
7 Machine learning, neural nets, support vector ma-

chines

In recent decades a number of machine learning methods for patter recognition have been
launched such as neural nets and support vector machines which will be briefly discussed
in this chapter. To evaluate these methods a number of large datasets have also been
brought forth, compare Table 2 and
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research

for more details.

Table 2: Datasets of images and videos for tasks such as classification, object detection
and face recognition
Dataset name Brief description Instances Format Default task Created
MNIST Handwritten digits 60 000 + Images, text Classifcation 1998

10 000
CIFAR-10 Images of 10 classes 60 000 Images Classification 2009

of objects
CIFAR-100 Images of 100 classes 60 000 Images Classification 2009

of objects
KITTI Images and videos >100GB Images, text Classification, 2012

obtained from cars of data object detection
SVHN Street View 73 257 + Images Classification 2011

House Numbers 26 032
FERET Face Recognition 11 338 from Images Classification, 2003

Technology 1 199 individuals face recognition

7.1 Neural nets

Let us start with considering a neural net consisting of one input layer with n1 units
corresponding to input variables xi, i = 1, . . . , n1, an intermediate (hidden) layer with n2

units and an output layer with K units. For unit j in the intermediate layer we compute
the so-called activation value aj , j = 1, . . . , n2, by

zj =

n1
∑

i=1

w
(1)
ji xi + b

(1)
j , (89)

aj =
ezj

∑n2

j′=1 e
zj′
, (90)

for weights w
(1)
ji and biases b

(1)
j . With some abuse of notation we will write

aj = σ(zj), j = 1, . . . , n2, (91)

and we call σ given by (90) and (91) the softmax function. From the hidden layer
we proceed to the output in a similar way and we obtain neural net output variables

65

fk(k), k = 1, . . . , K, as

fk(x) = fk(x, θ) = σ

(

n2
∑

j=1

w
(2)
kj σ

(

n1
∑

i=1

w
(1)
ji xi + b

(1)
j

)

+ b
(2)
k

)

, k = 1, . . . , K, (92)

where x = (x1, . . . , xn1
) is the vector of input variables, and θ is the parameter vector of

all weights, w
(1)
ji and w

(2)
kj , and biases b

(1)
j and b

(2)
k .

We can add now add one more hidden layer which gives a neural net with two hidden
layers and output

fk(x) = σ

(

n3
∑

ℓ=1

w
(3)
kℓ σ

(

n2
∑

j=1

w
(2)
ℓj σ

(

n1
∑

i=1

w
(1)
ji xi + b

(1)
j

)

+ b
(2)
ℓ

)

+ b
(3)
k

)

, k = 1, . . . , K,

(93)
and it should be clear how we can extend the neural net with an arbitrary number of
hidden layers.

If we for instance consider a neural net for the MNIST database it is natural to consider
n1 = 282 = 784 units in the input layer, each input unit corresponding to one pixel value,
and K = 10 corresponding to the 10 possible digits. We note that the output variables
fk(x) sum to one and we can interpret fk(x, θ) as the probability of digit k. To classify
images we can first in some way estimate the parameter θ by use of a training set. Let θ̂
denote the estimate of θ. To classify an image x we can then put

k̂(x) = argmaxkfk(x, θ̂). (94)

The crucial step here is to obtain the estimate θ̂. In practice the parameter vector θ may
contain several thousand components and the estimation procedure is thus quite delicate.
We will now discuss possible estimation methods.

7.1.1 Parameter estimation for neural nets, regularization

Suppose that we have a training set T of |T | pairs (x, y) and that the neural net output
f(x, θ) should approximate y. Then we introduce a suitable loss function. Let us first
consider a simple case where y and f(x, θ) are real-valued. Then we may choose the loss
function

L(θ, T) =
1

|T |
∑

(x,y)∈T

(y − f(x, θ))2. (95)

Let us then consider a classification setting with K classes, for instance for MNIST
classification with K = 10. As described above we then get as output from a neural net
a probability distribution fk(x, θ), k = 1, . . . , K, for the possible class values. For a pair
(x, y) where kc is the correct class we can define yk, k = 1, . . . , K, as

yk =

{

1 if k = kc
0 otherwise

(96)

and choose the cross-entropy loss function

L(θ, T) = − 1

|T |
∑

(x,y)∈T

∑

k

yk log fk(x, θ). (97)

66

We can minimize L(θ, T) and obtain an estimate θ̂ = θ̂(T). The result is then that
we often get a good fit to the observations in T , but if we go to a new data set the fit is
typically not so good. We say then that we get an overfit. To compensate for overfitting
we can introduce a regularization term R(θ), for instance

R(θ) =

|θ|
∑

i=1

|θi|2, (98)

where we sum over all components of θ = (θ1, . . . , θ|θ|). Then we estimate θ by minimizing
the regularized loss function

L(θ;T, L, λ, R) = L(θ, T) + λR(θ), (99)

where λ ≥ 0 is a tuning parameter. Note that λ = 0 corresponds to no regulariza-
tion which typically gives overfitting, while a very large λ corresponds to underfitting.
To choose a proper value of the tuning parameter we can evaluate the regularized loss
function for a separate validation set T ′ of pairs (x, y) or use cross-validation.

7.1.2 Convolutional neural nets

Let w = (wkℓ) and g = (gij) be matrices. The convolution w ∗ g is then defined by

(w ∗ g)ij =
∑

k

∑

ℓ

wkℓ gi−k,j−ℓ, (100)

compare Section 1.2 on image filtering.

Convolutional neural nets are particularly useful for analysis of images. Such neural
nets contain layers with layer transitions of the following convolution type

a
(r+1)
ij = σ

(

p
∑

k=−p

p
∑

ℓ=−p

w
(r)
kℓ a

(r)
i−k,j−ℓ

)

, (101)

where p usually is a small positive number. We note that we use here only (2p + 1)2

different weights and that there is the same filter operation applied in different parts of
a(r) here regarded as an image. The filter operation could for instance consist of finding
edges in an image.

A convolution layer is often followed by a pooling layer reducing the layer size. We
can for instance use a maxpool operation where a layer of pixels is divided into adjacent
and non-overlapping rectangles and each rectangle is replaced in the following layer by
one pixel with pixel value equal to the maximal pixel value in the rectangle.

Let us conclude this short introduction to neural nets with mentioning two recent
references, both with the title ’Deep Learning’ which is a current term for advanced
neural nets
LeCun, Y., Bengio, Y. & Hinton, G. (2015) Deep learning. Nature 521, 436–444,
which gives an overview, and
Goodfellow, I., Bengio, Y. & Courville, A. (2016) Deep Learning, MIT Press
{http://www.deeplearningbook.org} ,

giving a thorough and up-to-date coverage of the field.

67

7.2 Support vector machines

The following description is inspired by the more complete description in Chapter 19 of
Efron, B. & Hastie, T. (2016) Computer Age Statistical Inference, Cambridge University Press.
Suppose that we have a training set T consisting of pairs (x, y), where x is an n-
dimensional column vector and y ∈ {−1,+1} is a two-class indicator. To begin with we
will suppose that the two classes are linearly separable in the sense that there exist a real
parameter β0 and an n-dimensional parameter vector β such that with f(x) = β0 + xTβ

yf(x) > 0 for all (x, y) ∈ T. (102)

We can then classify a new x-vector and predict the corresponding y-value as sign(f(x)).
A natural question is then if we can choose β0 and β in an optimal way. The suggested
solution here is to maximize the minimal distance (margin) to the separating hyperplane
f(x) = 0 in n-space. The solution to this problem turns out to be to find

maxβ0,β

{

M : subject to
1

||β||y(β0 + xTβ) ≥M for all (x, y) ∈ T

}

, (103)

where ||β|| is the Euclidean (quadratic) norm in n-space. An equivalent somewhat simpler
formulation is to find

minβ0,β

{

||β|| : subject to y(β0 + xTβ) ≥ 1 for all (x, y) ∈ T
}

. (104)

In general we can not expect to find a hyperplane giving complete separation between
the two classes. Then we can instead find a minimum with a regularized loss function

minβ0,β

∑

(x,y)∈T

[1− y(β0 + xTβ)]+ + λ||β||2

, (105)

where [a]+ denotes the positive part of a real number a. For linearly separable classes
one can show that λ = 0 gives the previously described solution which is determined by a
few points close to the separating boundary. Increasing λ corresponds to taking account
of more and more data points. Similar as for neural nets one can find an optimal tuning
parameter λ by use of a separate validation set or by cross-validation.

For a multiclass classification problem we can for instance for each class make a two-
class classication versus the union of all other classes and then for a new observed x-
vectoer to choose the class giving the largest margin. Another possibility is to consider
voting for all pairwise comparisons and for a new observation to choose the class that
gets that the maximal number of votes.

7.2.1 Support vector machines with kernel functions

One can show that for a new vector x to be classified one can write the classifier on the
form

f(x) = β0 + xTβ = β0 +

|T |
∑

i=1

αixTxi, (106)

68

where x1, . . . , x|T | are the x-vectors in the training set T and α1, . . . , α|T | are real param-
eters. This representation allows us to use a modified classifier of the form

f(x) = β0 + xTβ = β0 +

|T |
∑

i=1

αik(x, xi), (107)

where k(u, v) is a positive-definite kernel function, for instance the Gaussian kernel

k(u, v) = e−||u−v[[2. (108)

Use of kernel functions implies possibilities of nonlinear transformations of the x-vectors
and adds considerable flexibility to support vector machines.

69

8 Warping and matching

An important problem in analysis of multiple images is to match objects in different
images. Thus we would like to know which spots in the 2D gel electrophoresis images
in Figures 9 and 10 that correspond to each other, that is gauge the expression of the
same protein. Similarly we want to match objects in Figures 13 and 14 in to order to
be able to follow the diffusing particles and to estimate the diffusion coefficient of their
motion. There is, however, a fundamental difference between these two problems. The
diffusing particles move independently of each other except for the rare occasions when
they come very close in all three dimensions. Thus displacements of particles that are
close in the two-dimensional images are essentially independent of each other. In contrast,
displacements of nearby spots in the electrophoresis images are highly correlated. The
matching of objects in these two situations therefore demand quite different methods.
In the present section we shall study warping methods which are useful for matching of
objects in images such as the 2D gel images.

Suppose that we have a reference image Y = Y (x) and another image Y ′ that we
want to warp (transform) into Y as closely as possible according to some criterion by
transforming locations such that Y (x′) is close to Y (x). Here we regard x and x′ as
2-dimensional column vectors and put

x′ = f(x) (109)

for some warping function f . For the affine warping function we have

x′ = Ax+ b =

[

a11 a12
a21 a22

] [

x1
x2

]

+

[

b1
b2

]

. (110)

A special case of the affine transformation is the Procrustes transformation for which

x′ =

[

c cos θ c sin θ
−c sin θ c cos θ

]

x+ b. (111)

A special case of the Procrustes transformation consists of a dilation (scale change with
a fixed factor c) and a translation

x′ =

[

c 0
0 c

]

x+ b = cx+ b, (112)

and another special case of the Procrustes transformation consists of a rotation and a
translation,

x′ =

[

cos θ sin θ
− sin θ cos θ

]

x+ b. (113)

A simple nonlinear warping is the bilinear transformation

x′1 = a11x1 + a12x2 + c1x1x2 + b1
x′2 = a21x1 + a22x2 + c2x1x2 + b2.

(114)

We note that for fixed x2 the bilinear transformation of x′1 is linear in x1 (with slope and
intercept depending on x2) and, similarly, for fixed x1 the transformation of x′2 is linear

70

in x2. This means that an axes-parallell rectangle in the x1x2-plane is transformed into
a polygon with four corners in the x′1x

′
2-plane.

Another nonlinear warping function is the perspective transformation

x′1 = (a11x1 + a12x2 + b1)/(c11x1 + c12x2 + 1)
x′2 = (a21x1 + a22x2 + b2)/(c21x1 + c22x2 + 1).

(115)

The perspective transformation may be used for matching the tree tops in Figures 2 and
4. Note that both the bilinear and the perspective transformations are generalisations of
the affine transformation (110).

To choose parameters of a warping transformation x′ = f(x) we may consider a crite-
rion function such as

L(Y ′, Y, f) =
∑

x

(Y ′(x′)− Y (x))2 + λD(f) (116)

where D(f) is a distortion measure of the warping function f and λ is a constant deter-
mining the balance between closeness of matching and distortion. The distortion measure
could for instance measure the deviation from linearity of the warping function, and could
be a sum of squared second derivatives of f .

A useful type of warping consists af a net of locally bilinear transformation. This
method is used in Glasbey and Mardia (2001) to warp images fish, haddock and whiting,
see Figure 40, into each other. Similarly it is used in Gustafsson et al. (2002) to match
2D gel electrophoresis images such as those in Figures 9 and 10 into each other.

For reviews of image warping methods, see Glasbey and Mardia (1998, 2001).

Figure 40: Images of fish warped into each other in Glasbey and Mardia (2001). Haddocks
in the upper row and whitings in the lower row.

71

