Regard the image in Figure 36. The imageXs, s ∈ S with S = {1, . . . , 223}×{1, . . . , 183}
is available as ku94-148Dpart.tif
(a). Assume first that the random function Xs, s ∈ S, has a stationary covariance func-
tion that can be written on the form C(s, s+ t) = R(t1, t2) for t = (t1, t2). Estimate the
covariance function R1(t1) = R(t1, 0) and the covariance function R2(t2) = R(0, t2) in two
orthogonal directions and plot the estimated functions R1 and R2 in the same diagram.
Does it seem as the covariance function C is identical in the two directions studied?
(b). Assume now that the random function Xs, s ∈ S, has an isotropic covariance func-
tion. Try to estimate the corresponding ρ-function in (63).
(c). Assume that the random function Xs, s ∈ S, is stationary such that the distribution
of Xs is the same for all s ∈ S. Try to estimate this distribution, often called the marginal
distribution of X.

Exercise 4.2. Delete, say, the three bottom rows in the image in Figure 36. See how
well you can reconstruct these three rows by use of prediction according to (71). Assume
that the mean value function is a constant, which you estimate from the data. Use an
isotropic covariance function with one of the three forms (64) – (66) with parameter(s)
adapted to the result of Exercise 4.1(b). To limit computations in the prediction, use as
Xs1, . . . , Xsn a limited set of observations from, say, the last two remaining rows. Note
that if you want to use (71) for several gt it is computationally advantageous to multiply
together XT

(n) and G−1 before starting to vary gt.

Exercise 4.3. Consider the three images in the rightmost column of Figure 35. Estimate
the covariance function in two orthogonal directions (horisontal and vertical in the figure)
as in Exercise 4.1 above. Can any of the three covariance functions be assumed to be
isotropic?

Exercise 4.4. Show that if C is a valid covariance function, that is satisfies the inequal-
ity (61), then C0 in (67) is also a valid covariance function.

Exercise 4.5. Verify that X̂t in (71) minimizes (70) and that (72) gives the correspond-
ing expected squared error.
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4.3 Literature on spatial random processes

See Ripley (1981) and Cressie (1991).
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5 Point processes. Poisson processes.

Let A be a subset of R2 with finite and positive area |A|. We will consider a random
subsets X of A consisting of finitely many points, and call X a point process on A. If
B ⊆ A we let X(B) denote the number of points in X that belong to B.

The point process X is said to be stationary if the probability distribution of X is
invariant under any translation of the sets B where we regard the point process, and we
say that X is isotropic if the process is stationary and if, additionally, the distribution of
X is invariant under any rotation of such sets B.

Consider a stationary point process X on A such that X(A) has finite expectation.
One can then show that

E(X(B)) = λ|B| (73)

for some constant λ which we call the intensity of the point process.

Example 6.1. A Poisson process with constant intensity. A point process X is called a
Poisson process with constant intensity λ ≥ 0 on A if X(B1) and X(B2) are independent
for disjoint subsets B1 and B2 of A and if X(B) is Poisson distributed with expectation
λ|B| for a subset B ⊆ A with area |B|, that is

Pr(X(B) = n) =
(λ|B|)n
n!

exp(−λ|B|). (74)

A Poisson process with constant intensity is stationary and isotropic.

A Poisson process on A with intensity λ can be generated in the following way. Let first
N be Poisson distributed with expectation λ|A|. Given that N = n, generate X1, . . . , Xn

as independent and identically distributed variables, each with a uniform distribution
over A. Then we let X consist of the points X1, . . . , Xn, that is X = {X1, . . . , Xn}.

In Figure 37 we see two examples of such generation of a Poisson process in the unit
square with the constant intensity λ = 50. 2

Example 6.2. A Poisson process with varying intensity. A point process X is called a
Poisson process with intensity function λ(s), s ∈ A, if X(B1) and X(B2) are independent
for disjoint subsets B1 and B2 of A and if X(B) is Poisson distributed with expectation
∫

B
λ(s) ds for B ⊆ A.

A Poisson process with intensity function λ(s), s ∈ A, can be generated in the following
way. Let first N be Poisson distributed with expectation

∫

A
λ(s) ds. Given that N = n,

generate X1, . . . , Xn as independent and identically distributed variables, each with a
distribution specified by

Pr(Xi ∈ B) =

∫

B
λ(s) ds

∫

A
λ(s) ds

for B ⊆ A. (75)

Then we put X = {X1, . . . , Xn}. 2
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Figure 37: Two examples of Poisson point processes generated in the unit square with
λ = 50. The generated number of points is to the left N = 55 and to the right N = 49.

5.1 The Neyman-Scott process, a point processes with clustering

Consider a Poisson process with constant intensity λ, and regard the points of this pro-
cess as mother points. From a mother point we generate daughter points such that the
number of daughter points from a mother point are all independent and identically dis-
tributed. Further, the two-dimensional vectors from a mother point to a daughter point
are all independent and identically distributed. This distribution we call the scattering
distribution. The process of daughter points is called a Neyman-Scott process.

Suppose that we want to generate a Neyman-Scott process. If the daughter process
is regarded on a set A we need to start by generating the mother point process on a set
larger than A, in fact so large that all points from which daughters can get scattered into
A are included. With this observation it is straightforward to generate a Neyman-Scott
process from the definition above.

5.2 A hard-core inhibition point process

In the cluster point process in the previous section the occurrence of a point typically
increases the intensity of points in a neighborhood of this point. We will now describe a
point processes with inhibition, suggested 1960 by Matérn, see Matérn (1986), which has
the opposite property: the occurrence of a point inhibits other points within a certain
distance.

Start by generating a Poisson point process with intensity λ on a bounded set A. To
each point Xi, i = 1, . . . , N , we associate a random mark consisting of random variable Ui,
which is uniformly distributed on the interval (0, 1) and such that the Ui’s are indendent,
mutually and of the Xi’s. We can think of Ui as the birth time of the point Xi.

Then we thin the X-process by deleting each point Xi for which there exists an older
point Xj of the original point process closer than a distance d, that is a point Xj satisfying
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|Xi −Xj | < d and Uj < Ui. The distance d is called the hard core distance.

5.3 The K-function, a diagnostic tool for detecting clustering and
inhibition

Consider an isotropic point process with intensity λ and suppose that x is a point of the
point process X. Let ‖y− z‖ denote the distance between two points y and z in R

2, and
define the K-function of X as follows,

K(r) =
1

λ
E(number of further points of X within distance r from x) (76)

or more precisely

K(r) =
1

λ
E(X(Cx(r)), (77)

where Cx(r) = {y : 0 < ‖y − x‖) ≤ r} denotes a circular disk with radius r around x
with the point x excluded.

For a stationary Poisson process it follows that

K(r) = πr2. (78)

Sometimes one chooses to regard L(r) = (K(r))1/2 as this function is linear in r for a
Poisson process, for which

L(r) =
√
πr. (79)

5.4 Estimation of characteristics for point processes

Suppose that we have observed a stationary point process X on a set A ⊂ R
2. The

intensity of X we estimate by

λ̂ =
X(A)

|A| . (80)

It follows generally that for a stationary point process with finite intensity λ the estimator
(80) is an unbiased estimator of the intensity, that is, E(λ̂) = λ.

For a Poisson process we can also compute the variance of the estimator (80). We find

var(λ̂) =
λ

|A| . (81)

Let us now regard estimation of the K-function of a point process X observed in the
region A. The basic problem in estimating K(r) is that for a point x ∈ X we want to
consider all neighbouring X-points within distance r. But some of these neighbours may
be located outside A.

For our first estimator of K(r) we consider pairs of X-points x and y such that x ∈ A−
r ,

where A−
r denotes the subset of A of points with a distance at least r to the border of
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A. Let 1{P} denote the function which is 1 when P is true and zero else. From the
definition (76) it follows

∑

x∈X∩A−

r

∑

y∈X

1{0 < ‖y − x‖ < r} (82)

is an unbiased estimator of λ2|A−
r |K(r). The procedure of restricting to points within a

certain distance to the border is sometimes called minus-sampling, and the corresponding
estimator of K(r) is therefore called K̂minus(r), and it is obtained from the unbiased
estimator (82) of λ2|A−

r |K(r) by replacing λ with its estimator (81). We get

K̂minus(r) =
1

λ̂2|A−
r |

∑

x∈X∩A−

r

∑

y∈X

1{0 < ‖y − x‖ < r}. (83)

Let us now give another estimator of the K-function which utilizes our observations
more effectively. Regard two points x and y in the region A and a circle with centre
at x and radius ‖y − x‖. Let w(x, y) denote the proportion of the perimeter of this
circle that lies within A. If, for instance A is the unit square, x = (1/2, 1/2) and y =
(1/2,−1/2 + 1/

√

(2), then a straightforward compution shows that w(x, y) = 1 and
w(y, x) = 3/4. One can now show that

∑

x∈X

∑

y∈X

1{0 < ‖y − x‖ < r}
w(x, y)

(84)

is an unbiased estimator of λ2|A|K(r). The corresponding estimator of the K-function is

K̂(r) =
1

λ̂2|A|
∑

x∈X

∑

y∈X

1{0 < ‖y − x‖ < r}
w(x, y)

. (85)

There is one minor restriction in the use of (85) which means that we cannot consider r
so large that w(x, y) become close to zero. In practice this is not important as we are
usually interested in reasonably small r-values. Thus, for observations in the unit square
an upper limit for r is

√

(1/2).

5.5 Exercises

Exercise 6.1. Generate a Poisson process on the unit square [0, 1]×[0, 1] ⊂ R
2 with

constant intensity 100. Show the result in a figure.

Exercise 6.2. Generate a Poisson process on the unit square A = [0, 1]×[0, 1] with varying
intensity λ(s) = 200s1, s = (s1, s2) ∈ A. Show the result in a figure.

Exercise 6.3. Generate a Neyman-Scott process on the unit square A = [0, 1]×[0, 1] ⊂ R
2

in the following way. Assume that (i ) the mother process is a Poisson process with
constant intensity 50, (ii ) each mother point generates two daughter points, and (iii )
the scattering distribution (from mother to daughter) is an isotropic two-dimensional
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normal distribution with zero means and standard deviation 0.01 in two orthogonal di-
rections. (Truncate here the normal distributions at, say, plus and minus three standard
deviations.) Show the result in a figure.

Exercise 6.4. Compute the expected distance from one mother point to its nearest neigh-
bour mother point for the point process of the previous exercise, and also the expected
distance between the two daughter points from one mother point (disregard in these com-
putations edge effects, that is the limited size of the set A). Instead of the two expected
distances you may choose to compute root-mean square distances, that is the square root
of the expected squared distances, which are a bit easier to compute.

Exercise 6.5. Generate a hard core Matérn point process on the unit square [0, 1]×[0, 1] ⊂
R

2 with λ = 100 and d = 0.1. Show the result in a figure.

Exercise 6.6. Estimate the intensity and theK-function for the point processes considered
in (a) Exercise 6.1, (b) Exercise 6.3, and (c) Exercise 6.5. Compare the three K-function
estimates.

5.6 Extensions and literature on point processes

A highly readable introduction to spatial point processes is given in Diggle (1983). In
particular, one finds here methods for testing complete spatial randomness, which means
testing whether an observed point pattern is consistent with an hypothesis that it is gen-
erated from a Poisson process with constant intensity. One of these test methods consists
of first estimating the K-function for the observations and then to find confidence limits
for this function by simulating a number of Poisson processes with the same intensity
and computing upper and lower envelopes for the corresponding K-function estimates.

Stoyan et al. (1995) gives a thorough coverage of stochastic geometry, including the
theory of point processes. Many different methods for taking care of edge effects for
estimates of functions like the K-function are described and compared.
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6 Marked point processes and patterns of randomly

placed objects

Point processes are natural building blocks for more complicated spatial processes such
as patterns of random objects, for instance disks of random sizes. Let us consider a point
process X and associate with each point Xi of X a random mark Mi, which could be the
radius of a disk centered at Xi. By letting the mark be a vector with several components
we could model more complex objects.

For the 2D gel electrophoresis images in Figures 9 and 10 we could associate with a
protein at position Xi = [X1iX2i]

T the mark Mi = (Si, Ci), where Si is the expression
level of the corresponding protein and Ci could describe the shape of the spot at Xi.
A simple model would be to assume that the spot shape is a two-dimensional normal
distribution with 2×2 covariance matrix Ci. The observed pixel gray level Yx at a pixel
with location x could then modeled by

Yx =
∑

i

Sif(x,Xi, Ci) + ǫx, (86)

where ǫx is the observation noise at pixel x and

f(x,Xi, Ci) =
1

2π(detCi)1/2
exp(−1

2
(x−Xi)

TC−1
i (x−Xi)). (87)

For the diffusing particles in Figures 13 and 14 we could consider a model

Yx =
∑

i

f(x,Xi, zi) + ǫx, (88)

where again ǫx is the observation noise at pixel x, but the mark consists of the scalar zi
representing the vertical position of a particle relative to the focal plain. The function f
could be assumed to be the same for all particles but needs to be estimated from data or
by applying optical theory for the light scattering of the diffusing objects.

Similar models could be considered for the aerial photographs in Figures 2 and 4 where
we could assume a similar shape for trees in a given view. This shape function could then
be estimated from data combined with a simulation model based on the geometry and
illumination of the trees from the sun (Larsen & Rudemo, 1998).

A specific problem is interaction between objects that overlap partly. In 2D gel elec-
trophoresis it is natural to assume an additive model as in (86), but in the aerial pho-
tographs, and particularly for the diffusing particles, objects may occlude each other and
then an additive model may be an untenable approximation. In some applications such
as the one shown in Figure 38 objects do not overlap.

Let us regard models for random placed disks. For disks of constant size we can then
use the inhibition point process of Section 5.2 by placing disks of diameter d centered
at the points of the thinned point process. In the following section we shall regard two
modifications of this model.
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Figure 38: Binary images of two cuts in cast iron showing approximately disk-shaped
defects. Data from Beretta (2000) and Månsson and Rudemo (2002).

6.1 Two processes of varying-sized disks

Let us regard marked point processes constructed in two steps as follows.

In the first step we generate a Poisson point process with constant intensity λ in the
plane, and to each point in this point process we generate identically distributed radii
with a proposal distribution function Fpr. The radii are independent mutually and of the
point process.

In the second step we thin the generated point process by letting all pairs of points
whose associated disks intersect ’compete’. A point is kept if it has higher weight in all
pairwise comparisons, where the, possibly random, weights are assigned to the points
according to two different approaches:
1) Pairwise assignment of weights: For each comparison, weights are assigned to the
involved pair of points, and assignments are independent both within and between pairs.
2) Global assignment of weights: Weights are assigned once and for all to all points,
and assignments to different points are independent. These weights are then used in all
comparisons.
In both cases the weight of a point may depend on the associated radius. (When the
weights are constant or deterministic functions of the radii, the two approaches coincide.)

It is possible to compute both the intensity of the point process after thinning and the
radius distribution function after thinning. Details are given in Månsson and Rudemo
(2002). Let us here only show a simulation example of disks before and after thinning
with three different thinning procedure, see Figure 39.
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a) Discs before thinning
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b) All intersecting discs removed
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c) Large discs kept
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d) Global thinning, uniform weights

Figure 39: Simulation of a disk process before and after three different thinning pro-
cedures. In the first step a Poisson process with intensity 1000 in the unit square is
generated with exponentially distributed disk radii with expectation 0.01.
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