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Measuring absolute number concentrations of nanoparticles using single-particle tracking

Magnus Röding,1,* Hendrik Deschout,2,3 Kevin Braeckmans,2,3 and Mats Rudemo1

1Department of Mathematical Statistics, Chalmers University of Technology and Gothenburg University, Gothenburg, Sweden
2Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium

3Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium
(Received 21 February 2011; revised manuscript received 4 July 2011; published 20 September 2011)

Single-particle tracking (SPT) microscopy is increasingly used to characterize nanoparticulate systems. We
introduce a concept for estimation of particle number concentration in Brownian particle dispersions using SPT
based on a model for the trajectory length distribution of particles to estimate the detection region volume.
The resulting method is independent of precalibration reference measurements, and robust with respect to image
processing settings. Experimentally estimated concentrations of different dilutions of 0.19- and 0.52-μm polymer
nanospheres are in excellent agreement with estimates computed from the concentrations of the stock solutions.
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I. INTRODUCTION

In the last decade, there has been a rapid growth in the de-
sign of functional nanoparticles. For instance, nanomedicines
are being developed to deliver therapeutic agents to specific
target tissues [1]. In biomedical imaging, gold nanoparticles
are used for x-ray computer tomography, iron oxide particles
for NMR imaging, and quantum dots for fluorescence imaging
[2]. Apart from manmade nanoparticles, there is also a growing
interest in detecting and characterizing sub-μm aggregates
for biomedical diagnostics. One example is the detection of
blood-borne specific cell-derived microparticles, which could
serve as biomarkers for metabolic and systemic diseases, as
well as for thrombosis and cancer [3,4]. Another example is
the detection of amyloid β aggregates in cerebrospinal fluid or
plasma, which could allow early diagnosis and prognosis of
neurodegenerative disorders such as Alzheimer’s [5].

There is currently an active search for methods that
can accurately detect and characterize nanoparticulate matter
[6–8], especially in blood, tissues, or cells [9–12]. We
recently demonstrated that (fluorescence) single-particle track-
ing (SPT) is a powerful technique that can accurately measure
the size distribution of (fluorescently labeled) nanoparticles
in undiluted complex biological fluids like blood [11].
By imaging the diffusive motion of (fluorescently labeled)
nanoparticles, the diffusion coefficient and size can be readily
obtained for each individual particle, resulting in accurate size
distribution estimates. In addition, qualitative information on
the particle number concentration is available since the number
of detected particles or trajectories is directly proportional
to their concentration. Thus SPT is a powerful technique for
the unperturbed characterization of size and concentration of
nanoparticles in a dispersion.

However, to measure the absolute number concentration,
the volume of the three-dimensional (3D) detection region
must be accurately known. One way of doing this is to perform
a precalibration using reference particles, as was recently
suggested [13]. While this is a useful first approximation,
it should be realized that the detection region depends on
several variable factors. Indeed, apart from the optical system,
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the detection region is also affected by particle brightness
and image processing settings used for particle detection and
calculation of the motion trajectories.

In this work, we present a framework to estimate the
detection region volume from the SPT data themselves,
hence eliminating the need to perform separate calibration
measurements. The estimation of the detection region volume
is performed by estimation of the axial size of the detection
region. This is related to the probability distribution of
trajectory lengths within the detection region, which can be
obtained numerically as a function of the axial size. By
use of simulations and experimental data we demonstrate
that accurate, absolute nanoparticle concentrations can be
measured over a wide range and that the method is robust
with respect to image processing settings.

II. THEORY

Consider a tracking experiment where particles are dif-
fusing freely in a liquid suspension. The concentration is
sufficiently low to make particle interaction negligible. A
Brownian motion characterized by the usual mean squared
deviation property [14] describes the diffusive motion in N
dimensions, where N = 3 for particles moving in space.
If a particle is observed at K equidistant time points (K
consecutive frames of a time-lapse video sequence) with
sampling interval �t , the K positions denoted by r1,r2, . . . ,rK

can be written as the previous position plus a Gaussian
increment, ri = ri−1 + �G, where �G is an N -dimensional
vector of normally distributed independent components, each
with mean zero and variance 2D�t . We refer to K as the
trajectory length. The trajectory length depends primarily on
the size of the detection region and the diffusion coefficient.

The detection region is modeled as a rectangular box (see
Fig. 1). The lateral sizes are determined by the microscope field
of view. The axial size, which we will refer to as the tracking
depth, depends on the depth of field of the microscope and
the parameters of the particle detection algorithm, as well as
of the brightness of the observed particles. Since the latter
two properties are not fixed but can vary strongly between
experiments, the effective thickness of the detection region
can vary as well, due to particles becoming gradually less
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FIG. 1. An illustration of the experimental setup. The detection
region is modeled as a rectangular box centered in the liquid
suspension. Particles outside the detection region cannot be observed.
The tracking depth is 2a, and the thickness of the liquid suspension
is 2A.

bright and more diffuse when moving away from the focal
plane. Therefore particles will not be detected anymore by the
image processing software from a certain out-of-focus distance
depending on the particle brightness and image processing
settings (see Appendix C). Note that the field of view (i.e.,
the lateral sizes of the detection region) can be calibrated
separately (e.g., through a calibration grid), so that it is only the
tracking depth that is unknown. Since the lateral sizes of the
detection region are typically much larger than the axial size,
a simplification will be introduced by assuming that particles
are entering and exiting the detection region only by means of
axial diffusion, i.e., parallel to the optical axis (z direction).
The three-dimensional (3D) system is hence replaced by a
one-dimensional (1D) model.

A. Trajectory length distribution

Assume that particles are diffusing within the region
[−A,A]. They are visible within the detection region [−a,a],
and invisible otherwise. Hence the thickness of the liquid
suspension is 2A and the tracking depth is 2a. We assume
here that the distance from the detection region to the
nearest boundary of the suspension is much larger than the
characteristic magnitude of a spatial increment of a particle
(within the time interval �t). Furthermore, assuming diffusion
equilibrium, particles are uniformly distributed over [−A,A].
Consequently, particles outside of the detection region are
uniformly distributed over [−A, − a] ∪ [a,A]. The position of
these particles in the following time step will be their current
position plus a Gaussian increment. The probability density
of the particle positions in the following time step is hence
a convolution of a uniform density with a Gaussian density.
Restricting to the interval [−a,a] and normalizing, we obtain
the conditional probability density f (z) of the position of a
particle that has just entered the detection region,

f (z) =
{

h(z)∫ a

−a
h(z)dz

, z ∈ [−a,a],

0, z /∈ [−a,a]
(1)

where, letting φ denote the standard normal density and � the
standard normal cumulative distribution function,

h(z) = 1

2(A − a)

[
�

(
z + A√
2D�t

)
− �

(
z + a√
2D�t

)

+�

(
z − a√
2D�t

)
− �

(
z − A√
2D�t

)]
(2)

is the non-normalized density of particles just having entered
the detection region (see Appendix A). We want to compute
the probability distribution of the trajectory length once a
particle enters the detection region. We define fk as the (non-
normalized) density of the position of a particle after k steps
assuming that K � k, more precisely fk(z) = d/dz[P (Zk �
z and K � k)], for k � 1. By definition fk(z) is zero outside
of [−a,a]. For the first position that the particle is within the
detection region, i.e., k = 1, the probability density is given
by Eq. (1). To compute the probability density of the particle
after step 2, f1 is convolved with the Gaussian propagator

G(z) = 1√
2D�t

φ

(
z√

2D�t

)
. (3)

However, since we have assumed that the particle resides in the
detection region for K steps (K now assumed larger than 1),
it cannot be outside [−a,a] and the probability density has to
be truncated. More generally, the density fk can be calculated
from fk−1 according to

fk(z) =
{∫ ∞

−∞ fk−1(z0)G(z − z0)dz0, z ∈ [−a,a],

0, z /∈ [−a,a]
(4)

for k > 1, where the convolution with the Gaussian propagator
represents the diffusive spread of the particles and the
truncation represents that particles exiting the detection region
once are not part of the same trajectory. Thus we can compute
fk recursively from Eq. (4) using f1 = f as given by Eq. (1).
The probability that the particle resides in the detection region
for at most k consecutive frames is

Pa(K � k) = 1 −
∫ a

−a

fk+1(z)dz, (5)

where the dependence on a is emphasized. Computing fk for
k � 1 cannot be done analytically. We use a fast numerical
scheme, where the densities are expanded (approximated) in a
space of equidistant translates of a Gaussian kernel, reducing
the convolutions to a set of matrix operations identical in every
time step [15]. The probability distribution for the trajectory
length K is then

Pa(K = k) = Pa(K � k) − Pa(K � k − 1), (6)

which is implicitly a function of a and D. The numerical
convolution scheme is described in detail in Appendix B. We
emphasize here that the computations for the trajectory length
distribution are performed in discrete time. Hence the usual
approaches for solving the heat equation (in continuous time)
using series expansions will not be useful to us, since not
taking the discrete nature of the tracking into account would
render incorrect trajectory length distributions.

Since an empirical distribution of trajectory lengths is
readily available from an SPT experiment, we can now use our
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theoretical model to estimate the axial extent a of the detection
region. Suppose that we have a monodisperse ensemble
of particles in a liquid suspension with known diffusion
coefficient. The latter is a reasonable assumption since the
diffusion coefficient is readily estimated from the particle
trajectories [16]. We can calculate a maximum likelihood
estimate â of a by fitting the trajectory length distribution
according to Eq. (6) to an experimental trajectory length
distribution. Suppose we have observed trajectories each with
a length K � kmin (it is typical to impose a lower threshold
like K � 3 or K � 4 for the trajectory length, since short
trajectories are more likely to be false positives [11,17]), and
let the number of observed trajectories of length k be Nk . The
log-likelihood function is

l(a) =
∑

k�kmin

NklnPa(K = k|K � kmin), (7)

where

Pa(K = k|K � kmin) = Pa(K = k)

Pa(K � kmin)
, (8)

where Pa(K � kmin) is given as 1 − Pa(K � kmin − 1) in
terms of Eq. (5). The maximum likelihood estimate â is the
value of a that maximizes l(a) [18].

B. Number concentration

Having estimated the tracking depth, it is now possible to
estimate the number concentration. Let N̄ denote the mean
number of particles per video frame. The point estimate for
the number concentration is

ĉ = N̄

8âaxay10−12
particles/ml, (9)

where 2ax and 2ay are the lateral sizes in μm of the detection
region. We can estimate N̄ by counting the number of
trajectories as follows. Let n be the number of frames. Let
Nk as earlier be the number of observed trajectories of length
k. The number of observed particle positions is the sum of
all the trajectory lengths. Dividing by the number of frames,
this provides an estimate of the mean number of particles per
frame. We estimate N̄ by

N̄ = 1

p̂obs

1

n

∑
k�kmin

kNk. (10)

The factor p̂obs is introduced to correct for the underestimation
of the concentration, which results from discarding trajectories
with length k < kmin. Specifically, p̂obs is the estimated
probability of a random particle position within the detection
region to be observed, i.e., part of a trajectory with k � kmin,

p̂obs =
∑

k�kmin
kPâ(K = k)∑

k�1 kPâ(K = k)
. (11)

Using this correction factor we can make N̄ approximately
unbiased. The standard error of the concentration estimate
can also be assessed using bootstrapping [19]. It is natural to
perform the bootstrapping on the “video level,” since the videos
are (approximately) independent. We extract B bootstrap
samples by sampling from the set of videos, with replacement,
B times. We compute B estimates of the concentration,

ĉ1, . . . ,ĉB, and compute an approximate standard deviation
of the estimate by

σĉ =
√√√√ 1

B − 1

B∑
i=1

(ĉi − cmean)2, (12)

where cmean is just the average of the bootstrap estimates. Note
that this method relies on all videos being (approximately)
equally long. The simulation study described below leads
to the conclusion that the tracking depth estimate and the
concentration estimate are approximately unbiased, and that
the bootstrap standard errors for B = 50 are very close to the
actual standard errors.

III. SIMULATION STUDY

We performed a simulation study to validate the model and
the estimates for the tracking depth and the concentration. We
let noninteracting point particles diffuse in three dimensions in
a virtual liquid suspension with periodic boundary conditions
(hence the concentration is constant, with no net flux).
A predetermined number of particles were initially placed
randomly in the liquid suspension (all three coordinates being
uniformly distributed). For each time increment �t , particles
performed random walk in each of the three directions,
independent of the other directions, with normally distributed
increments of mean zero and variance 2D�t . When particles
entered the virtual detection region, the trajectory length was
recorded. The same particle was allowed to enter the detection
region more than once. We let the lateral size of the detection
region be 40 μm (roughly similar to the parameters of the
experimental data; see Appendix C) in both directions. We let
the liquid suspension be 100 μm in all three directions. The
code was run in MATLAB.

We validated the estimate of the tracking depth parameter
a and the concentration on simulated data sets resembling
the experimentally obtained data sets to be studied later on.
We used three different diffusion coefficients, D = 1 μm2/s,
D = 2 μm2/s, and D = 5 μm2/s (corresponding roughly to the
range 0.1–0.5 μm in diameter for particles diffusing in water),
and values of a varying between 0.1 and 2 in increments of 0.1.
A total of 30 video sequences, each of length 10 s (250 frames,
�t = 40 ms), were simulated in each run. The true concentra-
tion of particles was c = 109 particles/ml throughout (note that
the concentration only affects for how long the system needs
to be observed in order to acquire a sufficient amount of data).
For both the tracking depth and the concentration, the mean
estimates as computed from 20 000 simulations for each data
point (each combination of a and D) are presented; see Fig. 2.
We see that the bias increases (negatively for the tracking
depth, positively for the concentration) as a increases. It was
found that this is not due to the finite size of the simulated data
sets; this strongly suggests that the 1D approximation in the
model for the trajectory length distribution is worse for larger
values of a relative to the lateral dimensions. However, while
the use of the 1D approximative model clearly has limitations,
the bias in the investigated range should be acceptable for
practical use (for the experimental SPT measurements in this
work, we can expect a bias of at most 5%). Additionally, it was
found (not shown) that using 50 or more bootstrap samples, the
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FIG. 2. (Color online) Simulation study of the tracking depth
parameter estimate (upper) and the concentration estimate (lower).
The mean estimates for D = 1 μm2/s (red, circles), D = 2 μm2/s
(magenta, squares), and D = 5 μm2/s (blue, diamonds) are shown as
a function of the true value of a. The true values of a are indicated
with the black solid line. The true concentration of particles was
c = 109 particles/ml. The increasing bias (negative for a, positive
for c) for increasing a is due to the 1D approximation in the model
for the trajectory length distribution.

standard error of both the tracking depth and the concentration
estimates could be estimated quite precisely.

Sample size is an important issue. The precision of the
estimates depends on the number of acquired videos, the
length of the videos, the concentration, the tracking depth,
and the diffusion coefficient (also these latter two affect the
number of observed trajectories, i.e., the amount of data). It is
important that each video is substantially longer than a typical
trajectory length. Otherwise, the trajectory length distribution
would be truncated and the estimations invalid. Determination
of approximate data set sizes may be assessed by simulation.
However, in practice the most straightforward method to find
a suitable sample size is often to do sequential experiments,
keeping in mind that to reduce the standard error by a factor
of two and four times as many videos need to be acquired.

IV. EXPERIMENTAL RESULTS

To experimentally verify the theory, SPT experiments were
carried out on dispersions of fluorescent polymer nanospheres
using a custom-built laser wide-field epifluorescence micro-
scope setup. Using custom developed software, the movies
are analyzed to track all individual particles. Identifying
particles with a minimum contrast with respect to the local
background, particle tracking is performed using a nearest
neighbor algorithm [16] (see Appendix C).

Two different sizes of “dragon green” (excitation 480 nm,
emission 520 nm) fluorescent polymer nanospheres (Bangs
Laboratories, Fishers, USA) were studied. First, a water
dispersion of 0.19-μm particles was diluted to a factor of
1888, 2382, 3368, 5826, and 14 753 times. SPT experiments
were carried out on each dilution and the concentrations
were estimated using the single-particle tracking data. The

theoretical number concentration in particles/ml of the stock
solution can be estimated using

ctheoretical = 6 × 1010 × SρL

πρSd3
, (13)

where S = 1 is the weight percentage of solids, with a relative
standard deviation of 5%, ρL = 1.00 g/cm3 is the density of
the suspension, ρS = 1.05 g/cm3 is the density of the solid
particles (all values according to manufacturer), and using
dynamic light scattering the mean diameter of the particles
was found to be d = 0.207 μm with a standard deviation
of 0.008 μm (in correspondence with manufacturer results
for that particular batch of nanospheres). Second, a water
dispersion of 0.52-μm particles was diluted to a factor of 142,
190, 237, 380, and 750 times. Using dynamic light scattering
once again, the mean diameter of the particles was found to
be d = 0.497 μm with a standard deviation of 0.009 μm (in
correspondence with manufacturer results for that particular
batch of nanospheres). Using the standard propagation of error
equation, theoretical number concentrations with standard
deviations can be found for all dilutions, and compared with
the SPT results.

Motion during image acquisition has an effect on the
observed trajectory of a diffusing particle, which will affect
the estimate of the diffusion coefficient, as discussed by others
[20]. However, we consider here particles that are diffusing
quickly with short acquisition times, so this effect is negligible.
When performing experiments on the 0.52-μm beads, the
observation time was 5 ms and the position error approximately
2 nm (5500 photons collected). When performing experiments
on the 0.19-μm beads, the observation time was 2 ms and the
position error approximately 6 nm (700 photons collected).
The effect is thus small and this justifies the Gaussian approx-
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FIG. 3. Estimated concentrations for different dilutions of
0.19-μm particles with estimated 95% confidence intervals. The
concentration as estimated from the stock solution concentration
(solid line) with estimated 95-% confidence intervals (dashed lines)
is shown.
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FIG. 4. Estimated concentrations for different dilutions of
0.52-μm particles with estimated 95% confidence intervals. The
concentration as estimated from the stock solution concentration
(solid line) with estimated 95% confidence intervals (dashed lines) is
shown.

imation for the increments in the computations. We refer the
reader to Appendix C for further details on the data acquisition.

As is clear from the results in Figs. 3 and 4, an
excellent agreement was found between the theoretically
and experimentally obtained concentration values. We would
like to stress the fact that this result is obtained without any
precalibration of the detection region volume.

Indeed, using the proposed model we estimate the detection
region volume and number concentration simultaneously. To
demonstrate that the detection region volume is not fixed
but a variable parameter depending on the image processing
settings, we have analyzed a single set of SPT movies of the
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FIG. 5. Estimated values of a with different contrast thresholds
for the 0.52-μm nanospheres, with estimated 95% confidence
intervals.
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FIG. 6. Estimated values of concentration with different contrast
thresholds for the 0.52-μm nanospheres, with estimated 95% confi-
dence intervals. The solid and dashed lines show the concentration as
estimated from the stock solution concentration, and estimated 95%
confidence intervals.

0.52-μm particles with different minimum contrast thresholds
(see Appendix C), ranging from Cmin = 1.5 to Cmin = 2.1,
in increments of 0.1. For each of these settings the tracking
depth parameter a and the concentration were estimated; see
Figs. 5 and 6, respectively. Note that as the contrast threshold
increases, the estimated tracking depth decreases, which is
natural considering that the particles furthest away from the
focal plane have the least contrast and are removed.

Thanks to the inherent calibration of the detection region
volume, the measured particle concentration varied consider-
ably less than the tracking depth, which changed substantially
in this range. The systematic decrease of the concentration
that was in fact observed, however, may be explained in
two ways. First, not all particles have exactly the same
fluorescence intensity, so the dimmest ones get gradually and
systematically excluded from the analysis when the contrast
threshold is increased. Second, since the tracking depth
decreases, the positive bias of the concentration estimates also
decreases, when the contrast threshold is increased. While the
former would indicate that a low threshold is preferable, the
latter would indicate that a high threshold is preferable. To
summarize, all SPT estimates (except for the Cmin = 2.0 and
2.1 cases in Fig. 6) are within the 95% confidence interval for
the theoretical concentration.

V. DISCUSSION AND CONCLUSION

We have derived and validated a theoretical model that
makes use of the basic information in an SPT experiment to
estimate the volume of the detection region. By estimating
the axial size (the tracking depth) of the detection region,
which is not directly observable, the volume of the 3D
detection region can be estimated. This is performed by
modeling of the trajectory length distribution of particles as a
function of the axial size. The computations were simplified by
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assuming that the particles enter and exit the detection region
only by means of axial diffusion, and the simulation study
demonstrates that the bias is small under this approximation.
Confidence intervals for both the tracking depth parameter and
the concentration, giving accurate accounts of the uncertainty
of the estimates, can also be acquired.

The method was experimentally validated by estimating
the number concentration of different dilutions of 0.19- and
0.52-μm fluorescent carboxylated polymer nanospheres, and
excellent agreement was found between the theoretically and
experimentally obtained concentration values. It was also
demonstrated that the results were robust with respect to
changes in the minimum contrast threshold parameter.

In conclusion, we have demonstrated the validity of a
method for accurate and absolute particle number concen-
tration measurements, which are quite independent of variable
factors like particle brightness and image processing settings.
Considering the practical implications of avoiding precalibra-
tion measurements, this considerably increases the value and
applicability of SPT as a tool for characterizing nanoparticle
dispersions.
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APPENDIX A: INITIAL DISTRIBUTION IN THE
DETECTION REGION

Particles outside the detection region are uniformly dis-
tributed over [−A, − a] ∪ [a,A]. This distribution has density
function

u(z) =
{ 1

2(A−a) , z ∈ [−A, − a] ∪ [a,A],
0, otherwise.

(A1)

All particles then perform a random diffusive displacement by
adding to their position a normally distributed increment with
probability density

G(z) = 1√
2D�t

φ

(
z√

2D�t

)
. (A2)

The resulting position is the sum of the two corresponding
random variables with a probability density that is the
convolution of their respective densities,

h(z) =
∫ ∞

−∞
u(z0)G(z − z0)dz0, (A3)

which becomes

h(z) = 1

2(A − a)
√

2D�t

(∫ −a

−A

+
∫ A

a

)
φ

(
z − z0√
2D�t

)
dz0.

(A4)

Straightforward calculations yield that the non-normalized
density of particles just having entered the detection region is

h(z) = 1

2(A − a)

[
�

(
z + A√
2D�t

)
− �

(
z + a√
2D�t

)

+ �

(
z − a√
2D�t

)
− �

(
z − A√
2D�t

)]
. (A5)

APPENDIX B: NUMERICAL CONVOLUTION SCHEME

We describe in detail the numerical convolution scheme.
Computing fk for k � 1 can not be done analytically, so we
expand the densities in a space of n equidistant translates
{ψ1, . . . ,ψn} of a Gaussian kernel, where

ψi(z) = 1

w
φ

(
z − mi

w

)
. (B1)

Here, w is the width (standard deviation) of the kernels and mi

is the center of the ith kernel. Further we take mi − mi−1 =
w,i = 2, . . . ,n, m1 = −a and mn = a, yielding w = 2a/(n −
1). In this way, the probability density is approximated inside
of [−a,a]. More precisely, the approximation of the density
fk is

f̃k(z) =
∑

j

c
(k)
j ψj (z), (B2)

where the weights c
(k)
j are selected by exact interpolation, i.e.,

by demanding that the approximation be exact at the points
z = mi , i = 1, . . . ,n. For k = 1 we obtain f̃1(mi) = f1(mi),
i = 1, . . . ,n, yielding the linear system

Uc(1) = f1(m), (B3)

where c(1) = (c(1)
1 , . . . ,c(1)

n )T , f1(m) = (f1(m1), . . . ,
f1(mn))T , and

U =

⎛
⎜⎝

ψ1(m1) · · · ψn(m1)
...

. . .
...

ψ1(mn) · · · ψn(mn)

⎞
⎟⎠ . (B4)

It is guaranteed that Eq. (B3) has a unique solution c(1) =
U−1f1(m) since U is invertible (and even positive definite). We
refer the reader to [15] for further details on exact interpolation
by radial basis functions. In every time step, the diffusive
motion of particles is represented by convolving the current
particle density with the Gaussian propagator Eq. (3). We
illustrate the procedure and demonstrate the computation of
f̃k from f̃k−1. We put

f 

k (z) = f̃k−1 ∗ G(z) =

∫ ∞

−∞
f̃k−1(z0)G(z − z0)dz0, (B5)

where we provisionally denote by f 

k (z) a (nontruncated)

density, which is not yet approximated in the Gaussian kernel
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f
1
(z) f

1
∗ G(z)

f
2
(z) f

2
∗ G(z)

f
3
(z) f

3
∗ G(z)

FIG. 7. Illustration of the procedure for computing the trajectory
length distribution. f1(z) is the probability density of a particle
that has just entered the detection region according to Eq. (1).
Truncation outside of [−a,a] of the convolution f1 ∗ G(z) yields
a non-normalized density f2(z) which integrates to the probability
that the particle still remains in the detection region for a second
sampling time point, and so forth.

basis {ψ1, . . . ,ψn}. Since the convolution of two Gaussians is
Gaussian and because of linearity of convolution, we get

f 

k (z) =

∑
j

c
(k−1)
j

1√
w2 + 2D�t

φ

(
z − mj√

w2 + 2D�t

)
, (B6)

and in order to approximate this function within [−a,a], we
once again demand that the approximation be exact at the
points z = mi , i.e.,

∑
j

c
(k)
j ψj (mi) = · · ·

∑
j

c
(k−1)
j

1√
w2 + 2D�t

×φ

(
mi − mj√
w2 + 2D�t

)
, i = 1, . . . , n,

(B7)

where c(k) are the weights of the Gaussian kernels at the kth
time step. This leads to a linear system with the same matrix U

as above. Since the convolution at the points mi can be written
as V c(k−1), where

V = 1√
w2 + 2D�t

×

⎛
⎜⎜⎝

φ(0) · · · φ
( (n−1)w√

w2+2D�t

)
...

. . .
...

φ
( (n−1)w√

w2+2D�t

) · · · φ(0)

⎞
⎟⎟⎠ , (B8)

the entire step of convolution and approximation in the
Gaussian basis can be written as

Uc(k) = V c(k−1), (B9)

FIG. 8. (Color online) Result of different values for the minimum
contrast to the local background. (a) Original image. (b),(c) Yellow
(inner) contours indicate the particles that have been detected by the
image processing software with a contrast to the local background
larger than the minimum value. Green (outer) contours show the local
background around each particle contour. The minimum contrast
value is Cmin = 1.1 in (b) and Cmin = 1.5 in (c), resulting in nine and
three detected particles, respectively.

which gives

c(k) = U−1V c(k−1). (B10)

The approximation of fk by f̃k can be made arbitrarily accurate
by increasing n. For given n, it is sufficient to compute
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the matrix U−1V once to describe the diffusive dynamics
and hence the change of the weights in every time step.
These computations yield the distribution of K . Practically,
to compute the cumulative distribution of K we use

P (K � k) = 1 −
∫ a

−a

fk+1(z)dz ≈ · · · 1 −
∑

i

c
(k+1)
i , (B11)

using Eq. (5). This yields the distribution

P (K = k) = P (K � k) − P (K � k − 1)

≈
∑

i

(
c

(k)
i − c

(k+1)
i

)
, (B12)

which is implicitly a function of, most importantly, a and D.
The procedure is illustrated graphically in Fig.7.

APPENDIX C: MATERIALS AND METHODS

The SPT experiments were carried out on a custom-built
laser wide-field epifluorescence microscope setup. A 100-mW
Calypso 491-nm solid state laser (Cobolt, Solna, Sweden)
was used for illumination. The laser beam passes through
an acousto-optic tunable filter (AOTF; AA Optoelectronic,
Orsay, France), which allows control of the intensity. The
AOTF is synchronized with the charge-coupled device (CCD)
camera in order to illuminate the sample only during the
light integrating phase and to reduce photobleaching. The
laser beam is directed through a 10◦ light shaping diffuser
(Physical Optics Corporation, Torrance, CA, USA), which in
combination with an achromat lens in front of the microscope
entrance provides wide-field Kohler illumination at the sample.
The microscope is a Nikon TE2000E (Nikon BeLux, Brussels,
Belgium) with a Nikon Plan Apochromat 60× NA1.20 water
immersion objective lens. The fluorescence light coming from
the sample is collected again by the objective lens and sent
through the side port of the microscope toward the CCD
camera. The fluorescence light is separated from the laser
excitation light using a dichroic mirror and accompanying laser
notch filter (AHF Analysentechnik, Tübingen, Germany). A
pair of achromat lenses was placed between the CCD camera
and the microscope side exit for an extra 1.5× magnification
of the final image on the CCD chip. Since fast and sensitive
image capture is required for SPT, an electron multiplying
CCD camera was used (Cascade II:512; Roper Scientific,
Tucson, AZ, USA). Image acquisition was performed using
the Nikon Elements R imaging software. High-speed movies
are recorded showing individual particles diffusing in the
suspension. Typically 5 μl of a water-particle solution was
applied between a microscope slide and a cover glass with
a double-sided adhesive sticker of 120 μm thickness (cor-
responding to A = 60 μm) in between (Secure-Seal Spacer;
Molecular Probes, Leiden, The Netherlands). This provides

for a 3D environment in which the particles can diffuse
freely, while the sample is sufficiently thin to avoid drift
from convection. The microscope was always focused at least
20 μm from the cover glass to avoid deviations from free
diffusion due to the presence of the cover slip. All SPT
experiments were carried out at 21 ◦C and the full CCD chip
was used, resulting in 512 × 512 pixel images. For the 0.19-μm
particles, the physical pixel size and the sampling interval
were 0.1329 μm and 38.2 ms, respectively. For the 0.52-μm
particles, the physical pixel size and the sampling interval
were 0.1329 μm and 58.0 ms, respectively. Forty videos for
each dilution were acquired, all approximately 10 s long, with
kmin = 3.

The experimentally obtained SPT movies are analyzed,
using custom developed software, to track individual particles
[16]. The first step to obtain the particle trajectories is to
identify the particles in all frames of the SPT movie and
to calculate their center location. The method for particle
detection basically involves three steps. First, the nonuniform
background is removed as much as possible. This can be done
using a so-called unsharp filter, resulting in a filtered image
where the particles stand out with good contrast against a
much more uniform background. A first selection of possible
objects can now be made by applying intensity thresholding to
the filtered image, resulting in a binary image. Next, contours
of individual objects in this binary image can be determined,
and objects in the original image are supposed to lie within
such contours. This allows us to calculate the object properties,
such as the mean intensity and the center location. A second
contour defining the local background is also calculated around
each particle contour, which allows calculation of the mean
local background intensity. Finally, having calculated all these
properties, a last selection of particles can be made based on
different criteria, such as minimum contour length, maximum
contour surface, minimum contrast Cmin with respect to the
local background. The contrast C is defined as the ratio of the
mean intensity I inside the contour and the local background
intensity B,

C = I

B
� Cmin. (C1)

The higher the value of Cmin the more particles are excluded,
as illustrated in Fig. 8. Note that with increasing Cmin, more
particles that are further away from the focal plane (typically
dimmer and larger spots, sometimes with diffraction rings
around them) are excluded, resulting in a smaller detection
volume. Having found the particles with the right properties
in all frames of an SPT movie, individual trajectories can be
constructed by pairing corresponding particle center positions
between images. A nearest neighbor algorithm is typically
used to construct the trajectories.
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