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Abstract

The field of active safety in the automotive industry is a fast-growing area of develop-
ment today. Safer cars have become one of the top-priorities among car-makers in the
recent years. The driver support functions that make cars safer rely on accurate on-
board sensor readings of the surroundings of the car. For verification of this accuracy, a
LIDAR can be used to get a 360◦ view of the surroundings of the vehicle that can then
be used as ground-truth. Despite high accuracy and resolution combined with wide field
of view typical for LIDARs, extraction of objects from the LIDAR data, the so called
point clouds, requires advanced post-processing algorithms and is often challenging.
In this thesis, an off-line tracking algorithm that detects and tracks dynamic and sta-
tionary objects using LIDAR point clouds is developed and implemented. The tracker is
based on Bayesian tracking theory and utilizes the fact that it is run off-line by tracking
both forward and backward in time.
The results of the tracker show comparable accuracy to current trackers in the literature.
The tracker effectively tracks any sort of objects whether they are stationary or dynamic
and gives accurate readings on positions, dimensions, velocities and accelerations.
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1
Introduction

The active safety department at Volvo Cars is a fast-growing and leading branch of
driver support functions. For example, functions as collision mitigation by braking, lane
departure warning and adaptive cruise control are becoming popular additions to new
cars. For all these functions to work properly, it is crucial that the vehicle perceives the
environment around it, which puts hard requirements on the sensors that are used for
the perception. To be able to verify that the sensors of a car such as radars, cameras and
lasers perform at their best, an accurate reference sensor is needed. A popular choice
is a Laser scanner, LIDAR(a blend of light and radar), that can provide testers with
accurate data on the surroundings of the car.
The LIDAR emits laser beams from diodes that rotate at a frequency of 5-15 Hz[1].
The beams are reflected off objects and then gathered in the LIDAR for analysis. The
resulting data of the surroundings is a point cloud consisting of three-dimensional point
data, see front page for an example. The point cloud describes not only the positions of
objects but also the shapes of the objects due to the many laser-beams emitted.
Post-processing of the logged LIDAR-data is needed for sensor verification. Specifically
it is crucial to model the dynamics of the surroundings. This is usually done by an object
tracker that keeps track of objects around the car to accurately determine velocities and
headings of nearby targets such as other cars and pedestrians.
In this thesis a tracking algorithm is developed, implemented and evaluated using ground
truth data.
For the tracking algorithm to work, accurate measurements on possible objects to track
need to be delivered. These measurements usually come from a segmentation algorithm,
that clusters points in the point ploud into possible objects. The segmentation algorithm
that was developed and used in this thesis can be found in Appendix A. The tracking-
algorithm also relies on that accurate ego-trajectory information, a measurement on the
dynamics of the vehicle with the LIDAR, is delivered. An algorithm to calculate the
ego-trajectory from the point cloud will not be a part of this thesis, instead it is assumed
that such data exist. For example such data can come from a combination of a GPS and
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CHAPTER 1. INTRODUCTION

gyroscope sensors.
The tracking is done off-line, i.e. not in real time in the car. The tracking-algorithm
has the ability to track stationary objects but the focus and precision is put on dynamic
objects such as cars, pedestrians and cyclists as those are the main focus of collision
avoidance functions.
The ultimate goal of the project is to develop a sufficiently robust and accurate post-
processing chain to be used for on-board sensor verification tasks at Volvo Cars.

The report is partitioned into a theory-part and a hands-on part. The first section
in the theory-part gives a basic review on the models and the theory behind tracking.
It also contains a small literature review on some of the recent papers published on the
subject of dynamic object tracking.
A lot of emphasis is put on the methods and data section which contains information
regarding implementation and evaluation of the tracker that has been developed. In this
section a small portion is dedicated to the KITTI-dataset[2] which was used to evaluate
the tracker and the Point Cloud Library, PCL[3], which aided in the programming im-
plementation.
In the final sections of the report the tracker is evaluated and compared to other tracking
results in the literature.
The appendix contains an explanation of the segmentation-routine that was developed
and used together with the tracker.
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2
Tracking theory

In this chapter, a study of current tracking theory is conducted. The study was done early
in the project and contains references to several recent scientific papers on the subject at
hand. The focus is on automotive tracking theory, in the context of automotive safety
systems and autonomous driving.

2.1 Bayesian tracking theory
The basic model of tracking that is frequently used in the literature on tracking today
is based on some sort of Bayesian tracking theory[4, 5, 6, 7, 8, 9, 10, 11, 12]. This will
also be the model that is used in this project.
A good background to setting up the model for the state-space of an object can be found
in[4] or [6]. In this paper the theory and terminology are based on the theory given in[4],
where the theory is presented in an understandable and rigorous way making it easy for
the reader to comprehend Bayesian tracking theory.
The main idea is to set up a discrete time model with a state vector for each object at
each time step, namely

xk = [(x1
k)T , (x2

k)T , ..., (xnobj(k)
k )T ]T , (2.1)

where k ∈ N = {1,2,...} and nobj(k) is the number of objects tracked at time step k.
The actual time between the time steps can vary but is mostly constant since observa-
tions/measurements come in specific time-intervals. The measurements we get from the
sensor equipment at each time step k are denoted by

yk ∈ Rny(k), (2.2)

where ny(k) is the number of measurements received at time step k. This number
depends on how many objects the measurement device, sensor, can detect at each time
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step.
The last definition is the set of measurements up to and including time step k,

Y1:k = [(y1)T , (y2)T , ..., (yk)T ]T . (2.3)

Using all measurement data, the goal now is to calculate the posterior density function
of the states of all objects, i.e. to find

p(xk|Y1:k). (2.4)

To put things in perspective the object state vector can include different relevant infor-
mation about the object, for example

xi
k = [xi

k,y
i
k, ẋ

i
k,ẏ

i
k]T , (2.5)

where ẋ and ẏ are the velocities in the x- and y-direction respectively. In other words,
the state of the object is determined by it’s x and y position in the plane and the
corresponding velocities in these directions.
When using a range finder, typically a radar, the measurements are simply coordinates
in 2D or possibly in 3D,

yi = [xi,yi]T . (2.6)
More elaborate representations of the state space of an object are often used and also
more measurement information such as an object’s/measurement’s size and direction is
often available. Most authors have their own unique representation[4, 7, 9, 12].

A tracking model consists of different modules and in this report the modules are based
on the modules introduced in [4].
The motivation for these modules is that a tracking system working in real-time should
be able to predict the state of an object in the next time step using the previous mea-
surements. This prediction is needed when new measurements are available and one
must associate measurements to existing tracked objects or to new objects to track. The
list of modules is as follows:

• Data association
In this module, measurements at the current time step are associated with objects
that are being tracked.

• Track management
Objects which have new measurements associated with them are validated. Objects
that haven’t had any associated measurements for a period of time are deleted and
new measurements with no object associated to them can be initialized as a new
object to track.

• Filtering
The posterior density function p(xk|Y1:k) is calculated. The state of the object is
updated.
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• Prediction
p(xk+1|Y1:k) is calculated so that new measurements can be associated with the
predicted states of the tracked objects.

For the objects that are being tracked we must also decide on a Motion model which
describes how the state of an object changes between time steps. This motion model is
incorporated in the filtering and prediction modules. The goal of a good motion model
is to be able to correctly model the motion of an object to create the best predictions of
the state of an object at a later time. For the prediction to be good one also incorporates
uncertainty measures in the state model.
A standard way of describing the state of an object in Bayesian tracking theory is the
following:

xk = fk−1(xk−1,vk−1). (2.7)

Here vk−1 is a noise process, often assumed to be zero-mean Gaussian noise[4], which
is needed to model the uncertainties in the motion model. fk−1 is simply a function
describing the relationship between the former and current state of the object. Using
this model one can make the most likely predictions of the state of an object at a later
time point.
Similar to how we formulated the motion model for the objects one also formulates a
Measurement model i.e. a model describing the relationship between measurements
and object states, i.e.

yk = hk(xk,wk). (2.8)

As in the motion model, wk is a noise process describing the uncertainties in the mea-
surements. Furthermore, hk is a function describing the relationship between the mea-
surement and the state of an object.

With the above framework a recursive tracking algorithm can be constructed. The
next step is to determine how each of the 4 modules above should be implemented.

2.1.1 Data Association

In this module, the new LIDAR measurements are associated with existing tracklets,
objects that are being tracked, using the prediction.
The first step in any association algorithm is Gating[4], which is a way to restrict the
number of possible associations that can be made to a certain tracklet by calculating a
gate around the tracklet. The possible associations lie inside this gate and the measure-
ments that are too far away to be possible associations lie outside the gate. Both velocity
and acceleration can be taken into account when calculating the sort-of threshold to how
far away the object can maximally travel during one time-step. When this gate has been
calculated you are left with much less possible associations inside the gate. The goal
now is to find the most probable association inside the gate to a tracklet.
A simple approach to this problem is the Nearest-Neighbor-approach[4], which in prin-
ciple associates the closest, in Euclidean distance, measurement to the tracklet. The
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benefit of this approach is the simplicity in calculations. The negative aspect is that in
the simplest form of the Nearest-Neighbor association, one measurement can be associ-
ated with several tracklets. To circumvent this, the so called Global Nearest-Neighbor-
approach can be used. A global optimization for the associations means that you can
enforce a restriction that a measurement can only be associated with one tracklet.

A downside of any Nearest-Neighbor-algorithm is that when objects are very close to
each other, maybe they cross each others paths very close to each other, which could
lead to wrong associations. Another downside is the lack of different hypotheses for
associations.
To further increase the accuracy of the association one can take a Probabilistic-approach.
A commonly used approach is the Joint Probabilistic Data Association, JPDA[13, 14],
where certain probabilities are calculated for each possible association. This is done
globally so that a measurement can only be associated with one tracklet. A way of
calculating the probabilities can be found in[14]. The benefit of this method is that
different association hypotheses can be evaluated to find the most probable one.

Multiple hypotheses tracking, MHT[7], is the common name for algorithms that save
different association hypotheses in each time step so that the most probable overall as-
sociation hypothesis can be calculated at a later time. The problem with MHT is that
the number of possible hypotheses grows exponentially. This means that it is crucial to
prune not-probable hypotheses in each time step. A good introduction to MHT can be
found in [7].

2.1.2 Track Management

After new measurements have been collected from the LIDAR and the association-step
above has been completed, there are:

• Measurements that have not been associated with existing tracks.

• Current tracklets that get no association with the new measurements.

Therefore, the track-management-module has to:

• Create new tracklets for non-associated measurements and use some measurement
information to initialize the state of an object.

• Delete tracklets that haven’t had any association during a specific period of time.

• Keep tracklets in memory if no association has been made in the current time step
unless above. Use the predicted state as a measurement.

• Validate tracklets, i.e. stable and confident tracklets should be validated and given
a higher "rank".

All the above items are done so that only the good and relevant tracklets become the
final tracklets at the end of the algorithm.
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2.1.3 Prediction and filtering

In the filtering module, the posterior probability density function, p(xk|Y1:k), is calcu-
lated recursively. Since it is calculated recursively an appropriate a-priori information
is needed, p(x0|y0). In [4], different ways of initializing this a-prior information is dis-
cussed. For this report, it is assumed that no a-prior information is available.
The following equations and calculations are based on the theory given in [4].
Now if we assume that from the previous recursion step we have

p(xk−1|Y1:k−1), (2.9)

the prediction, p(xk|Y1:k−1) can be calculated using the Chapman-Kolmogorov equation
and the motion model (2.7).

p(xk|Y1:k−1) =
∫
p(xk|xk−1, Y1:k−1)p(xk−1|Y1:k−1)dxk−1 =

=
∫
p(xk|xk−1)p(xk−1|Y1:k−1)dxk−1,

(2.10)

since from the motion model (2.7) we have that the state of an object is a Markov process
giving p(xk|xk−1, Y1:k−1) = p(xk|xk−1).
When a new measurement yk arrives and is associated with xk we can calculate p(xk|Y1:k)
by using the Bayes rule

p(xk|Y1:k) = p(xk|yk, Y1:k−1) = p(yk|xk, Y1:k−1)p(xk|Y1:k−1)
p(yk| Y1:k−1) =

= p(yk|xk)p(xk|Y1:k−1)
p(yk| Y1:k−1) ,

(2.11)

where p(yk| Y1:k−1) can be calculated as

p(yk|Y1:k−1) =
∫
p(yk|xk)p(xk|Y1:k−1)dxk. (2.12)

The equations above state the posterior density function p(xk|Y1:k) and with this infor-
mation it is easy to form an optimal estimation of the state of an object xk at time step
k. Though the above equations are generally not solvable analytically, there are some
cases where if we impose certain assumptions they can be solvable. One of the most
important cases where an analytical solution can be found is the Kalman filter setting.

Kalman filter

The following assumptions are made in the Kalman filter setting[4]:

• The prior distribution p(x0|y0) is assumed to be Gaussian.

• Both the measurement noise wk and the process noise vk are Gaussian and inde-
pendent for all time steps.
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• fk−1 in (2.7) and hk in (2.8) are assumed to be linear.

The above assumptions yield the following new motion model and measurement model:

xk = Fk−1xk−1 + vk−1 (2.13)

yk = Hkxk + wk, (2.14)

where Fk−1 and Hk are matrices that can depend on the time step k. The noise pro-
cesses vk−1 and wk are zero-mean Gaussian with covariance matrices Qk−1 and Rk

respectively.
From the above assumptions the density functions from (2.10) and (2.11) can be calcu-
lated yielding the following results(for more details, see [4]):

p(xk−1|Y1:k−1) ∼ N (x̂k−1|k−1, Pk−1|k−1) (2.15)

p(xk|Y1:k−1) ∼ N (x̂k|k−1, Pk|k−1) (2.16)

p(xk|Y1:k) ∼ N (x̂k|k, Pk|k), (2.17)

where P is a covariance matrix and x̂ is explained below. The key factor is that the
densities are Gaussian, hence only the mean and the covariance are needed to describe
the densities.
For the prediction that will be used in the association module we get the following
expression:

x̂k|k−1 = E[xk|Y1:k−1] = Fk−1x̂k−1|k−1 (2.18)

Pk|k−1 = Cov[xk|Y1:k−1] = Fk−1Pk−1|k−1FT
k−1 + Qk−1 (2.19)

It is now convenient to introduce the innovation, that describes the new measurement
information uncorrelated with all previous measurements,

ỹk ≡ yk − E[yk|Y1:k−1]. (2.20)

Using basic Gaussian theorems it can be proven that the innovation is zero-mean Gaus-
sian with the conditional covariance

Sk = HkPk|k−1HT
k + Rk. (2.21)

Now using known theorems on conditional probability density function of multivariate
Gaussian random vectors, the motion model (2.13) and the measurement model (2.14)
one can derive an expression for the update-step of the Kalman filter. This update-
step makes use of the state from the prediction step, x̂k|k−1, and the newly associated
measurement, yk, and forms the optimal update for the state of an object (for more
details the reader is referred to [4]).

x̂k|k = x̂k|k−1 + Kk(yk −HkPk|k−1), (2.22)

Pk|k = Pk|k−1 −Kk(Sk)−1KT
k , (2.23)
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Kk = Pk|k−1HT
k (Sk)−1, (2.24)

where the matrix Kk is the so-called Kalman gain matrix. It makes sure that if the
accuracy in the measurements is high, i.e. the magnitude of Rk is small, then the state
update will be influenced mostly by the measurement. Conversely, if Pk|k−1 is small in
magnitude compared to Rk then the object state doesn’t change much. Hence, more
emphasis is put on the predicted estimate than on the newly associated measure when
updating the object state.

Non-linear filtering

In the above theory the assumptions on the motion model and measurement model
might seem intrusive. If the motion and measurement models are non-linear, one can
use an Extended Kalman filter, where the non-linearity among the system models is
linearized using the first order Taylor expansion. This means that the same equations
can be used for prediction and update as in the ordinary Kalman filter.
Another way of handling non-linear filtering, where the Gaussian assumption is ill-fitting,
is by using a Particle filter. A very good book on particle filters is the one by Ristic
et al. [6].
The idea behind particle filters is to use Monte Carlo approximations and importance
sampling to describe the posterior density function p(xk|Y1:k). The word "particle"
comes from the fact that one uses samples from a distribution to describe it and these
samples are referred to as particles.

2.2 Current tracking-literature
The state of tracking theory in context of automotive research is constantly evolving.
More elaborate ways of tracking dynamic objects using LIDARs are developed frequently.
In the following section, a study and comparison on some of the current scientific papers
on the subject is conducted.

Morton et al. [15], conducts a comparative study on different tracking modules us-
ing a Velodyne LIDAR. The main focus is laid on how an object is represented when
tracking. The baseline is to use the centroid, center of gravity, of an object as a repre-
sentation. The centroid representation is compared to using the 3D appearance of an
object as a representation when tracking. For filtering and prediction the authors use a
constant velocity Kalman filter or no filter at all to see the influence of filtering. When
associating new measurements to existing tracklets the so-called Hungarian algorithm is
used for the centroid representation and ICP, iterative closest point, for the 3D appear-
ance representation.
The authors found that the simplest representation of an object, the centroid, was the
best representation for a tracklet. For example when tracking pedestrians, the centroid
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representation achieved up to 95% correct data associations compared to 60% for the
3D appearance modeling. And when comparing the use of a Kalman filter for centroids
or no filtering at all, the Kalman filter produced the lowest position errors and speed
errors. In particular the speed errors were very large when not using any filtering at all.

Zhang et al.[7] implements a multiple hypotheses tracking, MHT, algorithm. The au-
thors make use of data from a Velodyne LIDAR to track vehicle-like objects and use a
linear Kalman filter together with a constant velocity motion model for filtering. They
put their emphasis on the MHT algorithm for data association. The authors represent
the association problem as a linear integer assignment problem, LIAP, which they then
solve using an algorithm introduced by Jonker et al. in [16]. To receive different as-
sociation hypotheses from the assignment problem the authors use Murty’s algorithm,
given in [17]. Since the number of hypotheses grow exponentially they prune hypotheses
by always maintaining the top k best hypotheses, the hypotheses with the lowest cost
functions in LIAP.
Their evaluation of their tracking is mainly focused on how well it performs in occlusion,
i.e. when a tracked object goes in the shadow behind another object. The goal is to still
maintain the tracked object until it emerges from the occlusion again. A bad tracker
looses the object in occlusion and starts a new tracklet when it emerges again. The
MHT algorithm fared very well in scenarios with lots of occlusion. During 160 frames it
only failed one time. The MHT tracker was compared to a tracker that used a simple
global nearest neighbor association algorithm that always started a new tracklet when
an object went into occlusion.

In [10] the authors develop a tracking module that uses laser range finders as sensors.
The module was developed for the DARPA grand urban challenge which is a competi-
tion held by the Defense Advanced Research Projects Agency in which teams that have
developed autonomous vehicles compete for the first place. Their entry, called Junior,
came in second place in the 2007 urban grand challenge.
The authors use a Rao-Blackwellized particle filter for filtering and prediction. They also
use a model-approach to their tracking model which they claim handles segmentation
and association automatically. Hence, there is no need for separate modules for these
processing steps.
A big emphasis is put on what is being tracked as objects. An object is modeled using
it’s bounding box width and length and an anchor point. This anchor point is different
from the center of gravity for an object in the sense that it is revised depending on how
the object is seen from the ego-vehicle. The authors claim that this approach mitigates
the problem of stationary vehicles that are given a positive velocity even though they
are standing still. This problem arises from the fact that the center of gravity of an
object changes depending on how the object is seen from the ego-vehicle.
When evaluating the tracking module the results are very good. For example in a sce-
nario of 1577 frames with 5911 vehicles, the module correctly detects and tracks 5676
of these and falsely detects 205 vehicles. This yields a 96% true positive detection rate.
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And since the module needs three frames before any vehicle can be detected and started
being tracked the theoretical maximum true positive rate is 97.8%. Hence, the module
is very close in performance to the theoretical maximum.
The downside of the module is that it only models and tracks vehicles, not pedestrians
or bicyclists for example.

Finally, Kalyan et al. [9] develops a detection and tracking module using sensor data
from a Velodyne LIDAR. The authors transform the LIDAR scan into a range image
around the ego-vehicle in which they then segment out pedestrians that are going to be
tracked. They use a probability hypothesis density filter, PHD, that is based on finite
set statistics given in [18]. The authors claim that by using finite set statistics they
can incorporate data association into the Bayesian filtering framework. The constant
velocity linear motion is used as the motion model, and the noise in the system model
is assumed to be zero-mean Gaussian.
The authors did not include any measurable performance values in the paper. Instead
they evaluated the module visually by checking the trajectories of a number of pedes-
trians that move in front of a stationary ego-vehicle. Hence it is hard to determine
the performance of the tracking module. The authors claim that the tracking module
"effectively tracks pedestrians from noisy Velodyne HDL scans"[9].
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3
Data and methods

For verification of the tracking algorithm implemented, a third-party dataset was used.
In the following chapter this dataset is presented along with a programming library that
aided in Point Cloud calculations and visualizations. Lastly, the chosen method and
details on the implementation of the tracking-module are presented.

3.1 KITTI Vision Benchmark Suite
The KITTI Vision benchmark suite is a collaboration between Karlsruhe Institute of
Technology and Toyota Institute at Chicago[2]. It is a project that is based on au-
tonomous driving and computer vision. The responsible team working with KITTI has
previously competed in the DARPA Grand Challenge for autonomous cars with their
submission "AnnieWAY". The Darpa Grand Challenge which was held year 2007 was a
competition organized by the Defense Advanced Research Projects Agency in the United
States. Several teams consisting of different universities and companies competed in cre-
ating the best and safest autonomous vehicles.
The KITTI Vision Benchmark suite is based on team AnnieWAY’s submission and con-
tains roughly 100 different real-world scenarios in traffic. These scenarios were recorded
using state-of-the-art equipment such as a Velodyne HDL-64E LIDAR[1] and Oxts
RTRange GPS/Gyroscope[19] combination for ground-truth data. They also recorded
the video streams from two high-resolution color and gray scale cameras.
The goal of KITTI is to provide a real-world benchmark suite for developers to test their
methods and algorithms on. They provide all raw data from their equipped vehicle and
manually extract ground-truth data for verification of different point cloud processing
techniques such as object detection, object tracking and road extraction.
For this project the object tracking part of the benchmark suite was used along with
raw point cloud data and ego-trajectory data from the GPS/Gyroscope-combination.
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3.2 PCL Point Cloud Library
For the manipulation of raw point cloud data and visualization, Point Cloud Library,
PCL, was used. This is a standalone open project library in which developers can create
and add processing routines for point cloud data. It consists of hundreds of contribu-
tions from developers around the world working with computer vision and point cloud
processing.
The main parts of PCL that were used in this project include the visualizer for point
clouds, euclidean segmentation routine, octree-structure for voxel-representation in seg-
mentation, and standard input/output-routines for point clouds. For more information
regarding PCL the reader is referred to [3].

3.3 Tracking module
As mentioned in the beginning of this report a standard Bayesian tracking framework is
used in this project for the tracking module. This means that it consists of four parts:
filtering, prediction, data association and track management. Since this project is meant
to run off-line i.e. not in real-time, a strategy to further increase the accuracy of the
tracking module is to simply track both forward and backwards and then to merge these
two results in a best outcome. This strategy was implemented and is explained in the
end of this section.
Figure 3.1 gives an overview of the standalone tracking module.

Figure 3.1: Flowchart of the implemented tracking module.
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Two important sources of data come from the segmentation-algorithm and the ego-
trajectory data.
The segmentation yields measurements at each time step in the form of centroids (center
of gravity) of extracted objects, but it can also deliver a lot more data on segmented
objects such as the size of an object and the points making up the object. For more info
on the segmentation see Appendix A.
The data about the ego-trajectory of the vehicle is crucial when tracking objects on
the move. The tracker has to know how the ego-vehicle moved between time steps
to accurately track dynamic objects. For this project the ego-trajectory comes from a
very accurate GPS and Gyroscope, RT3000 from Oxford Technical Solutions [19]. The
GPS/Gyroscope-combination delivers several measurements that are important to cal-
culate the ego-trajectory such as positional data, velocity, acceleration, heading, pitch,
roll etc. This data is then used to calculate rotational matrices and translation vectors
that accurately describe ego-vehicle motion between time steps.
In the tracking module all measurements given by the segmentation algorithm are trans-
formed to an absolute coordinate system using rotations and translations. This means
that the tracking occurs in a fixed absolute coordinate system in which the ego-vehicle
moves.

3.3.1 Filtering and Prediction

A linear Kalman Filter was chosen as the Bayesian filter for the tracking-module.
A tracked object’s state vector was chosen as:

xi
k = [xi

k,y
i
k,z

i
k,ẋ

i
k,ẏ

i
k,ẏ

i
k,ẍ

i
k,ÿ

i
k,z̈

i
k]Tk .

Where ẋ and ẍ are the representation for velocity and acceleration. This way a lot of
information of an object’s trajectory can be extracted.
For the motion model the choice was Constant Acceleration. This means that we assume
the acceleration to be a process with independent zero-mean Gaussian increments with
constant variance.
The above setup yields the following model given the Bayesian tracking framework pre-
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sented in the theory chapter. Equation (2.13) becomes:

xk =



1 0 0 Ts 0 0 T 2
s /2 0 0

0 1 0 0 Ts 0 0 T 2
s /2 0

0 0 1 0 0 Ts 0 0 T 2
s /2

0 0 0 1 0 0 Ts 0 0
0 0 0 0 1 0 0 Ts 0
0 0 0 0 0 1 0 0 Ts

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



xk−1 +



T 2
s /2 0 0
0 T 2

s /2 0
0 0 T 2

s /2
Ts 0 0
0 Ts 0
0 0 Ts

1 0 0
0 1 0
0 0 1



vk−1,

(3.1)
where Ts is the sampling period of the sensor. For a Velodyne LIDAR with 10 Hz update
rate this is equates to 0.1 seconds[1].
The measurements that are acquired from the segmentation routine are position vectors,
the centroids (center of gravity) of extracted objects. In fact, the segmentation delivers
every point that makes up the object and also an oriented bounding box for the seg-
mented object. For tracking, only the centroids are used.
Equation (2.14) then becomes:

yk =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

xk + wk (3.2)

The noise terms vk−1 and wk are assumed to be zero-mean Gaussian. Different co-
variance matrices were tried out and visually evaluated for the noise terms. The final
matrices were:

Qk−1 =



σ2T 4
s /4 0 0 σ2T 3

s /2 0 0 σ2T 2
s /2 0 0

0 σ2T 4
s /4 0 0 σ2T 3

s /2 0 0 σ2T 2
s /2 0

0 0 σ2T 4
s /4 0 0 σ2T 3

s /2 0 0 σ2T 2
s /2

σ2T 3
s /2 0 0 σ2T 2

s 0 0 σ2Ts 0 0
0 σ2T 3

s /2 0 0 σ2T 2
s 0 0 σ2Ts 0

0 0 σ2T 3
s /2 0 0 σ2T 2

s 0 0 σ2Ts

σ2T 2
s /2 0 0 σ2Ts 0 0 σ2 0 0
0 σ2T 2

s /2 0 0 σ2Ts 0 0 σ2 0
0 0 σ2T 2

s /2 0 0 σ2Ts 0 0 σ2


(3.3)
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where σ2 was set to be 0.1 by investigating the positional error different values of σ2

gave, and

Rk−1 =


0.5 0 0
0 0.5 0
0 0 0.5

 (3.4)

The initial P0 matrix was also found by testing and evaluating:

P0 =



σ2
0T

4
s /4 0 0 σ2

0T
3
s /2 0 0 σ2

0T
2
s /2 0 0

0 σ2
0T

4
s /4 0 0 σ2

0T
3
s /2 0 0 σ2

0T
2
s /2 0

0 0 σ2
0T

4
s /4 0 0 σ2

0T
3
s /2 0 0 σ2

0T
2
s /2

σ2
0T

3
s /2 0 0 σ2

0T
2
s 0 0 σ2

0Ts 0 0
0 σ2

0T
3
s /2 0 0 σ2

0T
2
s 0 0 σ2

0Ts 0
0 0 σ2

0T
3
s /2 0 0 σ2

0T
2
s 0 0 σ2

0Ts

σ2
0T

2
s /2 0 0 σ2

0Ts 0 0 σ2
0 0 0

0 σ2
0T

2
s /2 0 0 σ2

0Ts 0 0 σ2
0 0

0 0 σ2
0T

2
s /2 0 0 σ2

0Ts 0 0 σ2
0


(3.5)

where σ2
0 was set to be 0.1 by investigating which σ2

0 gave the most stable and accurate
positional estimations.
The above setup determines the Kalman Filter and the Prediction and State update
steps are performed according to eq. (2.18) and (2.11), respectively.

3.3.2 Data Association

When associating new measurements to existing tracklets, a simple global nearest neigh-
bor technique was chosen. This kept computation time down and gave satisfying results.
Below is a mock-up of the association algorithm:
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Data: Current tracklets, New measurements
Result: Associated measurements, non-associated measurements, non-associated

tracklets
for All tracklets predicted positions do

Calculate euclidean distance to all measurements;
if dist(tracklet -> measurement)<gate(individual) then

add tracklet association to sorted Queue(ascending wrt distance);
end

end
while queue not empty do

Save association for first entry in Queue(tracklet T1 and measurement M1);
Add to associated measurements/tracklets;
for Queue do

if Element in Queue contains T1 OR M1 then
Remove from Queue

end
end
Sort(Queue);

end
Save all non-associated measures;
Save all non-associated tracklets;

Algorithm 1: Data Association

This is a simplified outline of the implemented association-routine.
One important aspect of the method is that one can choose an individual gate for each
tracklet which can depend on current speed, uncertainty and other important factors.
The gating then eliminates a lot of the computational burden of associating correctly
between tracklets and measurements.
An assumption that each tracklet can only give rise to one measurement is made. Hence,
when a tracklet has been associated with it’s best match, both the tracklet and the mea-
surement can’t be associated with something else(they are removed from the queue).

3.3.3 Track Management

Following the data association routine, the track manager has to update it’s records of
current tracklets and initiate/delete tracklets.
There are two levels of tracklets:

• Possible tracklets

• Validated tracklets
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Possible tracklets are those objects that the tracker has just started to track. These
tracklets are uncertain and they require two consecutive measurement associations be-
fore they even get a speed and acceleration. Hence possible tracklets get a larger gate
in the beginning due to the uncertainty.
If a possible tracklet acquires M consecutive measurement associations it will be up-
graded to a validated tracklet. M was chosen by trial to be 6 by investigating which
value would give the most stable tracklets and at the same time ignoring irrelevant ob-
jects. The best value of M could vary between different scenarios but 6 seemed to give
good overall results. A validated tracklet is a confirmed object that is being tracked and
will end up in the final list of tracked objects when a scenario is complete. A validated
tracklet has a higher certainty which means that a smaller gate can be imposed since
the object trajectory is more accurate.
A mock-up of the track manager can be found below in Alg. 2:

Data: Possible tracklets, Validated tracklets
;
**Predict**;
for All tracklets(validated+possible) do

Predict state using Kalman Filter;
end
;

**Association**;
Associate(Validated tracklets, New measurements);
Associate(Possible tracklets, Non-associated measurements from above);
;

**Validation**;
for All possible tracklets do

if Consecutive assoc>=6 then
Put possible tracklet in validated tracklets;

end
end
;
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**Deletion**;
for All validated tracklets do

if Consecutive non-assoc>=12 then
Put validated tracklet in final tracklets;

end
end
for All possible tracklets do

if Consecutive non-assoc>=1 then
Delete possible tracklet;

end
end
;

**Update state**;
for All validated tracklets do

if Tracklet associated then
Update State using Kalman Filter;

else
Use predicted position as new state;

end
end
for All possible tracklets do

if Tracklet non-associated then
Use predicted position as new state;

else if Tracklet associated AND associated meas. == 2 then
Calculate velocity;
Update state using measurement and calc. velocity;

else
Update state using Kalman Filter;

end
;

**Initialize new tracklets**;
for All non-associated measurements do

Initialize new tracklet with zero velocity and acceleration;
end

Algorithm 2: Track management

One important aspect of the track manager is how a tracklet is initiated. When
a measurement doesn’t get associated with any existing tracklets, the track manager

19



3.3. TRACKING MODULE CHAPTER 3. DATA AND METHODS

creates a new tracklet for it. However, at this first step no info on velocity or acceleration
is given by the measurement alone, and they will be initiated as zero. This is a problem
when it is time to predict the state of this new tracklet. The predicted state will be
the same as the previous one since it has zero velocity and acceleration. This makes
it hard to associate this new tracklet with another measurement in the next step. As
stated above this means that the initial gate for such a tracklet has to be considerably
larger for the association-routine to find the tracklet’s correct association. When a
good association has been found inside this large gate, the velocity between the two
first associated measurements/positions are calculated. This velocity will be the initial
velocity estimate for this tracked object. After this step a smaller gate can be applied
and the estimated trajectory will be more accurate.
In the deletion step a validated tracklet is allowed to have 12 consecutive non-associations
before it is terminated and a possible tracklet is removed as soon as there is no associated
measurement. These numbers were set so that a validated tracklet could still be tracked
in occlusion but a possible tracklet could not. There is a trade-off between minimizing
possible mismatches and being able to track in occlusion when deciding on these numbers.
Different numbers of consecutive non-associations were investigated but the number 12
gave the best overall results.

3.3.4 Forward- and Backtracking

Since the tracking-module developed in this project was meant to run off-line, i.e not
in real-time, the possibility of exploiting the off-line running became evident. A natural
extension of an off-line tracker is to track both forward and backwards in time. Both
tracking results can then be merged to create the best estimations of objects trajectories.
Tracking backwards with the above tracking module only meant that we reverse the order
of loops of the scenario. The velocities and accelerations were then simply adjusted by
multiplying with −1 to go back to forward-time.
During the merging, tracklets are merged if they have the same associated measurements
since the measurements are exactly the same for both forward- and backtracking.
A mock-up of the merging algorithm follows:
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Data: Forward tracklets(n = # tracklets), Backward tracklets(m = # tracklets)
Result: Final tracklets
Initialize zero-matrix A with n rows and m cols.;
for All time-steps do

for All forw. tracklets i do
for All backw. tracklets j do

if tracklet i and j has same measurement then
A(i,j)+=1;

end
end

end
end
while Max(A)>0 do

Find largest element in A -> row i column k;
if tracklet k hasn’t been merged AND largest element > 0 then

Merge tracklet i and k;
Set row i to be all zeros in A;
Set column k to be all zeros in A;

end
end

Algorithm 3: Merging

For the merging, the states were simply added together and then divided by two
after the sign of the velocities and accelerations had been multiplied by −1 from the
back-tracking.

21



4
Results

For the evaluation of the tracking module, some ground-truth is needed. The KITTI-
data contains scenarios with ground-truth data, manually labeled tracklets, though not
every scenario contains those. And since the goal of the KITTI-dataset is to benchmark
processing techniques using only the stereo cameras, the labeled tracklets are only la-
beled if they are visible to the forward-facing stereo camera. Hence it was not possible
to fully evaluate the tracking module in an objective manner.
There were some other drawbacks with the ground-truth data. For example, the labeled
tracklets only contained position, not velocity, which meant that the error in velocity
could not be evaluated. The position was always the manually found center of the object,
not the centroid(center of gravity) of the points making up the object. This issue made
the evaluation of positional error a bit tricky. For the evaluation purposes the tracking
module was modified so that it tracked objects using the center of the bounding box
that the segmentation algorithm had calculated instead of the centroid. The bounding
box from the segmentation algorithm was not perfect but gave a more fair evaluation
against the ground-truth data obtained from KITTI. Note, however, that tracking on
the bounding box center was only done when checking the positional error of the tracker.
For the other evaluation procedures the original tracker was used, since the tracking of
the centroid gave more stable tracking-results.

The last two sections in this chapter contain info on the robustness of the tracker.
For example an evaluation of false positives and negatives was done. However, since the
KITTI-data only contained manually labeled tracklets that are visible to the camera,
this evaluation is also flawed. The tracking-module developed for this project effectively
tracks all objects around the vehicle, hence a lot of information is lost for this evaluation.
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4.1 Position error
Evaluation of the positional error means that the tracker had to be modified to track
using the center of the bounding box instead of the centroid, center of gravity of the
points. The center of the bounding box is a more fair comparison compared to tracking
on the centroid when evaluating against the labeled ground-truth data.
The scenario that was chosen from the KITTI-dataset contained several objects visible
to the camera, though only one object was visible during the entire scenario. This object
was a cyclist traveling in front of the ego-vehicle, shown in Figure 4.1.

Figure 4.1: Cyclist traveling in front of ego-vehicle. The cyclist is in the bounding box in
the center of the figure. The sphere is the estimated center of the object.
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In Figure 4.2, the position of the cyclist has been plotted in the absolute coordinate
system that he is being tracked in against the ground truth.

Figure 4.2: Position of cyclist in absolute coordinate system.

We can see from Figure 4.2 that the tracker’s estimated trajectory and the ground truth
coincide rather well. It is important to note that in this scenario both the cyclist and
ego-vehicle are dynamic and move in a non-linear fashion, hence the tracker is stretched
to it’s limits.
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The euclidean positional error was then calculated at each time step and plotted
together with the mean error, see Figure 4.3.

Figure 4.3: Positional error for the cyclist, i.e. the difference in Eulidean distance from
the estimated position and the ground truth.

It is important to note that the tracked center of the bounding box is not always the
correct center of the object. Hence the above plot is largely dependent on the segmen-
tation result and the GPS/Gyroscope data.

The positional error was also checked for two cars in a scenario from the KITTI-dataset.
In Figure 4.4, one can see that the systematic difference in the center of the object be-
tween the tracker and the ground-truth was even more apparent because of the sizes of
the cars. The tracker had been set to track on the bounding box center to be as close
to the ground-truth center as possible. Though these different centers are almost never
the same points. There will be a systematic error that is based on the segmentation,
GPS/Gyroscope and most of all on that the ground truth doesn’t "track" the same point
as the tracker.
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(a) Positions of vehicles in absolute coordinate system.

(b) Positional error Car 1 (c) Positional error Car 2

Figure 4.4: Positional error for two vehicles from the KITTI-dataset.
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4.2 Ghosting and loss of objects
Ghosting is a name for objects that are being tracked but don’t exist. Such objects are
known as false positives. Conversely there are objects that exist but don’t get tracked,
called false negatives.
The tracking module was evaluated on 4 different scenarios, both dynamic and static.
The scenarios contained multiple objects such as cars, pedestrians and cyclists. In total
the 4 different scenarios spanned over roughly 60 seconds.
Since the ground truth is the same as for the error-evaluation above, only objects that
are visible to the forward-facing stereo cameras are present. This meant that only a small
part of the tracking module could be evaluated. Nonetheless it seemed most objective
to use the ground truth data instead of visually evaluating if an object exists or not.
Another drawback is the fact that the ground truth data only contains objects such as
cars, trucks, pedestrians and two-wheeled vehicles. The tracking module can track any
sort of objects. Therefore an object is only counted as a miss or a ghost if it is in one of
the classes that the ground truth contains. The evaluation was also restricted to objects
on the road or sidewalks. Forests and vegetation give rise to a lot of possible objects
that could be passed as ghost objects.
The false positives rate, FP , is calculated as the ratio between tracklets that don’t exist
according to the ground truth, #gh, and the total number of objects in the ground truth,
#gt:

FP = #gh
#gt . (4.1)

Similarly the false negative rate, FN , is calculated as the ratio between missed objects
according to ground truth, #mo, and the total number of objects in the ground truth,
#gt:

FN = #mo
#gt , (4.2)

In our case the false positive rate was 0%, and the false negative rate was 2.5% for
objects that had a minimum distance to the ego-vehicle of less than 40m and 7.5% for
objects that had an arbitrary minimum distance to the ego-vehicle. The reason behind
the two different rates is the fact that it is interesting to see the performance of the
tracker at close range and at long range. However, since the ground truth data was a
bit flawed it is important to mention that there were only 40 ground truth objects in
these 4 different scenarios that could be evaluated. So the 0% false positive rate doesn’t
mean that there will never be any ghost objects, and the false negative rate will probably
be reduced when averaging over more objects and with a more LIDAR-oriented ground
truth instead of the camera-oriented ground truth provided by KITTI.
The objects that the tracker missed which became false negatives were objects that
didn’t get segmented properly. For example, the object that gave rise to the 2.5% false
negative rate was a pedestrian that walked on the sidewalk too close to a wall and did
not get segmented properly, see Figure 4.5.
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Figure 4.5: Example of false negative. The pedestrian, object 13, is too close to the wall
and does not get segmented but exists in the ground truth.

4.3 Fragmentation and mismatch
The final part of the evaluation is a measure on how continuous the tracking module is.
The goal of the tracker is that trajectory of an object should be a continuous trajectory.
It should not change tracking ID in the middle of the tracking procedure and track
fragments of the real trajectory. Ideally, an object trajectory should only contain one
fragment.
Another scenario in which a tracker can fail is when it performs a mismatch. A mismatch
means that two tracklets get mixed up when being close to each other or crossing each
others paths.
The illustration in Figure 4.6 explains the problem of mismatching:
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Figure 4.6: Mismatching between two objects that are being tracked. Objects cross each-
others paths and the tracker makes wrong associations.

As before, both fragmentation and mismatching were evaluated using the 4 scenarios
from the previous section. The result was that only one out of 40 ground-truth tracklets
was fragmented. Though this was mainly due to poor segmentation, the object was over-
segmented into two parts and the tracker started a new tracker for each part. When
the object eventually was segmented correctly one of the two tracklets had to vanish
which created the fragmentation. A visualization of the fragmented object can be seen
in Figure 4.7.

Figure 4.7: Fragmentation of tracklet. The two boxes in the center of the figure are
representations of the same vehicle. The spheres are the tracked position of the object for
each tracklet.

The mismatching-evaluation gave a perfect result, no mismatches among the 40 objects
were made.

29



4.4. VISUAL RESULTS CHAPTER 4. RESULTS

4.4 Visual results
Below, in Figures 4.8-4.11, is a series of images of a tracked scenario with several pedes-
trians and other objects. There are four images which were taken one second apart, in
other words every 10:th frame. The ego-vehicle is stationary at a pedestrian crossing.
On the left side of the plots, several groups of pedestrians are seen both walking and
standing still. The images are best seen in color.

Figure 4.8: Frame 1 of stationary pedestrian crossing.
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Figure 4.9: Frame 10 of stationary pedestrian crossing.
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Figure 4.10: Frame 20 of stationary pedestrian crossing..
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Figure 4.11: Frame 30 of stationary pedestrian crossing..

33



5
Discussion

The results from the evaluation were reasonably good considering the ground truth data
used was flawed.
It is hard to compare the results to other literature considering that everyone uses
different ground truth data. However, there exists a benchmark-metrics that can be
calculated from the evaluation and then compared even though the ground truth is
different. It does not offer a perfect comparison but gives a hint on how the tracker
performs. The metrics was introduced in [20] and is called the CLEAR MOT -metrics.
It involves two different metrics MOTP, multiple object tracking precision, and MOTA,
multiple object tracking accuracy. MOTP is a measure on how precise the tracker is.
Essentially it is the average positional error over all matches made. Since the ground
truth had different centers that it tracked compared to the tracking module, a full
evaluation of the MOTP-value is not done. However, for comparison purposes one can
look at the mean errors calculated for the cyclist and the two cars in the results section
in Figure 4.2, 4.4(b) and 4.4(c). These mean errors are calculated exactly as the MOTP-
value but involve only one object each. A more realistic MOTP-value would be found
by averaging over several objects.
The MOTA-value, however, can be calculated using the results from the ghosting, loss
of objects and mismatches. It is defined as

MOTA = 1− #gh+ #mo+ #mm
#gt , (5.1)

where #gh is the number of ghost objects, #mo the number of missed objects and #mm
the number of mismatches.
For the off-line tracker developed in this project the results gave two different MOTA
scores: one for objects that had a minimum distance to the ego-vehicle less than 40m
and one for objects that had an arbitrary minimum distance to the ego-vehicle.

MOTA(0 < dist < 40) = 1− 1 + 0 + 0
40 = 0.975⇒ 97.5%. (5.2)
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MOTA(dist > 0) = 1− 3 + 0 + 0
40 = 0.925⇒ 92.5%. (5.3)

To compare this value we turn to the paper [11] where a table of both the author’s
tracker and trackers developed in [21] are presented. Table 5.1 includes the results from
the tracker developed in this project, the off-line tracker, and the results from the track-
ers presented in [11, 21].

Tracker MOTP MOTA FN FP MM
[21] BU <0.16m 23.1% 18.7% 57.7% —
[21] BUTD <0.16m 89.1% 2.6% 7.6% —
[11] <0.14m 77.7% 8.5% 10.1% 3.6%
Off-line tracker — 97.5%(0<dist< 40)

92.5%(0<dist)
2.5%(0<dist< 40)
7.5%(0<dist)

0% 0%

Table 5.1: Table of results for comparison.

From Table 5.1 we see that the tracking module presented in this paper is equally as
good or better than the other trackers. It is, however, very important to note that the
values of the other trackers in the table come from a different ground truth evaluation
scenario that only involves pedestrians. The LIDAR was also stationary in [11, 21] which
could lead to better results. A more thorough evaluation of the off-line tracker is needed,
however, this requires better and more extensive ground truth data. But as mentioned
earlier the values can still be compared to give an indication on how well the tracker
performs.

When visually evaluating the tracker both drawbacks and benefits are spotted. One
important part is how the tracker performs when objects are occluded, in shadow. By
checking the different KITTI-scenarios it looks very good, this is mostly due to the fact
that the track manager has a built-in routine which uses the predicted position if no
association can be made. The track manager can do this for an arbitrary number of
times but a cap of 12 frames was set to avoid mismatches later on. In Figure 5.1 the
reader can see an example of how an object is tracked in occlusion in the KITTI-dataset.

One drawback of the tracker when objects are in occlusion, is that the velocities are not
very stable. As soon as an object exists from occlusion the velocity is often changed
more vigorously than otherwise. This is expected since the motion model Constant ac-
celeration is not a perfect model for human driving.
Another drawback is when objects are far away and the segmentation-routine isn’t able
to segment the entire object. Often, the segmentation-routine can only cluster a few
LIDAR-points of distant objects which leads to unstable estimates of velocity and posi-
tion for the object. See Figure 5.2.
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Figure 5.1: Example of object in occlusion. Box 23 creates a shadow so that no points on
object 206 are visible, though object 206 is still tracked. Object 206 is a car that the tracker
found before it went into occlusion.

Figure 5.2: Example of an object far away. Object 115 is a car exiting the field-of-view of
the LIDAR. The only thing that is visible to the LIDAR of object 115 is the back of the car.
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When evaluating the impact that the forward- and backtracking had on the results,
one interesting phenomenon was noted. The velocity directions of objects doing sharp
turns were greatly improved when merging both forward and backward results. Since
the Kalman Filter is not perfect at estimating the direction of a dynamic object, some
tendencies to over- or underestimation in the direction of the object were seen. But
when tracking both forward and backwards in time these over- or underestimations were
canceled out, see Figure 5.3 for an illustration.

Figure 5.3: An illustration of the effect of tracking both forward and backward in time.

Overall the tracker performs well. Most of the errors and flaws come from other parts
in the processing of the point clouds from the LIDAR. Often a combination of poor
segmentation and flawed ego-trajectory gives rise to problems in the tracker. Considering
the positional error, it doesn’t matter that the tracker does not track the absolute center
of each object. For verification purposes, all data can be extracted from both the tracker
and the segmentation. From the segmentation, all points making up the car can be
extracted. So essentially one can compare any sort of point on the car, for example the
closest point on the car to the ego-vehicle can always be extracted even though that
point is not being tracked.
In that sense it is more important what MOTA score the tracker performs. The stability
and robustness of the tracker is more important than the precision of the tracked center
of an object.
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6
Conclusions and continuation

A robust off-line object-tracker was created. It was based on Bayesian tracking theory
and tuned to work with LIDAR point clouds. The off-line advantage was used to track
both forward and backwards in time and then merge these two results. The outcome
was considerably better compared to tracking only forward in time.
The accuracy and precision of the tracker were evaluated using ground truth data from
the KITTI-dataset. This ground truth was not perfect in the sense of evaluating a tracker
working on LIDAR point clouds. It was more suited for camera-trackers. This made the
evaluation procedure a bit flawed. Roughly 70-80% of the LIDAR field-of-view was not
possible to evaluate since the ground truth only contained camera-objects. The ground
truth also lacked velocity readings on objects which meant that the velocity-precision
could not be evaluated. Instead this was visually evaluated. The most important infor-
mation from the velocity readings are the direction an object is heading in. And from
the different scenarios in the KITTI-dataset the direction of objects seemed very good.
In the case of cars the direction of the velocity was consistently close to the direction of
the body of the car. The direction of objects is very important for active safety systems
to be able to induce safety measures to avoid collisions. It was noted that the very good
result in velocity-direction was partly due to the tracking both forward and backwards
in time.

When compared to other trackers in the literature both the precision and the accuracy of
the tracker were equally as good or better. This was most apparent when looking at the
MOTA-measure that contains information on missed object, ghosting and mismatches.
The precision in position of the tracker was hard to evaluate considering the differences
in what point the tracker used and what point the ground-truth used for tracking. A
systematic error in position was found depending on how the object was seen by the
LIDAR. Even so, the mean error in position can still be compared to for example [11]
and is found to be similar in size for both the cyclist case and the two cars case evaluated
in this report.
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During the work on the project some problems with the original plan of the work became
apparent. For starters the segmentation-routine played a more vital role than anything
else for the tracker. Bad segmentation gave very bad tracking results. Therefore, a lot
of attention was shifted to creating a good segmentation routine in the beginning of the
project. It turned out to be one of the most important parts since it meant a simpler
and more efficient tracker could be implemented.
Another problem that arose was how the ego-trajectory data would be delivered. From
the start it was thought in the project group at Volvo Cars that it was possible to deter-
mine the ego-trajectory using only the point clouds. As it turned out this field of interest
has not reached to the level of accuracy that is required by a robust object tracker. The
KITTI-group used a GPS and Gyroscope to estimate ego-trajectory, therefore it was
natural that this would be the case for the tracker in this project also. And as it turned
out to be sufficiently accurate for the object tracker, a GPS and Gyroscope became the
choice of ego-vehicle positioning and trajectory.

During the work on the project there were some things that could have been done
differently or be researched more for the tracker. Below are some of these ideas and
improvements that could be done in the future for the tracker.

• Evaluate if a more complex particle filter could outperform the Kalman Filter and
the Gaussian-assumption. A particle filter could perhaps capture some of the more
unpredictable manner of the trajectory of an object.

• For the motion model, a multiple model approach could be taken where for instance
pedestrians and cars have different motion models. Often a pedestrian moves in a
more unpredictable manner than a car and can change course in an instance. Cars
are more bound to the road and traffic-rules.

• Implement a multiple hypotheses association routine. This should strengthen the
performance of the tracker when objects are occluded or very close to each other.

• Investigate if there are more stable and accurate segmentation routines that have
less over- and under-segmentation. Big trucks and lorries are a problem for the
segmentation, if they’re not seen from a good angle they are often over-segmented.
Perhaps a post-segmentation after the tracker can be done to further improve the
results.

• Ideally, the ego-trajectory should be calculated from the raw point clouds using
stationary objects as reference. The problem is that if you need to know whether an
object is stationary or not you need a tracking-result which relies on ego-trajectory
data. A chicken and the egg problem arises.

• The off-line advantage could probably be exploited even more than just forward-
and backtracking. One idea could be to use a sort-of global optimization routine
over all frames and objects in the scenario to find the most probable associations

39



CHAPTER 6. CONCLUSIONS AND CONTINUATION

and trajectories. This was discussed during the project but no literature on the
subject could be found and hence it would probably require more development
time which was not possible during the working of the project.

• Investigate if Smoothing in the Kalman filter would lead to a better tracker.
Smoothing is a technique in which future data is used to improve the present
state. Since the tracker works off-line this would be possible at the end of a track-
ing scenario.

The above points are just some of the ideas that sparked during the working of the
project but a lack of time meant they were not researched. A natural continuation
would be to further investigate the above points and try to improve the original tracker.
It would also be good if other sources of LIDAR point clouds could be found with more
extensive ground truth data. It is very important to be able to evaluate all changes to
see if they are positive or unnecessary.

Processing LIDAR point clouds is a field that has been researched and developed exten-
sively in the recent years. LIDARs are very accurate sensors that could be used in many
automotive development fields. Not only active safety in cars benefit from LIDAR tech-
nology but autonomous driving is a field that would benefit from LIDAR point cloud
data. The tracker developed in this project is a very versatile tracker that could be
used with any sort of sensor that produces positional measurements. The implemented
standalone tracker could also be used in a real-time environment because of the efficient
algorithms.
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A
Segmentation

Initially the segmentation of point clouds was not a part of this master’s thesis. When
it became apparent that the segmentation played such a vital role in the performance of
the tracker, some of the focus of the tracker was shifted to developing a good segmenta-
tion routine.
Since time was a factor, the segmentation routine had to be based on existing seg-
mentation routines in the Point Cloud Library, PCL[3]. There exist many different
implemented segmentation algorithms for point clouds in PCL. Some different ones were
tried to evaluate both the quality of the outcome and the computational time. The final
choice was to use one of the simplest Euclidean clustering algorithms together with a
ground-plane extractor.

The segmentation routine is built up by three parts.

• Remove ground plane.

• Create a voxel-grid and cluster points using euclidean clustering.

• Cluster smaller objects using finer thresholds.

First of all, a voxel is a representation of a rectangular box containing a number of
points in a point cloud. The voxel itself is the center of gravity of the points inside
the rectangle. With a fixed sized voxel one can create these rectangular boxes all over
the raw point cloud and create a downscaled version of the point cloud. Voxelization is
a very effective way of downscaling the data while still maintaining the overall look of
surfaces and objects. An example of voxelization can be seen in Figure A.1.
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Figure A.1: Example of voxelization.

One key thing to remember during the voxelization is that the mapping from a point
in the original point cloud into these voxels is always stored. So, if the downscaled voxel
representation has been processed one can always go back to the original points in the
point cloud and see what happens if they get the same treatment as the voxel they where
situated in.
This means in essence that the actual segmentation can take place on the downscaled
data to save computational time and then be mapped back to the original full-scale point
cloud. An implementation in PCL was used for the voxel representation.

Ground-plane segmentation
Since a simple Euclidean segmentation routine is used for segmenting objects it is neces-
sary to remove the ground plane so that the ground points don’t get clustered together
with objects. Not only does it help in object segmentation, it is also a way of downscaling
the data. The majority of points received in the LIDAR are in fact ground plane points
depending on the surroundings of the car. If the ground plane points can be removed
this will also cut down the computational time for the Euclidean clustering.
The ground plane segmentation works by creating a grid over the xy−plane, the hori-
zontal plane. The number of grids can be chosen arbitrarily, a good value that is used
in this project is a grid of 200 by 200 "boxes". In each grid a portion of the lowest points
in the z−axis is then removed. A mock-up of the algorithm follows:
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Data: Raw point cloud data
Result: Point cloud without ground-plane
N=number of grids in each direction;
(min x, min y)=Calculate Minimum Values for Point Cloud;
(max x, max y)=Calculate Maximum Values for Point Cloud;
(Gridsize x, Gridsize y)=Calculate size of each grid using min/max of point cloud
... and N;
Create Grid Over x- and y-plane with N*N grids;
for All points i in point cloud do

Map point i to relevant grid;
end
for All grids j do

Calculate min z for grid j;
for All points i in grid j do

if Point i.z < min z + max(Gridsize x, Gridsize y)*0.18 then
Remove Point i from point cloud;

end
end

end
Algorithm 4: Ground plane segmentation

When removing points from each grid, the lowest z−valued point is used as a base.
Then it is assumed that a road can have a maximum incline or decline of 18%. Figure
A.2 illustrates how points are removed using this incline/decline-assumption.

Figure A.2: Road-removal in a single grid. The points in the bottom part of the "grid-box"
are removed using the incline/decline assumption.

For a large number of grids the ground-plane segmentation is very effective in removing
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the road and ground plane. In some cases small parts of tires and feet get removed but
this is no problem since they are such small portions that get removed. It is important
to note that for smaller numbers of grids, the percentage in incline/decline of a road
should be adjusted down to avoid point-losses in objects.
Figure A.3 illustrates the ground-extraction for a LIDAR point cloud.

Figure A.3: Example of road-segmentation. The right image is the original point cloud
with the ground plane present. The left image is the same point cloud after the ground
plane removal has been done.

Euclidean voxel-clustering
After the ground-plane has been removed, points can now be clustered into objects. As
mentioned above, the first step is to voxelize the data into small rectangular boxes and
downscale the data to the centers of gravity of these boxes. A routine in PCL was used
for this purpose, hence the reader is referred to [3] for more information on how this
is done effectively. Instead the focus will be laid on the Euclidean clustering algorithm
which was also a routine that was already implemented in PCL. The goal of the algorithm
is to cluster points which are very close to each other. To do this a distance threshold
is imposed, dth. This threshold determines at which distance points can be from one
another and still be a cluster. Since the point cloud is voxelized a larger threshold can
be imposed since the data is downscaled. In this project a threshold of 0.67m seemed
to produce the best results.
A mock-up of the algorithm follows:
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Data: Voxelized point cloud data
Result: Segmented clusters of original point cloud data
dth=distance threshold;
Create a KdTree-repr. to easily find nearest neighbor points of Point cloud P;
Initialize a list of empty clusters CL;
Create an empty queue for points to check;
for All points i in P do

Add the point i to the queue Q;
for All points j in queue do

Extract all neighboring points Pj to point j with distance<dth;
for All points k in Pj do

if Point k hasn’t been processed earlier then
Add point k to queue Q;

end
end

end
All points in Q has been processed -> add points in Q to a new cluster in C;
Set Q to be empty;

end
Map the clusters back to non-voxelized data;

Algorithm 5: Euclidean segmentation segmentation

The KdTree-representation mentioned above is just an efficient way of organizing the
data structure for the points so that nearest neighbor searches can be handled efficiently.
As an outcome of the segmentation we obtain clusters that include all the original points
from the point cloud, i.e. the clusters have been mapped back from voxels to the original
points.
There was also the possibility of imposing a maximum and minimum size of points/voxels
in a cluster. The maximum and minimum sizes which were found to be working best
was 5000 and 3, respectively. It is important to note that this means 5000 or 3 voxels,
not points.

Finer segmentation To further improve the segmentation result, a finer clustering
was done on objects that were roughly of the size of a car or smaller. The dimensions
of all clusters were calculated to see which ones were smaller than a car. These objects
were then put through the Euclidean segmentation again but with a smaller distance
threshold and without the voxel-downscaling. The reason for this extra segmentation is
that for example pedestrians that are very close to each other are very hard to segment
out. To increase the chances of extracting pedestrians out of a group of people, it was
necessary to use the non-voxelized data to get the best quality for the clustering. One
could ask why this wasn’t done in the first place, why all the hassle with downscaling?.
There are two reasons for this: First the computational time is greatly reduced when
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downscaling the data and the quality loss is so small that the benefits outweigh the dis-
advantages. The second reason is that large objects were segmented better when using a
voxelized representation, and the problem of over-segmenting large objects was reduced
with this downscaling.

The full segmentation routine is now running at roughly 0.3 seconds per LIDAR-frame.
This is just three times the real time when the LIDAR is rotating at frequency of 10 Hz.
With some extra effort put in optimizing the code it would be possible to reduce this
time so that segmentation could be done in real-time.
Figure A.4 illustrates the complete segmentation routine on a LIDAR point cloud.

Figure A.4: Example of complete segmentation on a LIDAR point cloud. The image to
the right is the original point cloud. The image to the left is the segmented point cloud with
clusters represented by boxes and different colors.
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