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Summary. A warping is a function that deforms images by mapping between image domains. The
choice of function is formulated statistically as maximum penalized likelihood, where the likelihood
measures the similarity between images after warping and the penalty is a measure of distortion of a
warping. The paper addresses two issues simultaneously, of how to choose the warping function
and how to assess the alignment. A new, Fourier-von Mises image model is identified, with phase
differences between Fourier-transformed images having von Mises distributions. Also, new, null
set distortion criteria are proposed, with each criterion uniquely minimized by a particular set of
polynomial functions. A conjugate gradient algorithm is used to estimate the warping function, which
is numerically approximated by a piecewise bilinear function. The method is motivated by, and used
to solve, three applied problems: to register a remotely sensed image with a map, to align micro-
scope images obtained by using different optics and to discriminate between species of fish from
photographic images.
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Polynomial transformation; Registration; Similarity transformation; Synthetic aperture radar; Thin
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1. Introduction

Image analysis, the extraction of information from pictures, is a broad interdisciplinary field
with many challenging problems to which statistical methods are applicable (for overviews,
see Mardia (1994) and Glasbey and Horgan (1995)). One such topic is image warping, a
function that deforms images by mapping between image domains. Warping is a fundamental
stage in many applications of image analysis, whether to register an image with a map or
template, or to align multiple images. It dates back over a century, to Galton (1878), who
used analogue methods to construct average faces of criminals and mental patients from
photographs. Since then, the subject has had a large and diverse literature. The images
to be aligned may be different specimens to be compared to characterize population vari-
ation, or the same specimen at different times to be interpolated between (‘morphed’) or
complementary sources of information to be fused. Alternatively, they may be either
successive two-dimensional sections or stereoscopic pairs, from which a three-dimensional
scene is to be reconstructed. In some applications, different types of deformation or even
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discontinuities may be permissible in parts of images. The transformation may be constrained

to be

one to one, i.e. bijective, or folding may be acceptable. Also, it may or may not be

appropriate for the boundaries of one image domain to map to the boundaries of the other
domain. The accuracy required of the alignment is another issue: if a radiologist is to make a
visual assessment of two medical images then a precise alignment may be unnecessary,
whereas in remote sensing, where quantitative use is to be made of images, subpixel
registration may be critical.

To illustrate, we consider three applied problems, the data for which are obtainable from

http://www.blackwellpublishers.co.uk/rss/

(a)

(b)

Fig. 1.

Fig. 1(a) shows a remotely sensed synthetic aperture radar (SAR) image of an area
near Feltwell, England. SAR is an active remote sensing system: microwave radiation
is beamed down to the earth’s surface from a plane or satellite, a sensor detects the
reflected signal and from this an image is constructed. Before any practical use can be
made of such an image, it needs to be registered with a map, such as the digitized map
of field boundaries in Fig. 1(b) (problem 1). Registration of remotely sensed images,
including SAR, is often performed manually (see, for example, Vornberger and
Bindschadler (1992) and Dobson et al. (1996)). Li et al. (1995) reviewed automatic
methods, distinguishing between area- and feature-based methods. To locate features,
Caves et al. (1992) used linear filters, whereas Kher and Mitra (1993) used morpho-
logical methods. Registration of SAR can also simplify the task of segmenting the
images into homogeneous regions (Glasbey, 1997).

Fig. 2 shows a sample of algae imaged using three light microscope modalities: bright-
field, differential interference contrast and phase contrast. Brightfield microscopy
reveals the optical attenuation of the specimen, whereas differential interference
contrast microscopy responds to the refractive properties of the specimen and phase
contrast microscopy shows diffractive properties. By fusing the images, these sources
of complementary information can be combined (Modrusan et al., 1994; Ried et al.,
1992). However, this requires a translation to be applied to the images to compensate
for changes in image alignment resulting from imperfect centring of the different lens

(a) (b)

Area to the north of the village of Feltwell in East Anglia: (a) an aerial SAR image, 250 x 250 pixels in size

(3 km x 3 km); (b) digital line drawing of field, road and other boundaries for approximately the same region
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(©

Fig. 2. Sample of algae imaged using three light microscope modalities: (a) brightfield; (b) differential
interference contrast; (c) phase contrast (the images are 512 x 768 pixels in size)

©

systems (problem 2). Galbraith and Farkas (1993) described two methods for aligning
images, involving either the imaging of a rectangular grid or the manual identification
of control points.

Fig. 3 shows photographic images, obtained under controlled conditions, of two species of
fish (haddock and whiting) that we wish to discriminate (problem 3). These are part of a
larger data set consisting of images of 10 haddocks and 10 whitings. Strachan e? al. (1990)
analysed images of seven species and found these two species to be the most difficult to
distinguish. One way of comparing images is by warping them to align with each other.
These images have already been aligned globally, and our concern is with local alignment.
The study of fish shape is a subject with a long history. Comparisons have typically been
restricted to the fish outlines and a few other features, but simple measures such as length-
to-width ratios are not sufficient in this application. Thompson (1917) used a mapping
which superimposed an outline of one fish on another as a way of comparing shapes.
Bookstein (1991) developed this further, whereas Strachan et al. (1990) used summary
statistics derived from outlines to discriminate between seven species of fish and
Mokhtarian (1995) used curvature scale space to recognize marine animals.

Our proposal is a statistical formulation of image warping, using a penalized like-
lihood approach. However, we first summarize a large number of alternative approaches,
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(a) (b)
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Fig. 3. Images of two species of fish, photographed on a light table: (a) haddock 1; (b) haddock 2; (c) whiting 1;
(d) whiting 2 (the images are 300 x 500 pixels in size)

predominantly in the computer vision and engineering literatures. There are recent reviews of
image warping in general (Glasbey and Mardia, 1998; Goshtasby and Le Moigne, 1999), of
medical applications and computational anatomy (Grenander and Miller, 1998; Maintz and
Viergever, 1998; Singh et al., 1998), and brain imaging specifically (Toga, 1999; Cao and
Worsley, 1999), of comparisons of faces (Hallinan et al., 1999) and of templates and shape
analysis (McInerney and Terzopoulos, 1996; Dryden and Mardia, 1998; Loncaric, 1998). For
the special case of one-dimensional curve registration, see Ramsay and Li (1998). Measures of
similarity to assess the quality of image alignment have included mean-square differences and
correlation between pixels in images (see, for example, Rosenfeld and Kak (1982), section 9.4),
phase correlation (Kuglin and Hines, 1975), coincidence of landmark points (Cross and
Hancock, 1998; Hill ef al., 2000) or edges in images (Bajcsy and Kovacic, 1989; Moshfeghi,
1991), mutual information (Meyer et al., 1996; Viola and Wells, 1997; Rangarajan et al.,
1999; Studholme et al., 1999) and distance metrics (Baddeley and Molchanov, 1998; Kaijser,
1998). Measures used to ensure that the warping is not too severe have been motivated by
thin plate splines (Bookstein, 1991), elastic deformations (Burr, 1981; Younes, 1999), optical
or fluid flow (Barron et al., 1994; Christensen et al., 1996; Joshi and Miller, 2000), diffusion
(Amit et al., 1991), numerical regularizers (Thompson et al., 1991), Hopfield neural networks
(Cote and Tatnall, 1997) and Bayesian prior distributions (Carstensen, 1996; Gee, 1999).
Our proposal builds on much of this earlier work but is distinctive. It is also our intention
to give image warping more exposure to a statistical audience, which we think it needs. In
Section 2 we formulate image warping as a penalized likelihood problem, incorporating
new classes of both similarity measures and distortion penalties. We restrict attention to
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two-dimensional images, though the theory extends in a straightforward manner to three and
higher dimensions. Then, in Section 3 we apply the method to solve the three problems
above. Finally, in Section 4 we discuss the results.

2. Method

Suppose that we have a single image Y that we wish to align with another, given, image p,
sometimes referred to in the computer vision literature as a grey scale template. We propose
to do so by estimating the warping function f: %*—R? to maximize a penalized likelihood
functional P consisting of two components:

P(Y|p, 1, & C, A) = L(Y|p, [, §) = AD(f, C). (1

Here, L is the log-likelihood for Y, which depends on the warping function f and parameters
&. The log-likelihood operates as a measure of similarity between p and the warped version of
Y. The second component, D, is a non-negative measure of distortion of f, chosen to be 0 if
and only if /'€ C, a null set of functions, and X is a non-negative constant that determines the
relative weighting between L and D. We use the term ‘distortion’ in preference to the
commonly used term ‘roughness’, because we sometimes wish to penalize warpings that
would not be considered rough in the general sense of that word. As fis infinite dimensional,
in the absence of a measure of distortion, the problem would be ill conditioned. Penalized
likelihoods have appeared in the statistical literature in many other contexts and may be
justified in several ways, including as regularizers and in Bayesian formulations (see, for
example, Green and Silverman (1994) and Green (1999)). We could place a probabilistic
interpretation on f, via D(f, C) (see, for example, Grenander and Miller (1998)) but we prefer
to leave it ambiguous.

If we have two images, then it may be natural to use one as the grey scale template u. For
example, in problem 1 we take the SAR image to be Y, which we align with the digital map,
taken to be u. However, if we have two images that we wish to treat interchangeably, or K

(> 2) images, YV, . . ., Y then p takes on the role of a consensus image that we also need
to estimate. We generalize equation (1) to
P(K)(Y(l) o Y(K)|,u f(l) o f(K) 5(1) o g(K) C, )\ = ZP(Y(k)|N f(k) g(k) c, N (2

k

where f® denotes the warping function from Y® to p, and we maximize P’ also with

respect to u, which is an array of location parameters. Note, however, that it is not always
possible to estimate x4 and ¢ simultaneously, a topic to which we shall return in Section 3.2.

We consider specific forms for L in Section 2.1 and for D in Section 2.2; then we describe
an algorithm to estimate f'in Section 2.3. There are many ways to choose X (see, for example,
Thompson et al. (1991)). We illustrate some specific strategies in the applications, namely
cross-validation (Section 3.1), prior knowledge (Section 3.2) and discriminatory power
(Section 3.3).

2.1.  Fourier—von Mises image model
We consider two log-likelihoods; the first is based on a Gaussian model for Y after warping,
but our main, novel proposal is for a Fourier—von Mises image model. First we need further
notation.

Image p is a real function, either on a discrete domain, X = {1, . . ., n;} x {1, . . ., n,}, so
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that p: X 1— 9N, or on a continuous domain, so that u: (0, ;) x (0, n,)1—N, according to which
is more convenient (although values of p are typically only known or estimated on the
discrete domain). In this section the domain is taken to be discrete. We use p, to denote the
pixel value at location x = (x,, x,). Image Y is similarly specified and has a possibly different
size, ' = (n, my). We define Y, to be the warped version of Y under f. It is an array of size
n = (ny, n,) specified by

and so its pixel value at x is defined to be the value of Y at location f(x). Typically, ( f;(x),

J>(x)) are not integers, so Yy, is obtained by interpolation, and, if f(x) lies outside the domain

of Y, Yy is defined to be a constant: either 0 or a mean pixel value. We use bilinear

interpolation, though it would be possible to use alternatives such as splines or kernels.
Consider a simple Gaussian model for Y, conditional on f, of the form

Yy ~ Nty 0°) Vx € X, 3)

with Y, for other values of x specified deterministically, by bilinear interpolation, for exam-
ple. We regard Y as a single entity rather than as an array of individual observations, as in
the philosophy in functional data analysis of Ramsay and Silverman (1997), pages 37-38.
The log-likelihood of Y, to within additive and scaling constants, is

where, throughout the paper, the x-summation is over X. This Gaussian model may be
reasonable for problem 3, the fish images in Section 1, but not for all applications. For
example, in problem 2, algal cells appear dark in Fig. 2(a), whereas in Fig. 2(b) one side of
each cell appears dark whereas the other side appears light, and in Fig. 2(c) cells look
different again. Therefore, it would be more appropriate to model the relationship between
the edges of cells in the two images, rather than the image intensities directly. By constructing
an image model in the Fourier domain, we can be flexible in allowing either intensities or
edges to be related, provided that the edges can be extracted by using linear filters, as we show
below.
The Fourier representation of Y is

1 ) () T

NS %: Aw’" cos(Bu”” + 21w x) Vx € X, (5)
where A7 and 6" are respectively the arrays of amplitudes and phases of the Fourier
transform of Y. Throughout the paper, the w-summation is over €2, the set of frequencies
w=(ji/ny, jo/m) for ji=—=Ltn, (=in;+1), .., =10, 1,....(En—=2), Gn,—1)if n; is
evenorj = —3(m; — 1), . . ., 1(n; — 1) if n; is odd. Similarly, we define 4% and 6 to be the
arrays of amplitudes and phases of the Fourier transform of p. Note that the arrays have a
rotational symmetry, as 4.’ = A~/ and HLY”) = —9%. Also, any linear filter applied to u
can be interpreted and computed simply as a rescaling of each element in 4% and the
addition of a constant to #*’. The arrays can be computed efficiently by using fast Fourier
transforms, and we taper the image boundaries by using a cosine bell, to remove artificial
image discontinuities produced by wraparound of the image domain. For an introductory
background to Fourier analysis of images, see, for example, Glasbey and Horgan (1995),
chapter 3, pages 60-70.

Yy =



Image Warping 471
We now specify our Fourier-von Mises image model for Y, conditional on f. The Fourier
phases, 87 are independently von Mises distributed, conditional on A7, as follows:

@714 ~ M, 5 ©)  Vweq ©

w

where the concentration x (> 0) is given by
" (Yy)

k(6 = exp &) + &ilwl + &lwl’ + & log(4Y) + & log(4w")}. (7
Here, |w| denotes the modulus of w, a non-direction frequency, and « is a log-linear function
of |wl|, |w|*, A" and A7, with parameters &. The Fourier amplitudes 4”7 are regarded as an
array of constants rather than random variables, and we use equation (5) to define Y, for all
values of x, not just for f(x) € X. Therefore, the log-likelihood for Y, to within an additive
constant including terms in 4”” for the Jacobian of the transformation, is

L(YIps, £, €) = Y- k(€ cos(el” = 62) = 3= loglhy {k(O)}), ®)
where /; is the normalizing term for the von Mises distribution, a modified Bessel function of
the first kind and of order 0 (see, for example, Mardia and Jupp (1999)). We have the
following four theoretical and empirical motivations for choosing this model.

Firstly, for particular choices of £, the log-likelihood simplifies to commonly used measures
of similarity between images. If £ = (&, 0, 0, 1, 1) then x o A A" and L can be re-
expressed as

(Yy)

L{ Y|/*L’ f! (509 O’ 07 1’ 1)} = Z Hx Yf(x) - Z log{IO(A‘(jl)AW )} (9)

The first term is the cross-covariance or cross-product between p and Y, which is closely
related to L*, given by equation (4). If £ = (§,, 0, 0, 0, 0) then « is a constant and we obtain
the phase correlation measure (Kuglin and Hines, 1975), the cross-covariance between the
images after the application of a high pass filter which results in the filtered images having flat
spectra (Glasbey and Horgan (1995), Fig. 3.6b, page 65). In general, L can be re-expressed,
and interpreted, as the cross-covariance between Y, and a filtered version of y, which we

denote by <7,
LYl £, 6) = 3 5™ Yy — X loglhy {9}, (10)
where
1 K, (§)
<> _ w (1) T
el = NS Zw: i cos(B + 2mw x) Vx e X. (11)
Array p~°” is a filtered version of p, obtained by modifying the amplitudes in the Fourier

transform and then back-transforming. It is also a function of f but we suppress this
dependence for reasons discussed in the optimization algorithm in Section 2.3. Alternatively,
we could have applied the filter to Y, or shared its effects between both p and Y, but we shall
make use of equation (10) in Section 2.3. Typically the effect of the filter will be to enhance
edges in images. Thus, we have combined intensity matching and edge matching in one
measure, unlike, for example, Hallinan ef al. (1999), who treated them separately. Note that
our approach is different from those of others, who have used local Fourier methods, such as
Gabor filters (Lades et al., 1993) and frequency varying chirp-like filters (Bonmassar and
Schwartz, 1997; Tabernero et al., 1999) to extract landmarks from images.
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Secondly, we specify 47 to be an array of constants because most information about the
warping f is contained in #*” rather than in 4”7, and also because in general it is difficult
to construct a realistic stochastic model for 4. In particular, when f is simply a transla-
tion function, as is appropriate for problem 2, the microscopy images in Section 1, all the
information is in #*). This follows because there is a simple relationship between the Fourier
transforms of Y and Y, given by

A = AT 9D = o) 4 2T Ywe Q, wheref,=a;+x;, mod(n),
i=1,2, (12)

for constants «; and «,, provided that we allow modulo n wraparound in the translation.

Thirdly, a von Mises distribution is a natural choice for an angular variable such as 0 as
it is, in many ways, the circular equivalent of the Gaussian distribution. It can also be derived
from the Gaussian model (3), because then

A cos(017)~ N{AY cos(0P), o°}, A sin(@07) ~ N{4"™ sin(0®), o*}, Ywe Q.

These are all independently distributed terms, except for the symmetry constraints already
mentioned, which we shall ignore as they simply introduce a scaling factor of % into the final
log-likelihood. The joint probability density over all frequencies w, including the Jacobian of
the transformation to (47, 7)), is

p(A,097) oc TT AV exp| — % (AT 4 AW — 24D 40D cos(607 — 040)} |
w o

We see that the distribution for 67, conditional on 4’ is independent von Mises with
concentration x = A" A" /5.

Fourthly, rather than restricting ~ to this form, we generalize to the log-linear model given
in equation (7). Fisher and Lee (1992) also modelled the concentration of circular data by
using log-linear models. This choice ensures positivity and is isotropic, and some experi-
mentation indicated that a quadratic function in |w| is sufficiently flexible to model the
observed patterns of x in our examples. Terms in 4% and 4”7 are included, both because we
would expect phases to be less susceptible to sampling variability when amplitudes are large
and because it leads to some standard models as special cases, as already discussed. In
applications where there is near collinearity in the explanatory variables there will be some
redundancy in this model and a lack of identifiability in £, but this should not affect the
estimation of f. Other forms of x have been considered, particularly in the one-dimensional
case of signal processing. Hamon and Hannan (1974) showed that the optimal choice is
Kk, = /(1 — ¢2), where ¢* is the coherence between two series, which they estimated non-
parametrically. See also Hannan and Thomson (1988) and, on the subject to subpixel
alignment, Berman et al. (1994), to which we shall return in Section 3.2.

2.2. Null set distortion criteria

We formulate distortion criteria D that are uniquely minimized by particular null sets of
functions C. To motivate this approach, consider problem 3 introduced in Section 1, the
discrimination of fish species. Fish are not rigid bodies, so shape comparisons should allow
for small distortions. Fig. 4 shows an abstracted version of this problem, with the object in
Fig. 4(b) having the same shape as the triangle in Fig. 4(a) except for a small non-linear
deformation. Figs 4(c) and 4(d) show a second, differently shaped triangle and a non-linearly
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(a) (b)
(©) (d)

Fig. 4. Testimages: (a) and (b) are triangles of the same shape, except for a smooth deformation of (a) into (b),
and similarly for (c) and (d)

deformed version. (Gaussian white noise has been added to all four images, for reasons that
will become apparent in Section 3.3.) We need a distortion criterion that penalizes warpings
that align Figs 4(a) and 4(c) more than those that align Figs 4(a) and 4(b). As far as we are
aware, no existing distortion criterion is tailored to this problem. For example, the thin plate
spline distortion criterion (see Dp, in equation (16) below) does not penalize affine trans-
formations such as that which would warp Fig. 4(a) to align exactly with Fig. 4(c). To
penalize such an affine transformation, we construct D(f, C), taking for C the set of Euclid-
ean similarity transformations (see equation (20) below). By making A arbitrarily large in
equation (1), the function that maximizes P will be a similarity transformation and, as \ is
reduced, warpings are obtained which are nonparametric departures of increasing magnitude
from this transformation.
Let Dg(f) be a functional, called the base distortion criterion, such that

D >0,
s(f) (13)
Dg(0) =0.
We define the null set distortion criterion to be
D(f,C) = rgei(ljl{DB(f_ 2} (14)

Therefore, for f € C, D(f, C) = 0, and by an appropriate choice of Dy we seek to ensure that
D(f,C)>0 for f'¢ C.

If, as will usually be the case, 0 € C, then D(f, C) < Dg(f), and a necessary condition for Dy
is that { /> D(f) = 0} < C. Silverman (1982), pages 116-117, was the first to look for criteria
that were 0 if and only if /' was in a specified set of functions: for imaging applications, see
Arad et al. (1994) and Hallinan et al. (1999), chapter 4. Our idea is qualitatively similar, but
different in that we construct the functional which annihilates a specific set of functions.
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This enables us to construct many criteria, each appropriate to a specific set of imaging
applications.
For the null set C, we consider subsets of pth-order polynomial transformations:

2

8= it D0y Xy + D0 XX, Tt D0 Qg fori=1,2. (15
Ji=1 Jij2 i

Low order polynomials occur repeatedly in image warping applications, including third

and higher orders in registration of remotely sensed images (see Glasbey and Mardia (1998)

for specific references). For the base distortion criterion Dy, we use functionals of partial

derivatives, such as the following first and second partial derivatives:

-+ \2
PuN=x x| () e

i=1 j=I1

(16)

2 2 2 82](.' ’ d
b S Ji X,
5,(f) ; =5 JD (é)xj BXk>

integrated over domain [J = (0, n;) x (0, n,), where dx denotes dx; dx,. (In this section it is
convenient to treat image domains as continuous.) Both these functionals satisfy condition
(13) and have been proposed many times: Dy, is referred to as the Gaussian prior (Hallinan et
al. (1999), page 93) and Dy, is the bending energy of a pair of thin plate splines in a finite
window (see Green and Silverman (1994), pages 150—155). If the domains of integration were
%2, both functionals would be translationally and rotationally invariant, particular cases of
the functionals considered by Wahba (1990). By specifying distortion using first partial
derivatives, warpings are produced which are similar to the deformations of elastic mem-
branes and can have discontinuous second derivatives. For a detailed treatment of such
penalties from a general viewpoint see Blake and Zisserman (1987). As with snakes, which are
linear templates that deform smoothly to align with features in images (Kass et al., 1988),
first-order derivatives can be regarded as tension constraints and second-order derivatives as
rigidity constraints.

By combining equations (14)—(16), many null set distortion criteria are produced, most of
which are new, and add to the range of first- and second-derivative functionals used by
others. For example, if we choose for C the set of bilinear transformations

B={g g =a;+apx;+apX;+a;;pxx, i=1,2}

and use Dy,, then

82](4_ 2
D(f. B)= mi L | d
(f’ B) (vlrlrzlwl(glz {,% JD (3)6, axk allk) dx}’

where «;;; = a;, = 0. It can be seen that D(f, B) =0 if and only if f'€ B. The minimizing
values of «;, are

v}
dil2 = : J 8f dx i=1, 2;

1
mn, Jg 0x; 0x,
producing

D(f. B) = Dy,(f) = 2mny(@iyy + G312)- (17)
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If instead we were to choose the set of affine transformations
A={g g =a;+ayx; +apx,, i=1,2} (18)
then, as is well known, {f: Dp (f) =0} = A, and therefore
D(f. A) =min{Dy,(f— &)} = Dp,(f)- (19)

If, for the null set C, we wish to consider a subset of A, such as a translation, a translation in
combination with either a rotation or scaling, or the Euclidean similarity transformation

S={ggi=01+anx;+apx,, g =0y —apX; +a;x}, (20)

then we cannot use Dy, alone as the base distortion criterion, because { /: Dy (f) =0} £ S.
Instead we use Dy . Set S is important since shapes are defined to be invariant under these
transformations (see, for example, Dryden and Mardia (1998)). We have

2
D(f, §) = min {Z J <8fz _ aﬁ) dx},
aon | 57 )g \ 0x;

where a,; = —ay, and ay = ay;. Again, D(f, §) =0 if and only if f€ S, so we have an
appropriate distortion criterion. The minimizing values of «,;; and «;, are

o1 o | oh
= 2}’11”2 JD <3x1 +aX2) dx,

e [ (22
2T 2mm, Jo \Ox,  ox, ’

D(f, 8) = Dy,(f) = 2mmy(aiy + aiy). 21)

producing

To illustrate, if g € A, given by equation (18), then
Dy (g) = niny(aq, + oty + a3, + ak),
dyp = oy + o),
Qg = %(0112 — Qyy)

and

_mm 2 2
D(g, S) = T{(all —ap) +(ap+ay)h

which is 0 if and only if oy, = ay, and «;, = —ay,, the constraints for g € S, given by
equation (20).

For other subsets of A, we can similarly derive D(f, C) based on equation (14) using Dy, .
We could also add a term involving Dy or higher order derivatives to D(f, C), to constrain f’
to have a continuous first derivative, while still retaining the property that D(f, C) is 0 if and
only if f € C. Therefore, it is important to note that, although our null set distortion criterion
D(f, C) is uniquely minimized by f € C, D(f, C) is not itself unique: there are many alternative

distortion criteria with the same property.
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2.3. Optimization algorithm

We first consider maximizing P, given by equation (1), and then the multi-image problem

of maximizing PX), given by equation (2). The maximization of P, with respect to f and

parameters &, has, in general, no known analytic solution for the functionals which we have

considered in Section 2.1 and 2.2. Therefore, we must resort to numerical methods.
Numerically, we approximate f by specifying its values at a (¢, + 1) x (¢, + 1) lattice of

points:

kn, kon
f(L,£>:ﬁk ky=0,...q, k=0 ... ¢, (22)
q1 q>

involving an array of parameters, 3, and interpolate f(x) elsewhere by using the piecewise
bilinear transformation

N X X X X
f(X)ZﬁkJrﬁ;?O(l—q‘— 1) + 2+<2—42—k2) +ﬁ;+(‘—‘“—kl) (2—"2—k2>. (23)
n n, n n,

Here

k, = int{@} i=1,2,
n

with int[z] used to denote the integer part of z, and
0
ﬁ;r = ﬁ/c+(1,0) - ﬁka
0
ﬂk+ = ﬂk+(o,1) - ﬁka
Bt = Brt.1y = Brxt,0) = Bierco, 1) + Bre-

Alternatively we could have interpolated using B-splines (Rueckert ez al., 1999). Fig. 5
illustrates the case when ¢, = ¢, = 3.

For a piecewise bilinear transformation, it is straightforward to evaluate first-derivative
terms in our null set distortion criteria. For example,

J U g = 0 1,

0O Ox, 42 k=0 k,=0

2 1~ 22—
J (ﬁ) de="2 % BV + g0+ L),
O

0x, 42 k=0 ky=0

1 2,
0 N2 372 ny

0 T2 falz)
) 2 J(z) l‘

1 filz)

Fig. 5. lllustration of a piecewise bilinear approximation to f for a 3 x 3 grid
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and other terms in D( f, S), given by equation (21), can be similarly computed. If D involves
derivatives of higher order, these can only be approximated. For example, D(f, A) given by
equation (19), can be approximated as

—(1,0) q- q—0,1)

D(f, A) ~ q' 2 S G = o +2 D S gy +”‘qz > (B = B )

nlqz k=(1,0) Ny k=0,0) q1n2 k=(0,1)

using an abbreviated summation notation. Incidentally, this particular distortion criterion
can be interpreted as a negative log-density of a Gaussian Markov random field on the
(g1 +1) x (¢, + 1) lattice. In all cases, D(f, C) is a positive definite quadratic form in .

We use a conjugate gradient method to maximize P (see, for example, Press (1994)). This
is a general optimization algorithm which requires only first partial derivatives. At each
iteration, the search direction is that of steepest ascent, modified by the previous search
direction, in such a way that, if the function were an n-dimensional quadratic, it would be
optimized in n steps. This algorithm is well suited to our problem, as first partial derivatives
can be obtained relatively simply, as

oP
86 ap

0¥y 9D(/. C)
ap g
(24)

(S0 Yy = S loull O - A DU ) ~ S i

using the formulation of the Fourier—von Mises log-likelihood L, given by equation (10), and

8 Y
ag BT (Z F(€) cos(@)” — o) — 3 log[lo{nw(g)}]>
_y ) w(f) cos@? — o — - 2oetls {;w(f)}])’ 05

using the formulation of L given by equation (8). Derivatives are computed by using
difference methods, taking advantage of changes in 3, only affecting a subset of terms in Y,
and D, and we achieve substantial gains in speed by ignoring the second-order dependence of
1~ and k(€) on (. Various strategies can be adopted to guard against becoming trapped in
local suboptima. These include a multiresolution approach, where ¢ is increased as iterations
proceed, and permitting greater distortion by decreasing A as iterations proceed. For the
examples in Section 3, the algorithm typically took 30 min of central processor unit time on
a single processor of a SUN Enterprise 450 computer using Fortran 77. However, parallel-
ization would considerably reduce this time.

In applications where it is important, bijectivity can be ensured. Necessary and sufficient
conditions for the piecewise bilinear transformation to be bijective are that the transformed
boundary does not self-intersect, and that each quadrilateral, specified by the ordered set of
four vertices B, Bii1.0)» Brrr,1) and Biio,1)» 18 convex, with the vertices ordered anticlockwise.
Convexity ensures that the bilinear interpolant is bijective within quadrilaterals (a result that
is best seen geometrically by plotting the deformations of lines parallel to the axes), and the
anticlockwise constraint prevents the mapping from folding at the divisions between quad-
rilaterals. Computationally, convexity can be ensured by checking that the two diagonals
intersect inside the quadrilateral.

To maximize P, given by equation (2), we alternate between estimating the consensus
image p and aligning each individual image with it, in a way analogous to generalized
Procrustes analysis. Fluete and Lavallée (1998) used a similar method to align shape outlines
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and Ramsay and Li (1998) to align curves. If we use the log-likelihood L* given by equation
(4), then

K k (K
PO =3 {Z (Yo — ) + A D, C)} (26)
=1 x
is maximized with respect to u simply by averaging at each pixel:
~o 1 *)
Ky = X > Y o) (27)

k

Alternatively, if we use the Fourier—von Mises log-likelihood L given by equation (8), then we
can only estimate the phases of the Fourier transform of u, denoted ¢, by

¢, =tan™' {Z k,(69) sin (953/(”“))/2 K (E9) cos (91#)))}. (28)
k k

In either case, given /i, each warping /® and ¢ can be estimated by maximizing the com-
ponent functional P*, using the conjugate gradients algorithm already discussed. Because
P increases at each iteration and is bounded above, the algorithm is guaranteed to con-
verge. However, PX need not have a unique maximum, and the solution can depend on the
initial choice of an average image. In general, it will not be adequate to start by averaging all
the unwarped images. We consider one solution for problem 3, in Section 3.3.

3. Applications

We now apply the methodology developed in Section 2 to the three practical problems
introduced in Section 1.

3.1. Problem 1: synthetic aperture radar registration
For problem 1, we wish to align the SAR image, Fig. 1(a), with the digital map, Fig. 1(b),
which it is natural to take as p. The appropriate transformation is a projection,

Ji = a4+ y[x {—cos(¢) sin(e,) sin(¢z) + cos(¢,) cos(¢s)}
+ x2(— cos(¢) cos(¢) sin(¢s) — sin(¢,) cos(¢3)} + A(x) sin(¢,) sin(es)],
Jfr = oy 4+ v[x1{cos(¢)) sin(¢,) cos(¢s) + cos(¢,) sin(es)}
+ X2{c0os(¢) cos(¢,) cos(¢3) — sin(¢,) sin(¢3)} — (x) sin(¢y) cos(¢s)], (29)

as shown in Fig. 6. In addition to the elevation function /: R*—MN, there are six unknown
parameters, the translation and scale parameters («, ) and the Euler angles ¢. The first Euler
angle, ¢,, is shown in Fig. 6, and the other two relate to the orientations of the two sets of
axes. If the ground were planar the transformation would be affine, as given by equation (18),
but with a different parameterization. We penalize non-linear functions /4, using the thin plate
spline distortion criterion D(/, A), a one-dimensional version of that in equation (19).

We use the Fourier—von Mises image model (6). However, for Y, we use an edge-filtered
version of the SAR image, as shown in Fig. 7(a). Details are given in Glasbey (1997). It is not
possible to subsume this filter in the Fourier—von Mises image model, because linear filters
are incapable of transforming Fig. 1(a) to an image that looks like Fig. 1(b). However, our
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Fig. 6. lllustration of the projective transform from the map to the SAR image in Fig. 1

(b)
Fig. 7. Filtered SAR image and map, with larger values displayed as darker shades of grey: (a) edge-filtered
SAR image; (b) filtered map, given by p~¢~

model does allow the fine-tuning, by linear filters, of this empirically chosen edge filter, to
optimize its performance for the warping task.

The algorithm of Section 2.3 was used to maximize P with respect to f, given by equation
(29), and parameters £. For simplicity, in this application we set & = &,. Experimentation
with different values of ¢ showed ¢, = ¢, = 16 to be sufficiently large to approximate f. The
warping transformation was constrained to be bijective, although this need not be the case in
this type of application: the presence of hills could lead to occlusions which would need to be
taken into account also in the image model. A range of values of A was used, as is common
practice (see, for example, Silverman (1986)). Table 1 summarizes the results. It can be seen
that, as A decreases, P, L and A D(h, A) all increase, except for some tailing off in A D(h, A)
for the smallest values of . We used a cross-validatory approach to choose A, by estimating f
with a 50 x 50 block of pixels in the 250 x 250 array Y set to a constant mean value, then
evaluating the covariance between the complete images. This was repeated for each of the
nine blocks with pixel locations x; and x, in the range 51-100, 101-150 or 151-200. We
chose this size of block, rather than individual pixels, because adjacent pixels are likely to
be correlated, and to reduce the computational effort. The final column of Table 1 gives
the results, from which it can be seen from the value in bold that A = 100 appears to be
best.
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Table 1. Effect of varying A on criteria for aligning the SAR image with the map

A P L AD(h, A) Cross-validated
covariance

100000 285 286 1 34.5
30000 290 293 4 34.9
10000 302 312 10 35.6
3000 321 335 14 36.2
1000 343 363 20 37.4
300 367 406 38 37.2
100 415 513 97 40.4
30 513 683 170 34.0
10 599 817 216 31.6
3 869 1084 215 21.9
1 1086 1244 158 31.1

Mean resultant length

Fig. 8. ‘Mean resultant length’ for the SAR edge-filtered image and map, averaged over all orientations, plotted
against |w|: x, sample values, obtained by using equation (30); ——, expected values from the full model,
obtained by using equation (31); - - - - - , expected values when ¢ = (&, 0, 0, 1, 1)

For A = 100, we obtained & = (—2.9, 15, —61, 0.45, 0.45). The sample ‘mean resultant
length’ was calculated for a range of values of the non-directional frequency |w|,

1
N(AL) XA: COS(Q(VY’)— ) where A, = {v: ||v] — |w|| < 0.05} (30)
wl) veEA,

and N(A,) denotes the number of elements in set A},. According to the von Mises model,
the mean resultant length has expectation

1 Ii(k,)
N(AM) vehy Iy(k,) '

@31

where [, and I; are Bessel functions. Fig. 8 shows these sample and expected values plotted
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Fig. 9. Superposition of the aligned SAR image with the map

against |w|, from which we see that the agreement is excellent. For comparison, the expected
values for the best-fitting model of the form & = (&), 0, 0, 1, 1), with & = —4.6, is also shown.
The value of & = &, = 0.45 in the full model suggests that the best choice of model leads
to a measure of similarity which is a half-way compromise between covariance and phase
correlation, i.e. a band pass filter. In contrast, Koch and Snowdon (1994) advocated the use of
a low pass filter in an application involving the alignment of X-ray images. The filtered map,
denoted p~°~, as defined in equation (11), is displayed in Fig. 7(b).

Fig. 9 shows the SAR image registered with the digital map, obtained by applying the
estimated warping to the original SAR image. The alignment can be seen to be very good
and automatically yields an almost complete segmentation of the image into homogeneous
regions.

3.2. Problem 2: multimodal microscopy
For problem 2, we know a priori that a translation

f=a+x (32)

is sufficient to align any pair of microscope images. Therefore, formally, we choose the null set
distortion criterion D to be uniquely minimized by translations, using the method of Section
2.2, but we also take A\ — oo. In practice, we simply use the parametric transformation.

By combining equations (12) and (8), the Fourier—von Mises log-likelihood can be re-
expressed as

L(Y|p, £, &) = 3 k(&) cos(0)) — 6% + 2w a) — 3 log[y{r,(€)}], (33)
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provided that we allow modulo » wraparound in the translation. L can be evaluated simul-
taneously for all integer values of « by a single fast Fourier transform. For problem 2, an
alignment to the nearest pixel is sufficiently accurate and is probably all that is achievable.
The model is a two-dimensional variant of the ‘barber’s pole’ proposed by Gould (1969). In
some applications it is possible to estimate « to subpixel accuracy, especially if adjustments to
take account of aliasing, proposed by Berman ez al. (1994), are also included.

We wish to align all three microscopy images under translation simultaneously. However,
it turns out that we cannot maximize P) with respect to parameters in both the con-
centration function and the consensus image. This is similar to the Neyman—Scott problem
(see, for example, Stuart et al. (1999), pages 80-81). So, instead we propose to maximize a
pseudo-log-likelihood:

Pr= S LYY, g0, 60, (34)

k<l

(k,1)

with respect to o/*”, which specifies /%" as given in equation (32), and £, subject to

constraints
f»(k,m) :(}(-(k,l) of~(/,n1) Vi <l< m, (35)

where o denotes a composite of functions. This construction eliminates the consensus image
. In general, these constraints are difficult to enforce, but for parametric transformations
they take simple forms. In particular, for translations

o =a"? 1o mody), i=1,2. (36)
Also, when f'is a translation, Y and p are interchangeable in L, given by equation (33), so we
need only to consider all unordered pairs in P*.

We use the conjugate gradient method described in Section 2.3, to maximize P* with
respect to €%, €19 and €% but for each value of &€ we conduct a grid search to estimate .
An exhaustive search would have to consider n1n3 possibilities. Therefore, we approximate by
a local optimum, by only searching values around arg max,a.»(L"?) and arg max,e.»(L*?).
Similarly, we consider values around each of the other two pairs of maxima. Table 2 gives the
results, which agree with those reported in Glasbey and Martin (1996), using an ad hoc
similarity criterion. So, for example, we estimate that Fig. 2(b) needs to be shifted down by
three rows and shifted right by six columns to align with Fig. 2(a). Fig. 10 shows a single algal
cell, after alignment, in the three microscope modalities. A cross-wire has been superimposed
to aid the comparison in alignments, which can be seen to be very good. The individual pixels
can be discerned at this magnification, and it can be appreciated that even a shift as small as
three rows and six columns has a marked effect.

We compare our method of alignment with two alternatives: the covariance and phase
correlation criteria. Each of 70 subimages of Fig. 2(a) (128 x 192 pixels in size) was aligned

Table 2. Parameter estimates to align the microscope images

X / Akl P é/k.l/ é(k,l/ érk. 0 é(k,l/ é(k,l/
o 0 0 1 2 3 4

1 2 3 6 —6 43 —118 0.91 0.28

1 3 28 170 —20 616 — 14000 0.72 1.53

2 3 25 164 —17 502 —11900 0.65 1.33
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(a) (b) (©

Fig. 10. Single algal cell, after alignment of three microscope images, and with a cross-wire superimposed: (a)
brightfield; (b) differential interference contrast; (c) phase contrast

Table 3. Summary of results for estimating translation parameters to align 70 different
128 x 192 subimages of Fig. 2(a) with subimages of Fig. 2(b) shifted by 20 rows and 20
columns, using three similarity criteria

Similarity criterion Mean Standard deviation
e a, e a,
Covariance 17.5 22.7 8.0 4.3
Phase correlation 21.2 23.6 11.4 23.4
Fourier—von Mises log-likelihood L 22.8 25.8 0.7 0.7

with a subimage of Fig. 2(b) shifted by 20 rows and 20 columns. For the new criterion and
covariance and phase correlation criteria, the means and standard deviations of the 70
estimates of o were evaluated, as given in Table 3. We see that L produces by far the most
consistent results, with standard deviations of less than one pixel. Also, although the
subimages contain far less information than the full images, the estimated translation agrees
well with the earlier results, which with the additional translation of (20, 20) should now be
(23, 26).

3.3. Problem 3: fish species discrimination

For problem 3, it is natural to use the null set distortion criterion based on the Euclidean
similarity transformation D(f, S), given by equation (21), since this is then shape invariant.
To assess our procedure, we first apply the method to the synthetic example of triangles in
Fig. 4.

We propose to use the Gaussian image model with log-likelihood L* given by equation
(4). The algorithm of Section 2.3 was used to align each image in Fig. 4 with every other
image, 12 ordered pairs in total, for each of a range of values of A. Experimentation with
different values of ¢ showed ¢, = ¢, = 64 to be sufficiently large to approximate fand, again,
the bijective constraint was used. The results are summarized in Table 4, by the average
values of the criterion P for within- and between-shape comparisons. Within-shape com-
parisons are defined to be those between Figs 4(a) and 4(b), and between Figs 4(c) and 4(d),
of which there are four. The remaining eight ordered pairs are regarded as between-shape
comparisons. In both cases, P increases with A, because the warping is progressively less
constrained to be smooth and can therefore achieve a greater agreement in pixel values
between images. The criterion is smaller when two images of different shape are aligned than
with two of the same shape, for all values of A. Standard deviations of values of P are also
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Table 4. Effect of varying A on discrimination between the two shapes of
triangle in Fig. 4

A Values of P=L* —AD(f, S)
Meant Studentized difference
in means
Within shape Between shape

1 —2090 (15.6) —2662 (159.0) 3.6
0.3 —1972 (5.7) —2397 (64.6) 6.6
0.1 —1865 (9.1) —2142 (55.4) 4.9
0.03 —1743 (8.8) — 1869 (26.4) 4.5
0.01 —1633 (8.9) —1694 (10.6) 44
0.003 —1546 (3.2) —1567 (7.1) 2.7
0.001 —1498 (3.2) —1510 (3.9) 2.3

fStandard deviations are given in parentheses.

Table 5. Maximized values of penalized likelihood for pairwise comparisons of images in Fig. 4,
using two distortion criteria

Image Values of P = L* — 0.3 D(f, S) for the Values of P = L* — 10° Dp, for the
following images: following images:
(a) (b) (c) (d) (a) (b) (c) (d)
(a) — —1975 —2309 —2350 — —1906 —1854 —1908
(b) —1979 — —2348  —2357 —1903 — —1912 —1910
(© —2475  —2470 — —1967 —1853 —18% — —1893
(d) —2409 —2458 —1968 — —1911 —1911  —1890 —

given in Table 4, from which the Studentized difference between the means of the two groups
can be computed, as the difference in the means divided by the square root of the sum of the
two variances. However, note that it is inappropriate to perform z-tests as samples are not
independently distributed. The distances show that the two shapes are well discriminated,
with the best choice shown in bold for A = 0.3. Thus we conclude that our method provides
satisfactory answers for this simplified problem.

Table 5 compares the results that we obtained using D(f, §) with what we would have
obtained if we had instead used the thin plate spline distortion criterion Dy, , having selected
an appropriate value of A = 10°. In both cases, the largest values are shown in bold. We see
that, using Dy, Figs 4(a) and 4(c) are assessed as being most similar, which is as we would
expect, as an affine transformation is sufficient to transform one triangle to the other and this
is not penalized by Dy,. It is clear that this distortion criterion will not enable us to dis-
criminate between the two shapes of triangle. Similar inadequate results will be produced by
using any distortion criterion other than D(f, S).

The same algorithm was then used to align all pairs of images of fish in Fig. 3 for each of a
range of values of A\. Optimized values of P are given in Table 6, summarized as before. The
two species are well discriminated, with marginally the best choice of A being 0.01. Fig. 11
illustrates the warping for this optimal choice of A, for the alignment of a haddock with
another haddock, and with a whiting. Figs 11(a) and 11(b) show grids of the two estimated
warps. The deformations in Fig. 11(a) are less severe than in Fig. 11(b), and the distortion is
less when the two haddocks are aligned than when a haddock and a whiting are aligned.
Fig. 11(c) shows how haddock 1 (Fig. 3(a)) is warped to look like haddock 2 (Fig. 3(b)), and
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Table 6. Effect of varying A on discrimination between haddock and whiting,
using the four images in Fig. 3

A Values of P=L* —AD(f, S)
Meant Studentized difference
in means
Within species Between species

1 —643 (152) — 1064 (175) 1.8
0.3 —538 (163) —952 (114) 2.1
0.1 —383 (138) —784 (49) 2.7
0.03 —255 (92) —586 (22) 3.5
0.01 — 182 (60) —433 (15) 4.1
0.003 —130 (40) —298 (15) 39
0.001 —99 (29) —218 (16) 3.6

tStandard deviations are given in parentheses.

Fig. 11(e) shows the pixel-by-pixel difference between the two images after alignment. In
comparison, Fig. 11(d) shows how haddock 1 is warped to look like whiting 1 (Fig. 3(c)), and
Fig. 11(f) shows the pixel-by-pixel difference between the two images. The sum of squared
differences is greater than for the within-species comparison.

We now consider the analysis of the larger data set, consisting of images of 10 haddocks and
10 whitings. For each species, we used eight images to characterize the population average and
variation, by maximizing P, given by equation (26). Two images of each species, chosen at
random, were then available to validate the method.

An ad hoc procedure to overcome some of the numerical problems in estimating the
template /i for each species is as follows. To obtain an initial estimate of /i, we warped image
2 to image 1 and formed a composite image:

YO 4 y?
~(1,2) X X
Bixrrooy2 = fﬂ) Vx e X. (37)

Here, we have taken the average of the pixel at location x in image 1 and the pixel at location
f(x) in image 2, and assigned it to the pixel at location {x + f(x)}/2 in the composite image.
Unassigned pixels in /i"? were given the same value as their nearest neighbour. We similarly
formed the average of images 3 and 4 and then averaged image (1, 2) with image (3, 4) to
obtain image ((1, 2), (3, 4)), and so on until finally
ﬂ _ ﬂ(((l,2)-(3,4))-((5~6)~(7,8)))'

We then warped the eight original images to /i to maximize P*), re-estimated x using equation
(27) and repeated until convergence. This procedure treats all eight images equivalently and
could be modified to handle other sizes of training set. For both haddock and whiting, values
stabilized within a couple of iterations. Fig. 12 shows the two average fish.

Finally, each of the 20 images in turn was warped to the average haddock, by maximizing
P. Fig. 13 shows the maximized values of P plotted against the corresponding values when
the images were instead warped to the average whiting. The maximized values of the
penalized likelihoods are measures of similarity of individual images from the two species.
We can see two clusters of points, and the two species are clearly distinguishable. The 10
haddocks, including the two not used previously, are far more similar to the average haddock
than to the average whiting, and a similar pattern occurs with the whiting. However, we see
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Fig. 11. Result of warping haddock 1, with A = 0.01: grid of deformations for alignment with (a) haddock 2 and
(b) whiting 1; warped image of haddock 1, to align with (c) haddock 2 and (d) whiting 1; pixel-by-pixel difference
(zero values are displayed as mid-grey) between a warped image of haddock 1 and (e) haddock 2 and (f) whiting 1

that the circled points lie on the extremes of the two clusters, nearer to the other cluster,
indicating some slight overfitting in the model.

By making full use of the grey level information (including texture) in the photographic
images of fish, we have improved on the discriminating power of Strachan et al. (1990) and
Glasbey et al. (1995). We could develop the model further, and apply principal components
analysis, both to the grids of warpings 3, given by equation (22), and to the differences
between pixel values in the aligned images, as Lanitis et al. (1995) did with images of faces.
These could be used to replace L* by differences between principal component scores,
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(@) (b)
Fig. 12. Average images of two species of fish, obtained by averaging eight images: (a) haddock; (b) whiting
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Fig. 13. Plot of P between individual images and the average haddock and the average whiting: H, haddock; W,
whiting; O, images not used in obtaining the averages

thereby weighting pixel values according to how variable they are in different parts of an
image (Cootes et al., 1998). Further, Moghaddam et al. (1996) modelled variation in facial
expression, both within and between individuals, and Duta ez al. (1999) formed clusters of
similar shapes and modelled intracluster variation. Rao (2000), pages 580-583, has discussed
an unbiased and a consistent estimator of the template under certain conditions when the
errors are coloured and the warps are elements of a similarity group.

4. Discussion

The subject of warping has been reviewed comprehensively in Glasbey and Mardia (1998)
and elsewhere, as cited in Section 1. Therefore, here we shall focus on the techniques devel-
oped in this paper. We have shown that image warping can be formulated statistically, as
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maximum penalized likelihood, and this has allowed us to understand and generalize exist-
ing methods. Our approach has produced good results for the three applied problems. We
do not claim that ours are the only methods that are capable of producing such results,
but there would seem to be little opportunity for alternative methods to improve on them.
Also, it is clear from Table 3 that the Fourier—von Mises log-likelihood outperforms simpler
measures of image similarity, and from Table 5 that the thin plate spline distortion criterion
is inappropriate for making similarity shape comparisons, though also see point (b) below.
Also, although we have focused on point estimation, as we have formulated image warping
in a statistical framework we could also obtain measures of precision of estimators. For
example, we could base inferences on multiple samples drawn from the Fourier—von Mises
image model.

We now deal with the three main ingredients of the paper: the Fourier-von Mises image
model, the null set distortion criterion and the algorithm.

(a) The Fourier—von Mises image model offers a flexible approach to modelling the
relationship between images, which will work for general lighting conditions because of
its Fourier basis. We showed the model to be plausible and used it in both problem 1
and problem 2. However, the general form is inappropriate to solving problem 3, where
we are concerned with discrimination between fish species, and a simple Gaussian
model is what is required. Other grey level metrics, such as the Kantorovich distance
(Kaijser, 1998) are more computationally expensive. Our image model is elegant in that
it combines intensity matching and edge matching in one measure. In the machine
vision literature, the two terms for intensity matching and edge matching are treated
separately (see, for example, Hallinan et al. (1999), page 79). We believe that our
procedure has some advantages since it removes the necessity of estimating the weights
required to combine the two terms.

(b) The null set distortion criteria furnish us with a rich class. In problem 1 we have taken
the roughness penalty from thin plate splines as our distortion criterion, whereas in
problem 2 the distortion criterion is used only implicitly to constrain the warp to be in
the null set of translations (A — o0). In problem 3 the distortion criterion is a shape
invariant criterion. Thus, our formulation allows us to select a criterion that is appro-
priate to the application within our general null class. Our shape invariant criterion
uses only first derivatives, so there can be degenerate solutions if only a limited number
of points such as landmarks are used (e.g. Green and Silverman (1994), page 159).
However, in our case there is always a unique solution for finite ¢ since D is quadratic
in 3. Note that, for landmark-based methods, there is an explicit expression for kriging
warps including thin plate splines (see, for example, Mardia and Hainsworth (1993)
and Kent and Mardia (1994)). However, we need to add an extra penalty term to the
thin plate spline criterion if we want to penalize affine transformations that are not
shape preserving.

(c) Our algorithm has some similarities with finite difference methods, though our use
of a piecewise bilinear transformation eliminates numerical integration in calculating
distortion criteria only involving first derivatives. The conditions that we have imposed
on the piecewise bilinear transformation lead to local as well as global bijectivity.
Bijectivity is important if we wish to warp a standard co-ordinate system to the image.
However, in the SAR example, the projective transformation may not be bijective or
continuous owing to occlusion. The method extends in a straightforward manner to
three and higher dimensions, although the computational cost will be high. Also,
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stochastic methods such as simulated annealing and Markov chain Monte Carlo
methods could be implemented, which would also give more information on the
posterior distributions of £ etc., but again the method may prove expensive. The issue
of global registration has not arisen because, for example, in problem 3, the fish were
placed in a prespecified orientation with a fixed camera position. If this were not so, we
could resort to any of a number of global registration methods, such as the matching of
low order moments (Wong and Hall, 1978; Yang and Cohen, 1999). Alternatively, an
additional penalty term could be added to P (sce, for example, Mardia et al. (1997)).
We have taken different g for problems 1-3. Its selection depends on the size of the
images, and the overall accuracy required. A wavelet-based distortion criterion in turn
is another approach (see, for example, Downie et al. (1996)). Also, whether one should
use compositional warps at different resolutions or additive warps is another issue.

There remain many challenging problems in image analysis, to which statistical methods
are applicable, both in general and in particular in image warping. This paper follows earlier
ground breaking papers on image analysis by Besag (1986) and Grenander and Miller (1994).
We hope that our paper similarly stimulates further work in this area.
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Discussion on the paper by Glasbey and Mardia

Ilya Molchanov (University of Glasgow)

The authors consider an important problem that has many applications in image analysis and
encompasses several approaches that have already been developed in this and related areas. I would like
to revisit several issues related to this paper, sometimes rephrasing them in a more abstract language.

A general formulation of warping problems
Warping ideas appear in probability theory and statistics under many different names. A general
formulation of such problems involves the minimization of a functional

m(x, y) = min{p(x, Ay) + D(V)}

over a family A of transformations defined on a space X, where x, y € X and p is a symmetry on X,
i.e. p(x, ¥) = p(y, x) and p(x, y) = 0 implies that x = y. One of the first examples of such functionals
appears in the definition of the Skorohod topology (Skorohod, 1956) that is widely used to formulate
limit theorems for stochastic processes. Then x and y are cadlag functions on [0, 1] (i.e. continuous
from the right and having limits from the left), p is the uniform metric and A determines the change of
variable using a monotonic bijective transformation of [0, 1]. The smallest value of m(x, y) is then called
the Skorohod distance between x and y. Its counterpart in statistics concerns the alignment of curves
and dynamic time warping; see Wang and Gasser (1999). In studies of shapes and figures, D(\) van-
ishes if A € A and is infinite otherwise, so m(x, y) is obtained by minimizing p(x, Ay) over A € A.
Furthermore, m(x, y) with p(x, y) interpreted as the likelihood and D()\) as the penalization or prior is
one of the key ideas in smoothing and Bayesian statistics. It also is widely used as a regularization
technique in numerical methods for ill-posed problems. In image analysis some effort has been put into
constructing geodesics (or interpolation) that provide the ‘shortest’ warping transformation between
binary images (Serra, 1998) and smoothing of image sequences (Friel, 1999).

Image dissimilarity measures

The likelihood term in the penalized likelihood functional provides an example of a dissimilarity
measure for grey scale images. In fact this paper is not concerned with modelling images and the main
application of the Fourier-von Mises model advocated by the authors is not for modelling but for
defining a loss function that may also be called an image dissimilarity measure or image metric. It is
generally recognized that conventional distances (e.g. L* or root mean square) do not perform well for
grey scale images. For binary images, a family of useful image metrics was proposed by Baddeley
(1992). However, his idea cannot be easily extended to grey scale images at a reasonable computational
cost; see Wilson et al. (1997), Friel and Molchanov (1998) and Kaijser (1998) for further discussions
of grey scale image metrics. The Fourier-von Mises image model offers a sufficiently flexible and
computationally efficient approach to defining grey scale image metrics. It would be interesting to
investigate its performance for typical examples that involve assessing distances between grey scale
images from the above-mentioned references.

Warping as preprocessing for averaging

While calculating averages of fish images, the authors used warping to align the images before
averaging. In this case the target image u that is used to warp individual images is unknown and the
approach is to warp images ‘close together’. The averaging is performed for the post-warped images
and therefore must match warping. In other words, the average of several warped images y;, . . ., ¥,
should be defined as an image p that minimizes  p(u, y;)>, where p is the same loss functional that
was used to determine the optimal warpings, i.e. the Fourier—von Mises loss function in the context of
the current paper. In application to binary images, this idea was pursued by Stoyan and Molchanov
(1997).



Discussion on the Paper by Glasbey and Mardia 493

Consistency of estimators

The warping functions are estimated as minimizers of the loss functional. In most applications the
warped images may be subject to misregistration. This calls for an application of stochastic
optimization methods to deduce that the estimators suggested by the authors are consistent. Quite
similar ideas were developed by Wang and Gasser (1999) whose techniques may be applied to assess the
order of bias when the warping transforms are being obtained using a sample of images produced by
kernel smoothing from observed data. It is also essential to ensure that the gradient algorithms that are
used by the authors do not become trapped at one of the local minima.

Distortion measures

The null set distortion criterion that is used by the authors can be equivalently formulated as the
‘distance’ between the transformation (warping) A and the set A that consists of ‘neutral’ (or null)
transformations.

In my opinion, the approach pursued by the authors looks promising and worthy of further
exploration. The examples presented are convincing and the algorithms look computationally efficient. I
congratulate the authors on a stimulating paper and have great pleasure in proposing the vote of thanks.

C. Jennison (University of Bath)
Dr Glasbey and Professor Mardia have offered us a stimulating paper. They have combined models
for image data, a general method of controlling the warping function which can allow certain
transformations without penalty, and an impressive computational algorithm. The three illustrative
examples are well motivated and each introduces its own special complexities.

The technique of penalized likelihood that is employed by the authors has a curious status. Its
connection with Bayesian methods is well known (e.g. Green and Silverman (1994), page 51). The
penalized likelihood of the observed image Y obtained from the penalized log-likelihood in equation (1) is

[(Yp, . &) exp{=AD(f, O)}

where /(Y| p, f, €) is the likelihood of Y given u, fand £. In a Bayesian interpretation this formula is a
multiple of the posterior density of fand &, given the observed Y, for the case where f has prior density
proportional to exp{—X\ D(f, C)} and £ an improper flat prior. The posterior distribution of f provides
a basis for inference; one could also place a prior on A and estimate this from the data along
with everything else. Despite the current popularity of Bayesian methods in statistical image analysis,
the authors do not advocate such an interpretation of their work: perhaps they do not regard
exp{—A D(f, C)} as a reasonable prior for /. However, if the penalty term is viewed simply as an ad hoc
way of regularizing maximum likelihood estimation in an otherwise ill-conditioned problem, one is left
with a rather ad hoc method for obtaining a point estimate of f and no simple way of quantifying
uncertainty in this estimate.

In their first example, the authors choose an edge-filtered version of the original synthetic aperture
radar data as their ‘image’ Y and assume that Y|u follows the Fourier—von-Mises distribution. This is a
pragmatic and, evidently, very effective choice. Despite the high noise level, direct processing of such
synthetic aperture radar data is possible: Hurn and Jennison (1995) presented a multiresolution
algorithm for fitting a Markov random field image model of the type proposed by Geman and Reynolds
(1992) which encourages sharp edges in the image. I wonder whether stochastic image models might also
be incorporated in the authors’ methods; for example, in the third example, one could consider a
Markov random field model under which grey levels vary slowly with occasional sharp discontinuities
to specify spatial properties of u, the average haddock or whiting. What do the authors think about

(a) the feasibility of incorporating this extra ingredient in their algorithms and
(b) when this might lead to significant improvements in results?

I have two technical points. The first concerns the summation in the data log-likelihood (4) which is
over points x in the p -lattice. Corresponding values Yy, are formed as weighted combinations of
values observed at the lattice points of the image Y but no account appears to be taken of the
correlations between the variables that are thus created. In any case, since the Y are the observed data it
would be natural to define the data log-likelihood as a sum over observations Y at lattice points of the
observed image and then to use bilinear interpolation of /=", the inverse of the warping function, to give
a p-value for each Y.
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My second point of detail pertains to the calculation of D(f, C) in the optimization algorithm of
Section 2.3. The function f'is specified through its values at a set of grid points with remaining values of
fobtained by interpolation. Piecing together the interpolating functions on each square of the grid gives
a function f'with discontinuities in high order derivatives at the boundaries of these squares. Either this
form of interpolation is too crude when the penalty term involves such high order derivatives, or
contributions are needed from the behaviour at the edges of grid squares as well as from integrals within
each square. Sibson and Thomson (1981) used piecewise quadratic functions with derivatives matched
at the ‘seams’ to tackle a related problem.

Turning to a more general perspective, the authors are a prime example of statisticians participating
in a field where others, including in this case electronic engineers and computer scientists, have already
created a battery of effective techniques. We may ask what a statistician brings to such a field, and the
methods presented by the authors without a Bayesian setting are of particular interest as one cannot just
fall back on the ability of statistical methods to provide a measure of confidence in their results. I believe
that we do bring a new perspective, drawing on a different and often complementary heritage. The
detailed study of the philosophy and methodology of statistical inference helps in judging what is
achievable in new application areas—and the pitfalls that may await. We should certainly not be timid:
there are plenty of researchers from other disciplines exploring fields one might have regarded as the
rightful domain of statisticians!

The authors have tackled difficult problems with a substantive statistical component. They have been
inventive in pursuing these problems to real, effective solutions, demonstrating the value of their
statistical approach. It is a pleasure to congratulate them on their achievements and to second the vote
of thanks.

The vote of thanks was passed by acclamation.

Bjarne K. Ersboll (Technical University of Denmark, Lyngby)
I congratulate the authors on their extremely neat unification of image warping techniques. Apart from
Carstensen (1996) which—as mentioned—presents a Bayesian type of approach to image warping, we
have at my department experience from both correlation-based (matching two-dimensional electro-
phoretic gels; Conradsen and Pedersen (1992)), landmark-based (matching human mandibles;
Andresen et al. (2000)) and local phase-based warping (matching stereo image pairs, following
Granlund and Knutsson (1995)). A further implication of matching and warping is the field of optical
flow. Larsen et al. (1998) adopted an approach with some resemblance to the methodology mentioned
in the paper in order to interpolate and extrapolate image sequences. Your paper ingeniously seems to
have combined all these techniques. Furthermore, the Fourier—von Mises idea has a nice appeal to it.

Using these conceptually different techniques on real applications we found that it is usually
necessary to operate on multiple resolutions with a stepwise coarse to fine refinement of the warping
to obtain reliable results. The aspect of a multiresolution approach is only briefly mentioned in the
paper, however, so I would be extremely interested in the opinion and experiences of the authors on
the matter.

Below are three examples which raise some questions about and might challenge your technique.

(a) When matching fundus images from the same patient over time an important problem is the
occurrence or disappearance of features. This could probably be modelled as an occlusion or
folding as it is termed in the paper. Furthermore, the structures to be matched—here blood
vessels—change over time. Occlusion occurs for many types of images; how does the meth-
odology proposed perform here? Which assumptions are necessary?

(b) A spot image and an orthophoto have extremely different resolutions (20m x20m versus
62.5cm x 62.5cm pixels), making the matching problem far from trivial. The questions are the
same as before.

(c) Finally, many image data are in colour or even multispectral. Consider matching two Landsat
images, one taken during the summer where the altitude of the sun is higher and the vegetation is
drier than on the one taken during the winter. Does the methodology generalize to include image
cues such as colour or multispectral information, or do we have to make do with a suitable
projection onto grey scales?

Edwin Hancock and Richard Wilson (University of York)
Mardia and Glasbey have presented an important paper which we believe contains ideas which will also
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prove influential on researchers in the fields of computer vision and image analysis. They address the
pervasive problem of image alignment. They offer a way of gauging data closeness in the Fourier
domain by using the von Mises distribution and for regularizing the alignment parameters by using the
null set distortion criterion.

For the past decade, we and our co-workers have been studying the problems of image alignment and
correspondence matching. Our contributions have been threefold. First, we have shown how to use the
expectation—-maximization (EM) algorithm for spatial domain alignment under similarity, affine and
perspective transformations (Cross and Hancock, 1998); the resulting algorithms have been applied
both to synthetic aperture radar images and to the more complicated images delivered by millimetre
radars (Moss and Hancock, 1997). Our second contribution has been to develop probabilistic methods
for graph matching, which can be used to find correspondences between point or line features in
different images (Wilson and Hancock, 1997; Myers et al., 2000). When working with point or line
features, as is frequently the case in high level vision, then the alignment and correspondence problems
have a chicken-and-egg relationship to one another. Our third contribution has been to develop a dual
step EM algorithm in which the recovery of alignment parameters is constrained by the pattern of
correspondence matches residing on a relational graph which represents the arrangement of image
features (Cross and Hancock, 1998).

We can see the scope for important synergies between our work and that of Mardia and
Glasbey. From our experiences, we have three suggestions for the authors. First, and as alluded to
by Professor Molchanov, the Fourier domain alignment process could be usefully integrated into an
EM algorithm which iterates between estimating distortion parameters in the M-step and compu-
ting a posteriori matching probabilities in the E-step. Second, it might prove fruitful to develop a
localized feature representation along the lines of the Von der Maalsburg bunch graph and to or-
ganize these features by using relational graphs. Thirdly, we would be interested in whether there
might be advantages in using alternatives to the thin plate spline to generate the null set distortion
criterion.

Graham Horgan (Biomathematics and Statistics Scotland, Aberdeen)
The importance of the work presented by Glasbey and Mardia derives from the generality with which it

(@)

Fig. 14. (a) Longitudinal slices of four parsnips and (b) the parsnips warped to a common outline by a piecewise
affine transformation
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may be applied to many diverse applications. In two of the examples used (synthetic aperture radar and
microscopy), the interest is the warping itself. The effectiveness of the method is demonstrated in Figs 9
and 10. In the former we can see precise fitting over much of the image, where it is possible, combined
with the rigidity of the warping at the bottom right-hand side.

The third application (fish) is of particular interest, in that warping fish images to match each other is
not the central motivation, which is rather the discrimination of different species. This gives the work in
the paper a great potential breadth of application. Much research effort has been expended on the
recognition of individuals from images of faces, for example (Craw et al., 1999). Intermediate between
the recognition of species and of individuals is the horticultural application of cultivar discrimination
(Horgan et al., 2001). Implicit in much work on these topics is the idea that differences between images
are split into two types—differences in outline shape and differences in grey levels within the outline.
After the former have been described, warping is carried out to remove outline shape differences and to
make a separate study of the latter (Fig. 14). The authors’ method would handle both these aspects of
appearance simultaneously.

One significant advantage of splitting the discrimination into two stages is that the background, and
any variation in it, within or between images, becomes irrelevant. This may be important in some
applications. It can also be useful to study the components of variation of both types separately. The
question which naturally arises, then, is whether the authors’ methods can be adapted to preserve these
benefits, perhaps by some preprocessing of the images, or in some other way.

John T. Kent (University of Leeds)

The paper contains several fascinating statistical proposals for image warping. I would like to draw
attention to some related work by two of my recent doctoral students. The first result is by Debbie
Godwin. Let R, and R, denote two simply connected compact regions in R*> with smooth boundaries
parameterized by functions ¢;: S| — R?, j=1, 2, where S, denotes the unit circle. Consider the
interpolation problem of finding the ‘smoothest’ possible deformation f: R, — R;, such that f is
required to match the parameterized boundaries, fo ¢, = ¢,;, and where smoothness is defined in terms
of minimizing a penalty. Two possible penalties are given by equations (16) and (21) in the paper, which
in the current context take the form

2
D\(f) = J > (5ﬁ/8x,)2 dx

Ry ij=1
=0 for f constant,

D,(f) = D\(f) — correction terms
=0 for fa similarity transformation.

Godwin (2000) proved the surprising result that the optimal deformations under the penalties
D,(f) and D,(f') are the same, i.e. the introduction of correction terms is irrelevant to the optimal fit,
though of course the value of the optimal penalty is different in the two cases. As a consequence of this
result, one can ask whether the introduction of correction terms makes much difference to the fitted
deformations in the examples of this paper.

A contrasting conclusion was reached by Gary Walker, who was jointly supervised by me, Ian
Dryden and Chris Glasbey. In a one-dimensional ‘smoothing spline’ version of the problem, again
based on first derivatives, Walker (2000) found that the introduction of a correction term made a
substantial and useful difference. In his setting the desired deformation is close to linear. But, without
the introduction of the correction term, the fitted deformation tends to flatten out beyond the range
of the data since only the constant function lies in the null space of the penalty. With the introduction
of the correction term, linear functions also have a zero penalty, and the fitted deformation is much
closer to a linear function.

John Ashburner (Institute of Neurology, London)

A feature of this paper that I like is that it ensures consistency by using consensus images. Internal
consistency is an often overlooked factor in image warping. For example, warping one image to
match another does not necessarily produce the inverse of the deformation obtained by warping the
images the other way around. This is partly because derivatives of the log-likelihood function with
respect to the warping function’s parameters often depend on the gradient of only one of the images.
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Another reason may be ‘asymmetries’ in the measure of distortion that is used to penalize improbable
warps. These arise when a particular deformation is not deemed as probable as its inverse. Similarly,
individually warping together many pairs of images may not produce deformations that are consistent
with each other. The use of a consensus image maintains consistency between all the warps, as the
mapping between any pair of registered images can be obtained by combining a forward and an
inverse (bijective) warp.

The paper describes linearly regularizing distortions in addition to those that can be represented by a
rigid body transformation and isotropic zoom. By including these transformations within the null set of
functions, the estimated shapes should not be influenced by object size and pose. One complication that
may occur is if one (very supple) fish is bent in the middle by 90°. This fish only has a different shape in
the middle, whereas its head and tail are both normal shapes. There may be enough evidence in the
images to bend the outline of another fish to match it. However, the term that penalizes distortions may
still have unwanted effects, as the null set distortion criterion does not model the different rigid body
transformation between the head and tail.

My own thoughts are that measures of distortion should be used that are completely rotationally
invariant. This can be achieved by using singular value decompositions of the Jacobian matrices at each
point of the deformation, which effectively decompose each matrix into a rotation, a set of orthogonal
zooms and another rotation (Ashburner et al., 1999). A rotationally invariant measure of distortion can
then be derived from the zooms. A penalty function that is identical for both a forward transform and
its inverse can then be constructed by assuming that the logarithms of the zooms are normally
distributed. This also means that logarithms of areas and volumes would both also be normally
distributed.

Ian L. Dryden (University of Nottingham)
My comments centre on the new methods of this interesting paper.

Independence
The independence model (3) is given as motivation for the von Mises model, leading to &=
(—log(c?), 0, 0, 1, 1). The authors actually use a much more general model with () given by equation
(7). How do these von Mises distributions relate to possible joint distributions for the grey levels Yj,,
and their joint correlation structure?

Consider an n; x n, image to have toroidal boundaries and let Yy, be a Gaussian random field on the
discrete image with mean p, and covariance matrix ¥ which is block circulant with circulant blocks. If
W, is the usual n x n discrete Fourier transform matrix,

(W, @ W,,)*S(W,, ® W,,) = diag(o”/\,),
say. Hence, under this model the displayed equation after equation (12) has o” replaced by o* /A, and
then equation (6) is replaced by
£.(€) = expl—log(c?) + log(\,) + log(4%") + log(4L ")},

There is some overlap with the model derived from this family of Gaussian random fields and the class
considered by the authors. A simple practical model (not in the authors’ class) is a homogeneous
Gaussian Markov random field for Yy, — p,, where

A =1-3 8, cosrh'w),

heN

where N is a finite symmetric neighbourhood of the origin and 3, = 8_,. It would be interesting to see
how these models compare with, for example, Fig. 8.

Null set criterion
How should one choose the null set criterion in practical applications? Typically there are two types of
matching situations:

(a) different views and/or modalities of the same geometrical object (e.g. applications 1 and 2);
(b) images of different objects (e.g. application 3).

In (a) the geometrical variability of the object itself is zero so one ought to aim to match exactly. In (b)
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there are geometrical differences in the objects as well as possibly differences in the modalities or views.
Partitioning this variability is not so straightforward in general.

The authors do have a method for choosing A based on discrimination in application 3, but how do
we interpret the value? Are the fish populations significantly different in shape and size or is it just
texture information that is helping with discrimination?

Variability of estimators

No method for obtaining standard errors or credible regions is given. The probabilistic interpretation
on f'via D(f, C) would be helpful, and posterior credibility intervals could be obtained by Markov chain
Monte Carlo methods of course.

Higher dimensions
Although in principle warping is ‘straightforward’ in higher dimensions, there is much greater com-
plexity when considering certain aspects, e.g. shape theory (see Kendall ez al. (1999)).

Homogeneity and robustness

Different weightings to parts of the image are often useful (see the end of Section 3) but may make a
substantial difference to the solution. Thus, a robust solution may be called for (for example see Dryden
and Walker (1999) for a matching example using S-estimators).

M. Petrou (University of Surrey, Guildford)
This is an impressive piece of work that brings together two major topics: image registration and
invariant feature construction.

An interesting problem is the identification of functionals which annul the effect of the functions of a
particular group of transformations (Kadyrov and Petrou, 2000).

We have developed what we call the ‘trace transform” which computes functionals along tracing lines
of the image, to map the image onto the line parameter space. Further functionals are chosen applied to
the parametric representation of the image so that they yield a single number that is invariant to the
group of transforms that we have chosen.

The philosophy behind such an approach is that the first functional is computed along the curves that
are left unchanged by the group of transformations. For linear and affine distortions these curves are
just straight lines. For more complicated transformations, however, the unaffected curves are much
more complicated and it is difficult to apply the theory in such cases. This is the point where we may
have to abandon the approach based on the group of transformations and use an approach based on a
set of locally applied operators that cause deformations.

We have developed an image registration algorithm for the elastic registration of three-dimensional
images based on this idea.

In the optimization approach we invoke at random operators that are applied locally and deform one
image to match the reference image. This way we do not restrict ourselves to a particular group of
distortions, but to a particular set of deformations appropriate for the images of the application that we
are interested in, and which may be different in different places of the image. Such is, for example, the
case of a medical image where a tumour is growing locally.

The following contributions were received in writing after the meeting.

José M. Angulo (University of Granada)
I would like first to thank the Research Section for this opportunity to contribute to the discussion of this
interesting paper, as well as to congratulate the authors for their significant contribution with this work.
One of the most challenging problems in image warping consists of the proper definition of the concept of
distortion and its formal treatment in applications. In this regard, the authors propose a methodological
approach based on penalizing the likelihood associated with the warping in terms of distortion.

From my perspective, the innovative contributions in the paper, regarding both the methodological
approach and the technical solutions given to its implementation, provide a significant basis for future
research, such as a consideration of possible alternatives. In this respect, I shall focus my comments on
certain aspects related to scales on the basis of the methodology proposed.

First, D as defined in criterion (13) and then used in the definition of D(f, C) in equation (14) can be
viewed as an ‘absolute displacement-based’ distortion criterion. Formally and also partly conceptually,
an alternative would be to formulate, say D*( f, C*) as the minimum of D%( f o h), for h € C*, with D%(-)
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now being a non-negative functional null at the identity. This would also require a slightly different
consideration for class C* instead of C. In the case of bijective deformations, the simple relationship
f—g=(fog " — Id) o g suggests that, whereas in D(f, C) the function fis compared with each function
g on the (absolute) scale of the domain of f, in D*(f, C*) the comparison of f with each function # = g™'
would be performed on the (relative) scale of the domain of g', ie. ‘removing’ g from f in a
compositional sense rather than by subtraction. For f'in the null set of functions, we have a distortion of
0 in both cases. For other f, we would measure distortion as the ‘departure’ in terms of different scales.
Such a difference can be related to the primary question of defining a concept for distortion.

Second, equation (1) involves a mixture of quantities, the log-likelihood L and the measure of
distortion D, which are defined, in principle, by scales of a different nature. Under the same idea of
penalizing the likelihood in terms of distortion, we might then think of considering different algebraic
alternatives from this construction of the objective functional, and the problem remains to study the
properties and a proper justification for each specific formulation, as well as comparative per-
formances.

Mark Berman (Commonwealth Scientific and Industrial Research Organisation, Sydney)

I congratulate the authors on their interesting paper, which neatly combines aspects of Fourier theory,
circular statistics and regularization to address the general problem of image warping. The paper
generalizes a number of simpler image matching procedures and elegantly combines intensity matching
and edge matching in one measure. In addition, the methodology provides performance measures for
assessing the quality of a warp.

However, the methodology is mathematically complex and computationally intensive, and is only
likely to be taken up by the computer vision community (and optimized by them, especially for speed
purposes) if the value of the methodology can be demonstrated in an application of wide interest to that
community and their commercial partners. One possible area is in face recognition, to which the authors
briefly allude in their discussion of the fish discrimination problem. However, in the fish images the
backgrounds appear reasonably homogeneous. This is unlikely to be the case in many practical face
recognition problems. How would the authors’ methodology work with variable backgrounds, or would
the fish or faces need to be segmented out first?

My main technical comment is about the use of cross-validation in the synthetic aperture radar
example and in image analysis problems generally. Replacing a block of pixels by a constant (rather
than omitting them altogether) does not seem a very natural approach. The authors apparently need to
do this because the discrete Fourier transform does not normally cope with ‘missing values’, although
this can be dealt with in some linear problems (Berman, 1994). In image analysis problems where more
classical cross-validation can be performed, it is not necessarily the best thing to do. For instance, in the
image segmentation context, Lee (2000) demonstrated the superiority of a minimum description length-
based approach over a cross-validation procedure suggested by Bose and O’Sullivan (1997).

Finally, I have a query about the choice of ¢, and ¢, in the optimization algorithm. Are these
parameters chosen ‘by eye’ or in some more objective way? This would be an issue for those interested in
a fully automated solution.

Rodney Coleman (Imperial College of Science, Technology and Medicine, London)
There is much to admire in the methodology described in this paper, and I wish to offer suggestions for
areas in which it might be further developed.

In particular, the Fourier—von Mises image model hints at the possibility of fashioning functionals
that might be used as image signatures that can be compared for similarities, but which are not
dependent on the viewer’s ‘expert knowledge’ being applied directly to the actual images. With this in
mind, the haddock versus whiting example (Fig. 3) appears to be a poor illustration, since expert
knowledge is a natural starting-point for discriminating between the two species and requires no
technology. Thus, a chicken sexer can identify by eye the sex of day old chicks at a rate of one every
second.

On a second point, I feel that attention might also be turned to the potential of new technological
advances that could make warping for image registration unnecessary. By way of illustration, with
conventional radiography, the wide variation in object thickness means that, even with automatic
exposure devices, optimal exposure over the entire field is impossible. In the mid-1980s scanning
equalization devices which rely on a sophisticated feed-back system to modulate the exposure of the X-ray
beam were developed and are in use, though not yet in everyday clinical operation (Hansell ez al., 1991).
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N. Duta and A. K. Jain (Michigan State University, East Lansing)

We would like to congratulate Dr Glasbey and Professor Mardia for proposing an interesting solution
to the practical and difficult problem of warping bidimensional signals. Warping-based approaches to
object recognition and identity verification in digital images have been successfully applied in several
domains. However, most of the applications have been limited to one-dimensional signals. We believe
that the methods introduced in this paper will increase the applicability and effectiveness of warping-
based pattern recognition systems.

We have recently been investigating the object identification and localization problem based on
two-dimensional shape and one-dimensional grey level pattern warping. The biometrics (hand-shape-
based) security system (Jain and Duta, 1999) and the medical diagnosis (cardiac ventricle localization—
segmentation) system (Duta et al., 1999) which we outline in Fig. 15 complement the applications
reported in the paper. We followed the same methodology as the authors propose for object
identification. Two object patterns (e.g. the hand shapes in Fig. 15(a)) are warped onto each other
(Fig. 15(b)). Subsequently, a warping distance measuring the non-linear distortion (after the similarity
transformations have been factored out) between the two patterns is computed. A threshold is applied
to this distance for deciding whether the two patterns belong to the same class of objects. The
distributions of the distances between objects belonging to the same (left-hand curve) and different
(right-hand curve) classes are shown in Fig. 15(c). The method’s potential in separating object classes is
quite high: a 95% correct acceptance rate corresponds to 1% false acceptance rate. A different type of
image warping application is feature or object localization based on registration to a template (atlas or
map similar to the first application described in the paper). Multiple detections produced by a classifier
on the cardiac image in Fig. 15(d) must be combined to obtain one accurate position of the ventricle (the
white circle in Fig. 15(g)). The intersection points between the medial axis of the ventricle and the four
main directions can be estimated by warping the corresponding signal profiles (the thin curves in Figs
15(e) and 15(f)) to an average profile (the thick curve). In this way, the position of some salient points
along the ventricle (marked by asterisks in Fig. 15(¢)) can be estimated after alignment of each profile to
the template (Fig. 15(f)).

J. K. Ghosh and C. A. Murthy (Indian Statistical Institute, Calcutta)
This is a very interesting paper with many novel ideas and three similar but not identical problems. We
focus on one of them to motivate a Bayesian approach, which is applicable to all three examples. We
also sketch a computing strategy. Much fine tuning would be needed to make it work. N

Let Y be the ith image from the jth species, ; some average for the jth species and f @) the
restoring functions. The log-likelihood

LYY d, j=1, 20, £, 0, j =1, 2)

is assumed Gaussian and the log-prior for us and fs is of the form
20 = 00,0} gt
L]

where C()) is a normalizing constant. To reduce the calculations, we drop p and replace p by an
empirical Bayes estimate y; along the lines of equation (37) of the paper and using the (posterior) mode
of f={f" i j=1,2}.

For any fixed ), the evaluation of C()) is sensitive to a precise specification of the function class being
searched. Using the notion of a weak version of Laplace integration and data-dependent priors, we
suggest using the class of functions actually searched in the course of maximization with respect to f for
fixed \. Interpreting

P=1— )\{Z DS, C)} —log{C(\)} (38)

as the logarithm of likelihood and prior for fs, we can calculate the posterior of the fs, the posterior
mode of f'and a measure of deviation

Sw= 3 (Y[ — )’ p(f1Yy) (39)

INANA
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Fig. 15. Practical applications of warping-based object identification: (a)—(c) identification of identity based on
hand shapes; (d)—(g) localization of a cardiac ventricle



502 Discussion on the Paper by Glasbey and Mardia

where p depends on f as indicated earlier. To choose A we may maximize a Studentized mean as in
Glasbey and Mardia’s paper but a natural criterion is Sg/Sy, where

Sp = Z(le - Nz,\-)2~

A more natural method is to maximize expression (38) with respect to A. The presence of C())
prevents equation (38) from being monotone.

Finally, we have a couple of questions. If two images are different because the object has moved a
hand or face in space, what would be the two-dimensional function class for the images? An answer
would throw light on deformable template matching. Indeed, a discussion of this problem from the
point of view of this paper would be very interesting. Secondly, how sensitive are the final images to
variations in \? Also, would the inclusion of a variance term in the Gaussian likelihood make the
problem ill posed?

A. Gray (University of Strathclyde, Glasgow)
This paper offers a sophisticated statistical solution to the image warping problem, and the penalized
likelihood framework that is used is neat and familiar.

An appealing feature of the method is that it is not necessary to supply control points, manually or
otherwise, and the proposed Fourier—von Mises image match criterion can use edge information as well
as intensity information. However, it is still necessary to specify a suitable set of transformations, in the
form of the null set C, rather than these being suggested by the data (as would be ideal) and also to
specify an appropriate base distortion criterion to find the distortion penalty function D(f, C). Although
the likelihood is given a recommended form, this also involves unknown parameters to be estimated at
the same time as the warping function, and the optimization appears very time consuming.

The results shown are impressive compared with those of more standard approaches. Nevertheless
the method is complex to implement and to compute, and an appropriate value of A still requires to
be chosen or else a range of different values used, as well as needing to experiment with the fineness of
the grid on which the warping function f is approximated. Given the time that is needed for the
optimization, achieving good results will therefore be slow.

As it is described the approach appears very flexible and powerful; however, in all three examples
some ad hoc method or approximation appears to be necessary to make the approach work. Therefore
the methodology is not necessarily quite as usable as its presentation suggests. Despite the superior
results, its extra complexity may mean that in practice simpler, quicker, methods will be preferred to this
new approach.

John Gustafsson and Mats Rudemo (Chalmers University of Technology, Gothenburg)

We would like to discuss another application of the approach that is presented in the paper: matching of
two-dimensional electrophoresis gel images. Two-dimensional gel electrophoresis is a method for the
simultaneous separation of thousands of proteins from a complex protein solution on the basis of their
isoelectric point and molecular weight. It is currently one of the major methods in proteomic research.
One crucial step in two-dimensional gel analysis is to match spots in different gel images that
correspond to the same protein. This matching step seems to be a bottle-neck in the gel analysis. It still
requires extensive and time-consuming manual interference, although several semi-automatic tech-
niques exist (Voss and Haberl, 2000).

The statistical formulation in the paper by Glasbey and Mardia provides a general framework for the
formulation of an automatic warping method to find an image alignment that can aid the matching of
spot patterns. We are currently investigating a combination of two warping methods. First, we have
formulated a simple physicochemical model of what might be one main cause of spatial distortion of the
spot pattern: current leakage. Basically the model is a set of coupled partial differential equations
including Laplace’s equation for the electric potential. We apply the model to a global warping of each
gel image to correct for the effect of current leakage. Thereafter, we use the penalized likelihood
approach to align the images locally with piecewise bilinear transformations to handle distortions that
cannot be explained by current leakage. In this application the simple Gaussian image model is a
natural choice, and for the null set in the distortion criterion we use the set of affine transformations.

Given an undistorted reference gel it might be possible to unify these two steps by choosing as the null
set the functions that satisfy the partial differential equations in the physicochemical model. One might
also add a probabilistic interpretation of the transformation by introducing a stochastic Poisson
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equation for the electric potential. Further, in this application we wish to conserve the spot contents
during the warping process. Compared with the paper it is therefore natural to use a slightly different
definition of the warped version of Y under f:

af
(¥, = ‘a‘Y.fm Vx e X,
where the area scale introduced is the Jacobian determinant of the warping transformation.

David Hogg (University of Leeds)
I would like to start by congratulating the authors on this stimulating paper.

On reading the paper, I found myself looking for ways in which the intriguing method proposed by
Glasbey and Mardia could be adapted to improve a different kind of approach to certain kinds of
warping problem.

For situations in which the aim is to locate a familiar object within a two-dimensional image (as
for the fish example), a powerful approach has been to model the variation of shape found in a
representative data set, using for example a Gaussian density or mixture of such densities. This
contrasts with generic models based on smoothness criteria or likelihood functions, even though the
parameters of such models could in principle be estimated from a data set. Blake extended such an
approach to permit simple transformations such as an affine mapping. In his recent book, he
demonstrates that such an extension can also be made for class-specific models of the variation in
shape. It is interesting to speculate whether the null set distortion criterion could be similarly chosen,
thereby integrating learnt models of variation with a set of distortions that arise from the physics of the
imaging situation—specifically, a projectivity for roughly planar objects or an affine approximation to
this.

In addition to class-specific models of deformation, the variations in intensity within a deformed
image (i.e. the intensity array after alignment) can also be modelled in a similar way. A problem here has
been to deal with lighting variation under different imaging conditions. The Fourier—von Mises image
model and the way in which it is used by Glasbey and Mardia may provide a way for factoring out these
sources of variation before modelling. Related approaches based on wavelets have been used in these
situations with some success.

Inge Koch (University of Newcastle, Callaghan)

The paper makes an important contribution to the development of registration methods and represents
a serious attempt at making registration and imaging methods acceptable to the statistics literature.
Registration methods evolved from the statistical concept of cross-correlation in the early 1970s and
have been applied in science and computing areas since then, but they have not enjoyed the same
popularity in the statistical community.

The idea of the warping function extends many of the classical registration methods that are
currently in use in engineering and imaging applications which are restricted to translation and rotation
between the images. The warping function, and its estimation by penalized likelihood, is one of the
strong points of this paper, as it allows—at least in theory—a large class of functions to be treated
simultaneously. If the relationship between the images is simple, such as a translation, then the new
approach may not lead to an improvement, since Fourier-based registration methods in particular
perform extremely well and can be implemented very efficiently. For more complex transformations
between images the new method shows its strength through its flexible definition of the warping
function and the penalty term.

The examples are clear and indicate the scope of the new approach. However, by being very general,
the method also shows a certain weakness, as it is not clear how to apply it in cases which do not fit into
the framework given in the three examples. There is no strategy of how to choose the parameters ¢ for
the concentration x of the phase factors or which distortion criteria should be applied. Indeed, the
motivation for the choice of the parameter £ is not very convincing, apart from the fact that it includes
special cases such as cross-correlation and simple Gaussian models. It is not even clear why particular
values of £ would lead to useful or good measures of similarity. To become of more general interest, the
choices for the parameter &, the concentration k, the distortion and the class of functions f used in the
maximization of the likelihood will need to be further addressed.

In some sense, the likelihood approach based on warping works too well: as shown in example 3, it is
possible to specify the parameters and the warping to such an extent that haddock and whiting can
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easily be distinguished. This is good, but how do we know when a haddock is no longer a haddock? This
question is of interest in registration problems where we need to monitor whether change has occurred
over time, for example. By choosing the parameters and the warping function well, the change is not
likely to be detectable, since the warping function will attempt to obtain the best transformation
between the original image and the new image or object.

Alf Linney (University College London)

In work which involves understanding changes in the human body brought about by such factors as
growth, surgery, injury, illness and treatment or diet it is often necessary to compare sequential images,
or to compare images to a reference or to calculate averages to understand group and individual
patterns of change. For many years ad hoc methods have been devised, which although conveying some
appreciation of changes in shape and size have not been statistically robust and have not been based on
any methodology which would allow the derivation of probability distributions.

This paper provides a statistically robust method which meets the requirements for two-dimensional
medical image comparisons for clinical monitoring and audit, and provides methods of warping which
may be used as a preprocess to averaging or as a basis for comparisons both within a class or with a set
of independent standards. The penalties generated in accordance with the rules associated with the
degree of warp established here allow for probabilistic classification which should prove useful both in
the differential diagnosis of individuals and in understanding the strength of relationships between
group averages. The latter is likely to find application in the understanding of the genetically determined
inheritance of body and facial shapes.

The fact that the algorithms developed in this paper may optimize the match of both edges and
intensities within an image makes them particularly useful for dealing with images produced by
computerized tomography scanners and magnetic resonance imaging systems, which are two of the
most used imaging modalities in current medical imaging. This directly arises from the fact that the grey
level intensities in these images relate directly to the physical properties of the body matter and
reproducible scanner settings, unlike the case of photographic images where illumination is often less
controlled.

At last it does appear that a robust statistical method has been developed for warping medical images,
and I look forward very much to see the results of its application in the numerous areas in which it has
significant relevance.

J. O. Ramsay (McGill University, Montreal) and T. O. Ramsay (Statistics Canada, Ottawa)

Dr Glasbey and Professor Mardia have used the two-dimensional Fourier transform (FT), with its clean
separation of phase and amplitude parameters, to define a registration routine which permits the choice
of a remarkably large and useful class of optimization criteria. Their idea of defining null sets within
transformation spaces seems to us to be fundamental. We hope that the general availability of the FT
will result in a wide range of registration applications taking advantage of their work.

Almost all images contain landmarks, usually in the form of points, open and closed curves; and a
useful registration might want to make use of this extra information. A closed boundary outside
which there is no information of interest is an especially important landmark; and, indeed, much of
the interesting information in the interior may occur close to that boundary. In registering a func-
tional magnetic resonance image (typically 1.5 x 10° voxels), for example, it is often known in advance
that the interesting event is restricted to a small area within 4 mm of the surface of the cerebral
cortex.

The need for a hybrid of spatial landmark- and intensity-based registration within a complicated
boundary such as that of a fish or the coastline of the British Isles raises the question of what basis to
use in the representation of an image and its deformation. Tensor product bases such as the two-
dimensional FT or the commonly used spline bases have trouble dealing accurately with boundaries,
both regular and irregular, and are not tied to landmarks. Also, too many basis functions may be
allocated to regions where little or no fitting power is needed.

We are betting, instead, on finite element methods. Both of us have studied two-dimensional
smoothing and registration problems (Ramsay, T., 2000; Ramsay, J., 2000; Malfait et al., 2000;
Ramsay, 1999) represented by triangular meshes readily constructed by available software tools such as
MATLAB (MathWorks, 1995). Basis systems defined on these meshes, such as the Lagrange
polynomial bases, permit any level of localized accuracy in representing either intensity or spatial
structure. Smoothing and registration problems can be represented by systems of partial differential
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equations, and these systems can be solved in only a few minutes on personal computers using standard
sparse matrix algorithms. For example, the registration of 20 faces to a template by Ramsay (1999),
using 3481 basis functions, took 51 s on a 280 MHz processor.

The basis system that one chooses to represent a problem imposes severe limitations on all that
follows, and getting that choice right, even in one-dimensional problems, seems essential. A good choice
should separate those parameters carrying amplitude or intensity information from those carrying
phase or spatial information. The FT perhaps does not go sufficiently far, at least for some applications,
and the co-ordinate-free finite element approach seems to offer a wider range of two-dimensional and
three-dimensional image analysis options.

M. M. Rao (University of California, Riverside)

Dr Glasbey and Professor Mardia highlighted several important questions of practical interest in this
paper on image and shape analysis. A typical problem here is one of nonparametric estimation of
an image or an unknown function describing the (usually deformed) shape based on some (several)
non-independent observations. An analogous question on template estimation, in computational
anatomy, was raised by Professor Ulf Grenander a couple of years ago (as noted in Rao (2000)). The
observations there come from a carefully constructed mapping, resulting in deformed images which are
diffeomorphisms of a three-dimensional compact object (e.g. a brain), and it is desired to estimate it
consistently by using a large set of observations, similar to the problems discussed here. One can
consider a modification of the method of Kampé de Fériet and Frenkiel (1962) that depends on a certain
averaging process. The diffeomorphism group D here is too large (it is not locally compact) and for this
procedure we need the availability of an invariant integral. In Rao (2000), example 1X.4.7, I outlined a
method involving locally compact subgroups of D with the idea of extending it for a larger class using a
projective limit process. The details of the latter have not yet been completely worked out. Another
related problem based on the researches of Grenander and his associates has also been sketched in
complement 1X.6.4 of Rao (2000), giving a lower bound of the risk function of estimators. Some
technical problems remain for a successful implementation of these ideas. It is noted that, generally, in
shape analysis the problems to be solved are non-elementary as amply illustrated by Kendall ez al.
(1999).

Thus the required technical results lag far behind the applications. The authors have outlined
some methods that illuminate the underlying theoretical set-up. They should be commended for
bringing out the importance and practicality of the problems and for suggesting certain procedures
that may be used now until the necessary theoretical basis has been developed, possibly in the near
future.

Giovanni Sebastiani (Istituto per le Applicazioni del Calcolo “M. Picone’, Rome)
I shall present here some general considerations about the null set distortion criteria adopted in this
work. Given a non-negative regularization functional D with kernel ker(D) and such that D(0) =0, a
new non-negative functional D, is built by minimizing the action of D on the difference between the
functional argument and any element of the set C. Any set C 2 ker(D) closed with respect to addition
can be chosen. The new functional is strongly related to D and will exploit its main features.
Furthermore, since ker(D.) = C the new functional is minimized by the elements of C. A suitable choice
of C which is meaningful for the problem under study may allow us to take advantage of this property.
The procedure is also applicable to the sum of functionals D; satisfying N, ker(D;) € C. The resulting
functional will be minimized by the elements of C.

In the paper it is shown for a particular D that D, = D when C = ker(D). From the text it seems that
this always happens if we choose C = ker(D). For the particular functional D chosen

2
D(f) =52 D{D(/)}:
i k=1
where D, (u) = fD wdx and Dy = & /0x;0x,. the result follows because A = ker(D) =W x W, where
2
W= ker(Dy).
Jok=1

In fact, we have
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D4(f) = min{D(f = )} —mlA{l{ > DiDu(f) — /A(g,)}] —mg‘l{ > DI{D/k(J‘z)}} = D(/),

i,jk=1 ijk=1

because g; € W. The result is not true in general for any functional D when we choose C = ker(D). In

fact, if we choose
2 N\ (o
bin= ZJ (6x1> (6‘fz)

and we evaluate its action on the point f= (x; + x,, X +x,) we have D(f) = 2nn,. The point
= (x»/2, x,/2) belongs to A = ker(D). Since we have D 4(f) < D(f— &) = mn,/2 < D(f), we cannot
have D,=D.

As also stated in the paper, given D and C 2 ker(D), different functionals can be built that exploit the
main features of D and are minimized by the elements of C. As an alternative to the D, proposed, we can
consider f'as parameterized by f = g + d with g € C and define D.(f) = D(d). If f € ker(D,) we have that
d € ker(D). Since ker(D) < C it follows that d € C. Now, f'= g + d will belong to C because g, d € C and
C is closed with respect to addition. Therefore, ker(D;) € C. Let us assume now that C is also closed with
respect to subtraction, as is the case for the set S of the paper. Given f€ C, we can choose any
d € ker(D) and write f = (f— d) + d. Now, d will belong to C since d € ker(D) and ker(D) C C. Since we
assumed C to be closed with respect to subtraction, f'— d also belongs to C. We have therefore written f
as the sum of an element of C and an element of ker(D), so that fe ker(D;). This means that
ker(D.) 2 C. Combining the two results we have that ker(D;) = C. I have no reason to prefer one of
these two choices for D, to the other apart from the larger computational complexity of the D,
proposed in the paper (which is given as the sum of D plus other terms). Further considerations can be
taken into account, like the stability of the minimizers of D,.

Kevin de Souza (University of Leeds)

I wish to congratulate the authors on an enjoyable and stimulating paper. I would also like to draw
attention to some unpublished joint work with J. T. Kent and K. V. Mardia. In the current paper
deformations are parameterized at a single scale by specifying locations for a set of vertices on a fine
rectangular grid. Further, a penalized likelihood objective function is maximized through an iterative
algorithm in which the vertices of a fitted deformation are successively updated. In our work we found
it fruitful to represent a deformation in terms of a composition of deformations on a hierarchical
arrangement of triangular grids. Such a construction needs to be done carefully, but it allows a simple
specification of large scale changes in the deformation through the adjustment of vertices at the coarser
scales of the grid.

As in the current paper, this representation of a deformation can be incorporated into a penalized
likelihood framework in which an objective function is iteratively improved. We used stochastic updates
based on the Markov chain Monte Carlo algorithm rather than deterministic updates to avoid
becoming trapped in local optima. The advantage of the hierarchical approach is that it allows faster
movement through the space of possible deformations, thus allowing faster and more reliable
optimization. Some limited experimentation has demonstrated the value of this approach, but further
work is needed to understand its properties more fully.

Changming Sun and Michael Buckley (Commonwealth Scientific and Industrial Research Organisation,
Sydney)

We congratulate the authors on an interesting and significant piece of work. We have one suggestion for
potential application, as well as some specific comments.

A common aim, particularly in industrial quality assessment, is the measurement of sample
characteristics in digital images. Two of many examples are the measurement of the distance between
two features—e.g. between the rear of a gill and the start of the tail in fish—and the measurement of
average (or ‘typical’) colour within a particular region—e.g. the body of a fish, excluding the head, tail
and fins.

This is a difficult problem, especially if the features or regions concerned are difficult to characterize
objectively—e.g. the ‘start of the tail’. Image warping provides an interesting solution to such problems
via a standard or ‘average’ object—in the examples above, an ‘average fish’. After such a standard fish
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has been obtained, points or regions of interest can be manually specified once and for all on the

standard fish. Thereafter, when other fish of the same species are warped to match the standard, the

feature points or regions in the new fish are immediately available, and measurements can be taken.
Some further specific points and questions are as follows.

(a) What would happen with these algorithms if, for example, one of the fish had its mouth open? Is
this treated as local or global distortion?

(b) In Section 2.1, the authors claim that most of the information about the warping is contained in
the phase rather than in the amplitude. This is certainly true in the case of translation. However,
what evidence is there that this is true in more general warping?

(c) The authors mention that a multiresolution approach can be adopted to guard against becoming
trapped in local suboptima. To make the multiresolution approach work, it has been found that
image smoothing is required—more smoothing at lower resolutions (Moulin, 2000).

(d) The authors assert that parallelization would considerably reduce the computational cost of their
algorithm, but it is not clear at which stage of the algorithm parallel processing could be applied.

(e) We believe that the transformation (29) used in the synthetic aperture radar example is not
correctly called a ‘projection’. Projection transformations contain a denominator term; see, for
example, section 14.1 of Haralick and Shapiro (1993).

(f) These days colour images are very common. It would be interesting if the authors could comment
on how the Fourier-von Mises criterion could be modified to apply effectively to colour image
data.

D. M. Titterington (University of Glasgow)

The paper has presented an innovative approach to the oft-visited problem of image registration, the
key new ideas being the Fourier—von Mises image model and the null set distortion criterion, which
together create the quantity whose minimizer provides the solution to the problem. The results are
impressive and the method seems to have considerable flexibility, although maybe the penalized
likelihood interpretation is more difficult to justify than in other implementations of that paradigm; I
mean here that the log-likelihood term in previous applications usually comes from a noise model that is
arguably more plausible as a physical model than is the model underlying, say, expression (10). This is
usually the case in the so-called Bayesian approaches to image analysis described famously in this
journal by Besag (1986), but in that scenario one can in turn be sceptical about the contextual realism of
the prior that underlies the corresponding penalty function. Maybe therefore the importance of the
method is to be judged on a purely empirical basis, in which case the illustrations in the paper speak well
for the approach. Of course, it will be important to make sure that the method competes effectively with
the many existing methods for image registration, and I apologize for my laziness in not contributing to
such empirical comparisons in this discussion. If the new approach were to hold sway, then I wonder
whether either or both of the two new ideas can be transferred to other regularization contexts; I would
be glad to hear the authors’ thoughts about this. Secondary issues of importance in the method include
the ubiquitous problem of choosing the regularization constant and the thorny problem of possible
multiple local optima. Again, I feel that the former issue is less requiring of theoretical investigation here
than it is in contexts such as spline smoothing or density estimation, but I do have concerns about the
question of multiple optima, and I would be grateful for any further reassurance from the authors in the
light of their practical experiences.

A. Trubuil (Institut National de la Recherche Agronomique, Jouy-en-Josas)

Dr Glasbey and Professor Mardia have given us an interesting and most useful paper. It collects for us
many references on image warping and presents in a new and elegant way an effective approach to the
non-rigid multimodal registration problem. Considering Fourier decomposition of the images, they
build the likelihood on the phase variables. This has some drawbacks but also many advantages as
explained in the paper. In brief, they use at most five parameters for the likelihood model and look for a
non-rigid deformation in a space whose dimension can be chosen by the user. They can also control the
deformation to forbid folds.

If we consider medical image registration of three-dimensional ultrasound images with magnetic
resonance images, there is often an imbalance between parameters devoted to the likelihood and
parameters devoted to deformation: with many parameters for the likelihood term and only few
parameters for the deformation (e.g. rigid registration). Hence Roche ez al. (2000) propose comparing
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grey levels obtained from ultrasound with estimated values from a function of the vector of grey level
and gradient of the magnetic resonance. This leads me to a question: could medical image multimodal
registration benefit from the parsimony of parameters associated with the phase model proposed by the
authors and estimate non-rigid deformation?

Incidentally, normalization using the variance of grey levels inside the template domain is a technique
used in correlation criteria to avoid a match between only a few voxels of the test domain and the
template domain. How is such a spurious solution eliminated using the criteria proposed by the
authors?

A technique considered useful in medical image registration is the so-called partial volume
interpolation (Maes et al., 1997), which consists in interpolating between voxels at the criteria level.
Hence, if x;, denotes a voxel in the test image domain and f(x;) the position in the template domain,
instead of considering intensity interpolation

2
|:1(xk) - ¢{Zl) Wit J(VJ)H s

where J(y;) are the intensities of voxels in the neighbourhood of f(x;) and wy, are weights dependent on
the location of f(x;) with respect to voxels of this neighbourhood, we consider

Z[) wig[1(x;) — CD{J(}’/)}]Z-

It may be interesting to think about this technique also for the phase-related criteria.

With regard to applications, the approach presented by the authors is very interesting and could be
considered in medical image registration and three-dimensional microscopy, unless computation time is
a limitation.

K. J. Worsley (McGill University, Montreal)

There has been considerable interest in image warping in the brain mapping literature in recent years.
The problem here is to align or register three-dimensional magnetic resonance images of the human
brain to an atlas standard. The main reason for doing this is to compare regions of the brain ‘activated’
by a task such as a visual or cognitive stimulus measured by three-dimensional functional magnetic
resonance imaging (FMRI) across different subjects (Lange and Zeger, 1997). Once the MRI images are
registered to an atlas standard, the FMRI images can be deformed in the same way and then averaged
to increase the signal-to-noise ratio. Furthermore, regions of high signal can be identified on the brain
atlas (Collins et al., 1995). The problem is made difficult by the fact that brain anatomy is never quite
the same: sometimes the auditory cortex consists of two ‘folds’ or gyrii instead of one, so no reason-
able warping can ever achieve a perfect match. On top of this, three-dimensional data are much
more difficult to warp than two-dimensional data; typical data sets consist of a million voxels (three-
dimensional pixels).

There have been two main approaches to this problem. The first is a ‘brute force” approach in which
blurred images are registered by penalized intensity matching; then the amount of blurring is grad-
ually reduced until the desired resolution is achieved (Collins et al., 1995). The second method is to
parameterize the warping by a set of basis functions, usually cosine transform bases (Ashburner and
Friston, 1999). Expanding the matching criterion as a linear function of the unknown coefficients results
in a linear model that can be fitted by ridge regression. The maximum feasible number of basis functions
is 8 per dimension, which, together with their products, gives 8°x3 = 1536 unknown coefficients to be
estimated, requiring the inversion of a 1536x 1536 matrix. Thus the resolution is lower than that of the
first method, but it is much faster, taking minutes rather than hours.

Finally, the warpings themselves can be used for the statistical analysis of shape. They are modelled
as a trivariate Gaussian random field, and a three-dimensional field of Hotelling’s 7' *-statistics is used to
detect localized shape differences between say groups of subjects (Cao and Worsley, 1999). Recent
advances in the geometry of random fields have enabled us to set a threshold for Hotelling’s T>-field
that can control the probability of detecting false positive shape changes in regions where no change has
taken place to say 0.05.

Keming Yu (University of Plymouth)
The paper does a fine job in explaining the important topic of image warping to a larger statistical
audience. The whole model can be expressed by means of equation (1) of the paper. I would like to
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mention fwo alternative approaches, both of which may be applied to the Fourier—von Mises image
model adopted by the authors.

Full Bayesian approach

As the paper mentions, the penalized log-likelihood approach may be justified by a Bayesian
formulation. Moreover, the penalized log-likelihood approach corresponds to the mode of a posterior
density defined by means of a partially improper prior related to a Brownian motion or Wiener process.
Estimating parameter A is very important in this approach. However, if we adopt a full Bayesian
approach with prior related to the distortion criteria to estimate the warping function f'by the posterior
mean, we can effectively integrate out A. No matter how complicated the likelihood function, an
advanced Markov chain Monte Carlo method or Gibbs sampling can be used to do the full Bayesian
approach in spite of possibly heavy computation.

Kernel smoothing

The choice of warp is a compromise between a two-dimensional smooth distortion and one which
achieves a good match. This paper reminds me about a challenging problem: how to introduce kernel
smoothing techniques for image warping or how to smooth the noise out of image data with kernels
while achieving a good match at the same time. Why would the authors prefer their penalized log-
likelihood approach over such an approach? Clearly, the local average with image warping is important
in the presence of local distortions, so that a kernel smoothing method has a potential application here.
Although standard kernel smoothing techniques such as Nadaraya—Watson-type estimation may blur
some unsmooth features such as edges, spikes and jumps, the kernel-weighted log-likelihood should be
applicable in image warping. For this, the proposed Fourier—von Mises model in the paper is just
equivalent to identifying a new log-likelihood function which is suitable for some image warping
problems such as problem 2 in the paper, whereas a simple Gaussian likelihood is reasonable for
problem 3 of the paper.

The authors replied later, in writing, as follows.

We are pleased by the number and diversity of the contributions to the discussion, which come from
both statistical and computer vision communities and cover a spectrum from theoretical issues to
additional applications. We address the topics raised in the order in which they appear in the paper.

Penalized likelihood approach

Several discussants suggest a Bayesian formulation (Jennison, Dryden, Ghosh and Murthy, and Yu).
This would facilitate a quantification of uncertainty in the estimators and possibly simplify the choice of
A, though at the price of greater computational effort. In the paper we focused on point estimation and
were concerned about computing time, so we did no more than to point out the opportunities for a
Bayesian approach. However, we are not opposed to it: in our applications exp{—X\ D(f, C)} looks to be
a reasonable measure of prior belief in £, and it would be relatively straightforward to embed our ideas
within current Bayesian methodology. In reply to Professor Jennison’s question, it should also be
possible to incorporate a stochastic model for p, which would be beneficial in the fish application if
there were fewer or noisier images.

Both Professor Molchanov and Professor Rao raise issues regarding the theoretical underpinning of
image warping and image averaging, and Professor Hancock provides useful links to work in computer
vision. We hope that our paper encourages our more theoretical colleagues to study these important
problems further. We also thank Professor Angulo for his suggestion to combine L and D non-
additively, and Dr Yu for the idea of using kernel smoothing.

With regard to the choice of A, we agree with Dr Berman that cross-validation is not ideal, though it
seems to give reasonable results in the synthetic aperture radar application. His suggested alternative,
minimum description length coding, would be considerably more complicated to implement, we think.
In response to Professor Ghosh and Professor Murthy, our results are insensitive to the choice of A to
within an order of magnitude, according to Tables 1, 4 and 6.

Fourier—von Mises image model

We thank Professor Dryden for generalizing our result on the distribution of 87, conditional on 47,
when Y, is a Gaussian random field. As regards the reverse problem, of deriving the distribution of Y,
from that of 87, this is unlikely to have a tractable form. Also, it would be necessary to specify a joint
distribution for 87 and A"” in order for Y, to have full degrees of freedom.
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Dr Ersbell asks how our method copes with images at very different resolutions. In principle there is
no problem, as either one image is interpolated or the other is subsampled. In practice, this is probably
best done in the Fourier domain. In reply to Dr Sun and Dr Buckley, our experience is that phases carry
most information about images because sinusoids at different frequencies need to combine to produce
edges. Empirical evidence is given in Glasbey and Horgan (1995), Figs 3.6(c) and 3.6(d): when the
phases of one image are combined with the amplitudes of another image, the result looks much more
similar to the first one. Dr Koch questions the choice of £. Although the functional form of k in
equation (7) is somewhat arbitrary, we would expect the maximum likelihood estimator £ to give the
best matching criterion, as borne out in Table 3. We agree with Dr Trubuil, that the Fourier—von Mises
model could provide a parsimonious representation of differences between medical images.

In reply to Professor Jennison’s point, we sum over x rather than f{x) in equations (4) and (10),
because we can then obtain analytic expressions for the average images, given by equations (27) and
(28), and because some aspects of the algorithm are simplified. We note that Ramsay and Li (1998) did
likewise, and we have a similar philosophy to them, of regarding Y as a single entity rather than as an
array of individual observations. Such a strategy is natural for functional data analysis, and the choice
of summand is then somewhat arbitrary.

We are interested in Professor Molchanov’s suggestion to explore the use of the Fourier—von Mises
likelihood as the basis for a grey scale image metric. We agree with Professor Hancock and Professor
Ramsay and Dr Ramsay that the inclusion of local features in the likelihood criterion will be effective in
some applications. However, we do not wholly share Dr Coleman’s view on expert knowledge. Humans
are almost always better than computers at image analysis, but that expertise can be exceedingly
difficult to encode in computer algorithms in general and it can be better to develop automatic methods
independently.

Null set distortion criteria

We thank Professor Hancock and Dr Sebastiani for the suggestion to use other base distortion criteria
than Dy and Dy, to derive alternative D(f, C) with the same null set property but with other features
inherited from Dj. Further, Professor Angulo and Dr Sebastiani propose alternatives to equation (14)
for constructing D(f, C) from Dj. Also, we agree with Dr Sebastiani’s point and had not meant to imply
that D = Dy whenever C = ker(Dy). Dr Ashburner and Professor Petrou propose yet other null set
distortion criteria. In particular, criterion

14+ |J]
2

where J is the Jacobian of an affine transformation and s; and s, are its singular values (Ashburner
et al., 1999), is minimized per unit area by the family of translations and rotations

{log(s1)’ + log(s2)’},

R ={g: g1 = oy + x; cos(0) + x, sin(#), g, = a, — x; sin(#) + x, cos(0)}.
In comparison, our method yields
D(f, R) = DB, (f)+2mn, — 4”1”2\/(5‘%1 + 54%2),

using the same notation as in equation (21), and is also rotationally invariant. If g € A, an affine
transformation given by equation (18),

D(g, R) = mmylon, + afy + a3 + a3y + 2 — 2/{(o) + )’ + (a1; — )},
which can be re-expressed as
D(g, R) = mmylsi + 53 +2 = 2/(s1 +53 + 2 |J])}.

Thus our criterion also depends on |J| and a symmetric function of s; and s,, and has the benefit of
having been derived under a unified approach.

We are impressed by Mr Gustafsson and Professor Rudemo’s work with electrophoresis gels, and we
welcome the combining of our methods with realistic physicochemical models in specific applications.
We only partly support Dr Gray’s wish that C be obtainable empirically from data. In particular, in
our three applications we have prior knowledge which, in our opinion, should be given overriding
consideration. However, this could be an interesting area for further work, developing on Professor
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Fig. 16. lllustration of nonparametric regression: o, data; , f obtained by minimizing expression (40);
----- , T obtained by minimizing expression (41) (in both cases for a range of values of A — 0, 0.1, 1, 10, oo, from
top to bottom)

Hogg’s ideas for using training data and addressing also Dr Koch’s concerns regarding how to choose
an appropriate distortion criterion in new applications.

It would seem that the contrast in results between the two students in using Dy and D(f, S), to
which Professor Kent refers, is that one case involves interpolation and the other smoothing and
extrapolation. Our approach also involves smoothing, and we find that the two distortion criteria
give different results. Consider a simplified one-dimensional case, where we estimate f by either
minimizing

: 2 [ 2N
Siv-fora [ () e (40)
x=0 0 ox

using the one-dimensional version of Dy , or

" A L of\
PP —f(x)}2+>\{L (5) dx—;(L adx) } @1

using the one-dimensional version of D(f; S). In particular, expression (40) is the formulation of a linear
spline. In both cases, the optimal f'is piecewise linear, with f(x) obtained by standard methods. Fig. 16
illustrates the two sets of results for Y7 = (0, 3, 1) for a range of values of \. We see that, except when
A — 0 and f(x) — Y,, the two sets of results are distinct. As A — oo, f — ¥ in case (40) and the best-
fitting straight line in case (41). We thank Professor Kent for raising this interesting point.
We apologize to Professor Jennison, for not making it clear that our numerical approximation for
D(f, A) includes contributions from the edges of grid squares, so that, for example
2 3, 4
| st
00X ny

X o 0 2
> B = B0

42 k=(1,0)

Optimization algorithm

Professor Hancock advocates the use of EM-type optimization algorithms. At an earlier stage in the
work we used a form of alternating algorithm (Glasbey and Mardia, 1998), switching between
estimating 3 and &, before opting for the more elegant conjugate gradient algorithm. In fact, the former
algorithm was computationally faster, a topic of concern to some discussants (Berman and Gray),
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whereas others suggest Markov chain Monte Carlo and other stochastic methods which would be even
more computationally intensive. We are interested in Professor Ramsay and Dr Ramsay’s use of finite
element methods and Dr de Souza’s use of a composition of functions. In reply to Dr Berman’s
question, we used a stopping rule to choose ¢, halving the grid size until it made no difference to the
estimated warp. Pathological solutions, where an image maps to a single point on y, can arise in certain
formulations, as Dr Trubuil points out, but we did not encounter them.

Dr Sun and Dr Buckley raise several computational points. We agree that it makes sense to apply a
smoothing filter to images when working at a coarser resolution, to reduce the risk of being trapped in a
local optimum, a concern also expressed by Professor Titterington. This we did, and we were remiss in
not mentioning it in Section 2.3. As regards the potential for parallelization: because effects on P of
changes in § are locally computable, terms in 9P/93 can be computed simultaneously.

Applications

Several discussants question how the algorithm will perform if there are differences between images,
such as movement, occlusion, growth or physiological differences (Ashburner, Ersbell, Ghosh and
Murthy, Sun and Buckley, and Worsley). The term AD is set by the user to constrain the warp so that a
distinction is made between minor differences, which are accommodated by the warp, and major ones,
which are not. In particular cases, where certain differences are to be expected, tailor-made methods
may perform better. For example, there are specific algorithms for interpreting stereoscopic pairs (e.g.
Weng et al. (1993)), where occlusions occur frequently and can be a source of additional information.
We agree with Dr Coleman that it is desirable, wherever possible, to capture images in a way that avoids
warping, but objects will always differ inherently in spite of imaging technology, such as fish even of the
same species. Professor Dryden makes an interesting distinction between different images of the same
object and images of different objects. However, we think that the same warping methodology is
appropriate in both cases, though the interpretation may be different.

Another question raised is how to handle applications where only subsets of images are informative
such as where backgrounds vary (Berman) or all information is within a boundary (Horgan and
Ramsay and Ramsay). If differences in the background are other than minimal, then image warping,
which treats the whole image as equally informative, is not the appropriate methodology. Instead, it
would be more appropriate to isolate the regions of interest, perhaps by matching templates to certain
features. In answer to Dr Horgan’s and Professor Dryden’s questions, we have not been concerned with
the relative contributions of differences in boundaries and textures to fish discrimination, as we see it as
a strength of our approach that all differences are synthesized into a single criterion.

Dr Ersbell and Dr Sun and Dr Buckley ask about extensions to the methodology to colour and
multispectral images. This should be possible, the main complication we expect being the necessity to
use a multivariate von Mises distribution, as it would probably be unrealistic to assume that phase
differences from different variates at a common frequency were independent. Image warping in three
dimensions is common practice (see, for example, the contributions of Professor Petrou and Professor
Worsley), and we see this as technically straightforward though computationally intensive. However, it
is possible that extra complexities may arise in applications involving shape.

We thank Dr Sun and Dr Buckley for pointing out that equation (29) is not a perspective projection.
Rather, it is a parallel projection, which is an asymptotic approximation requiring three fewer
parameters. In response to Professor Titterington, we are not aware of extensions of our ideas to other
regularization problems, though it may be possible to include null set distortion criteria in image
deconvolution.

Finally, we thank the discussants for bringing to our attention a diverse range of other applications:
radar (Hancock), fundus images of the retina (Ersbell), parsnips (Horgan), hand outlines and X-ray
computer tomography cardiac images (Duta and Jain), electrophoretograms (Gustafsson and Rudemo)
and magnetic resonance imaging (Worsley and Linney). Much remains to be done, both theoretically
and in applications, in this challenging area.
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