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Summary

Single-particle microscopy is important for characterization
of nanoparticulate matter for which accurate concentration
measurements are crucial. We introduce a method for esti-
mating absolute number concentrations in nanoparticle dis-
persions based on a fluctuating time series of particle counts,
known as a Smoluchowski process. Thus, unambiguous
tracking of particles is not required and identification of single
particles is sufficient. However, the diffusion coefficient of the
particles must be estimated separately. The proposed method
does not require precalibration of the detection region volume,
as this can be estimated directly from the observations. We
evaluate the method in a simulation study and on experimen-
tal data from a series of dilutions of 0.2- and 0.5-μm polymer
nanospheres in water, obtaining very good agreement with
reference values.

Introduction

There has been a growing interest in observing and under-
standing single particles and single molecules lately, and in
particular functional nanoparticles. Applications include us-
ing nanoparticles for drug delivery (Remaut et al., 2007), in
biomedical imaging (Nune et al., 2009) and as biomarkers
(Chironi et al., 2009; Doevre et al., 2009). A thorough un-
derstanding of the fundamental interactions of nanomateri-
als with biological systems, at the single particle and single
molecule level, will without doubt play a central role in the
future nanobioscience field (Deniz et al., 2008; Nel et al., 2009;
Soenen et al., 2009). The search for detection and characteri-
zation methods for nanoparticulate matter, particularly using
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single-particle or single-molecule methods, has received a lot
of attention (Gaumet et al., 2008; Morris et al., 2009; Vysotskii
et al., 2009), especially concerning nanoparticles in biological
materials such as blood, tissues or cells (Braeckmans et al.,
2010a,b,c; Montes-Burgos et al., 2010; van Gaal et al., 2009).
Relevant parameters are size (distribution), shape, surface
properties and concentration (Decuzzi et al., 2010; Gaumet
et al., 2008; Koide et al., 2008; Lundqvist et al., 2008).

A widely used approach is to use fluorescence microscopy to
perform particle tracking. However, particle tracking is not the
only means of extracting information using fluorescence mi-
croscopy. Indeed, information from a particulate system can
be extracted by studying fluctuations (Petrášek & Schwille,
2009). In this work, we study how to use fluctuations of
Smoluchowski processes to estimate absolute particle number
concentration. By a Smoluchowski process we mean a time se-
ries of particle counts, named in honour of Polish physicist M.
von Smoluchowski who developed an alternative to Einstein’s
description of Brownian motion. For early theoretical treat-
ments and experimental verifications of Smoluchowski’s orig-
inal model, see Chandrasekhar (1943), Svedberg & Inouye
(1911), von Smoluchowski (1906, 1916), Westgren (1916).
The perhaps most remarkable application of Smoluchowski’s
theory is the classical experiment by Svedberg & Inouye
(1911) in which Avogadro’s constant, a number in the order
of 1023, was estimated from a time series of 517 particle counts
ranging from 0 to 6. The nature of a particular Smoluchowski
process depends on the behaviour of the particles, i.e. diffusive
or nondiffusive, diffusion coefficient (monodisperse or polydis-
perse sample), the particle concentration, but also on the con-
ditions under which the particles are observed, i.e. the volume
and shape of the detection region. An example of an experi-
mentally observed Smoluchowski process formed by counting
diffusing liposomes in whole blood is shown in Figure 1.

Fluorescence microscopy is of great interest for in particular
(undiluted) biological fluids (Braeckmans et al., 2010a).
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Fig. 1. An example of an experimentally observed Smoluchowski process
formed by counting diffusing liposomes in whole blood, superimposed over
a sample frame from the raw image data.

We have recently demonstrated that an absolute num-
ber concentration of nanoparticles can be estimated from
single-particle tracking experiments using a framework that is
independent of prior calibration of the detection region vol-
ume, by using a statistical model for the distribution of trajec-
tory lengths observed in the experimental data (Röding et al.,
2011). This is of great practical relevance since the detection
region is dependent on experimental parameters, such as illu-
mination strength, particle brightness and image processing.
One drawback of this previous method is that single particles
have to be tracked, thereby limiting the method to rather small
concentrations.

In the present alternative approach, we model and observe
Smoluchowski processes depending on diffusion coefficient,
detection region volume and particle number concentration. A
benefit of this new approach is that single particles do not need
to be tracked. We use this model to estimate first the detection
region volume and then the absolute number concentration
of nanoparticles. We consider an approximate Markov model
for the Smoluchowski process. The estimated concentrations
are validated on both simulated and experimental data. In
the latter case, the estimated concentrations are compared to
reference measurements.

The text is organized as follows. First, the problem descrip-
tion and the theoretical modelling and estimation are covered.
Secondly, a simulation study is performed. Finally, experimen-
tal data are analyzed.

Theory and methods

Concentration measurements

Consider a suspension of particles in a fluid, in the centre of
which we have a rectangular (three-dimensional) detection
region. The lateral sizes 2ax and 2a y of the detection region

Microscope

Detection region

Liquid suspension

xy

z

ax
ay

az

Fig. 2. The experimental setup. Centred in a liquid suspension is a de-
tection region. The lateral sizes 2ax and 2a y of the detection region are
known, but the axial size (detection depth) 2az is not directly observable.
(Figure not to scale.)

are determined by the field of view of the microscope (and can
be precisely measured by means of, e.g. a calibration grid), and
the axial size 2az (perpendicular to the focal plane) is defined by
what can be referred to as the detection depth, the distance from
the nearest to the most distant detectable particles [equivalent
to the tracking depth in Röding et al., (2011), see Fig. 2]. By
assumption, we do not detect the axial coordinates of the par-
ticles in the detection region and consequently the detection
depth is unknown, depending on experimental parameters,
such as illumination strength, particle brightness and image
processing settings (since these parameters have an impact on
how far away from the focal plane a particle will be detected).
Assume that the particles diffuse freely within the liquid sus-
pension. The diffusive motion of each particle is described by a
Brownian motion B(t) with t ≥ 0 characterized by the mean
squared deviation property

E[‖B(t) − B(0)‖2] = 2N D t, (1)

whereN is the number of dimensions (Berg, 1993) (physically,
N = 3, but we only have observations for N = 2), and D
is the diffusion coefficient. By assumption, D can be estimated
separately.

Assume we acquire discrete observation of a Smoluchowski
process X(t) (a series of particle counts as a function of time) in
diffusion equilibrium at regular time intervals with time lapse
�t (see Fig. 3).

Denote the nth observation by Xn (the number of particles
in the nth frame). From one observation to the next, a number
of particles have entered and a number of particles have left
the detection region. Thus

Xn+1 = Xn − On + In, (2)

where On is the number of particles (out of the Xn parti-
cles initially present) exiting the detection region between the
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Fig. 3. Illustration of the formation of a Smoluchowski process. Diffusing
particles reside both inside (yellow) and outside (grey, dim) the detection
region. Particles are moving in and out of the detection region and the
number of detected particles is fluctuating, forming a random time series.
(Figure not to scale.)

observations Xn and Xn+1, and In is the number of particles en-
tering the detection region between these observations. With-
out any additional prior knowledge, a reasonable assumption
is that the Xn particles in frame n are uniformly distributed
within the detection region. Hence, given Xn = i , we assume
that On follows a binomial distribution with index i and pa-
rameter μ, i.e. On|Xn = i ∼ Bin(i, μ). Furthermore, we as-
sume that In follows a Poisson distribution with parameter
λ, In ∼ Po(λ). Based on these assumptions, we approximate
the particle counts {Xn} with a Markov model, for which the
transition probabilities pij = P (Xn+1 = j |Xn = i ) are

pij(λ,μ) = e−λ

j∑
k=max(0, j−i )

λk

k!

(
i

i − j + k

)

× μi− j+k (1 − μ) j−k (3)

for all i ≥ 0 and j ≥ 0 (see Appendix A). The stationary dis-
tribution of this Markov chain is a Poisson distribution with
parameter λ/μ (see Appendix C), i.e.

P (Xn = k) = πk = (λ/μ)k e−λ/μ

k!
(4)

for all k ≥ 0 and all n. (In fact, the Markov assumption is an
approximation (which is equivalent to the approximation that
the trajectory length distribution in Röding et al. (2011) is a
geometric distribution), as noted already by Patil (1957).)

The joint distribution of particle counts X1, . . . , XN can,
given the Markov assumption, be written

P (X1 = x1, . . . , XN = xN ) = P (X1 = x1)

×
N∏

k=2

P (Xk = xk |Xk−1 = xk−1). (5)

Considering a realization x1, . . . , xN , we obtain the log-
likelihood function

l(λ,μ) = l(λ,μ|x1, . . . , xN ) = log
(λ/μ)x1 e−λ/μ

x1!

+
∑
i, j

Nij log pij(λ,μ), (6)

where Nij is the number of transitions from state i to j . This
generalizes without effort to the case where data are acquired
from several independent videos (rather than from frames of
a single video), by summation of log-likelihood functions like
Eq. (6). We obtain the maximum likelihood estimates λ̂ and μ̂

by maximizing the log-likelihood.
Now, let φ denote the standard normal density and � the

standard normal cumulative distribution function. Since μ

can be interpreted as the probability

Pexit(az) = 1 − (2D�t)3/2

8axa yaz

×
{

2ax√
2D�t

[
2�

(
2ax√
2D�t

)
− 1

]

+ 2φ

(
2ax√
2D�t

)
− 2φ (0)

}

×
{

2a y√
2D�t

[
2�

(
2a y√
2D�t

)
− 1

]

+ 2φ

(
2a y√
2D�t

)
− 2φ (0)

}

×
{

2az√
2D�t

[
2�

(
2az√
2D�t

)
− 1

]

+ 2φ

(
2az√
2D�t

)
− 2φ (0)

}
, (7)

that a uniformly distributed particle exits the detection region
(see Appendix B), we can obtain an estimate âz of the detection
depth parameter az from Pexit(az) = μ (recall that ax and a y

are simply obtained by calibration of the microscope using a
grid and thus known, so that az is the only unknown here).
(By the invariance property, âz is also a maximum likelihood
estimate (Pawitan, 2001).) To estimate the number concen-
tration C , we divide the mean number of detected particles
per frame by the detection region volume. The mean num-
ber of detected particles can be estimated by λ̂/μ̂ (recall that
the mean value of the stationary Poisson-distributed Markov
chain is λ/μ). We obtain

Ĉ = λ̂/μ̂

8axa yâz10−12
particles mL−1, (8)

where λ̂ and μ̂ are obtained by maximization of the log-
likelihood in Eq. (6), and âz is obtained from μ̂ through Eq.
(7). The length unit is μm. (Once again by the invariance
property, Ĉ is a maximum likelihood estimate.) The method is
implemented in Matlab (Mathworks, Natick, MA, U.S.A.) (see
Supporting Information).

Bootstrap confidence intervals

There are many sources of variability in the final concen-
tration estimate Ĉ . In addition to the inherent finite-sample
variability of the estimate, the Markov model approximation
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and noise distortion (false negatives and false positives origi-
nating from the image processing algorithm for detecting in-
dividual particles) contribute to the variability of Ĉ . Since all
of this will inevitably be part of the concentration estimate
in practical applications, the corresponding variability must
be accounted for. We use here the nonparametric bootstrap
(Efron & Tibshirani, 1993) on the ‘video level’. Given a data
set {x(1), . . . , x(M)}, where x(m) is the process observed in the
mth video, we extract a bootstrap sample by sampling from the
set of M videos with replacement, yielding a bootstrap data set
{x(1),b , . . . , x(M),b}, where b = 1, . . . , B where B is the number
of bootstrap data sets. For each bootstrap sample, an estimate
Ĉ is computed. This yields an approximation of the true distri-
bution of Ĉ , from which standard errors can be estimated.

Simulation study

We performed a simulation study to validate the model for es-
timating the concentration. We let noninteracting point par-
ticles diffuse in three dimensions in a virtual liquid suspension
with periodic boundary conditions (hence, the concentration
is constant, with no net flux). A predetermined number of
particles were initially placed randomly in the liquid suspen-
sion (all three coordinates being uniformly distributed). For
each time increment �t, particles performed a random walk
in each of the three directions, independent of the other di-
rections, with normally distributed increments of mean zero
and variance 2D�t, and the particles in the virtual detection
region were counted. We let the lateral size of the detection
region be 40 μm (roughly similar to the parameters of the ex-
perimental data, see Appendix D) in both directions. We let the
liquid suspension be 100 μm in all three directions. The sim-
ulations were run in Matlab (Mathworks, Natick, MA, U.S.A.)
(see Supporting Information).

We validated the estimate of the concentration on simu-
lated data sets resembling the experimentally obtained data
sets. We used three different diffusion coefficients, D = 1,
D = 2 and D = 5 μm2 s−1 (corresponding roughly to the
range 0.1–0.5 μm in diameter for particles diffusing in water),
and values of az varying between 0.1 and 2 μm in increments
of 0.1 μm (a value of az = 1 μm corresponds approximately to
the experimental conditions). A total of 30 video sequences,
each of length 10 s (250 frames, �t = 40 ms), were simulated
in each run. The true concentration of particles was C = 109

particles mL −1 throughout. The mean estimates as computed
from 106 simulations for each data point (each combination
of az and D ) are presented in Figure 4. We see that the bias
decreases as az increases, although the bias at az = 0.1 μm
is small already (≤2%). In addition, it is found that using 50
or more bootstrap samples, the standard error of both the de-
tection depth parameter and the concentration estimate could
be estimated quite precisely (not shown). With an additional
simulation study it is found that a polydispersity of less than
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Fig. 4. Simulation study of the detection depth parameter (upper) and
concentration estimate (lower). For D = 1 μm2 s−1 (red, circles), D =
2 μm2 s−1 (magenta, squares) and D = 5 μm2 s−1 (blue, diamonds), the
mean estimates of az (divided by the true value of az ) and C are shown as
a function of the true value of az . The mean estimates are computed from
106 simulations for each data point (each combination of az and D ). The
true concentration of particles was C = 109 particles mL−1.

50% yields a less than 2% additional bias on the results (not
shown).

Experimental results

To experimentally verify the theory, experiments were carried
out on dispersions of fluorescent polymer nanospheres us-
ing a custom-built laser widefield epifluorescence microscope
setup. Using custom developed software, the movies are ana-
lyzed to identify individual particles in each frame of the movie
(Braeckmans et al., 2010a) (see Appendix D).

Two different sizes of ‘dragon green’ (excitation 480 nm,
emission 520 nm) fluorescent polymer nanospheres (Bangs
Laboratories, Fishers, IN, U.S.A.) were studied. First, a wa-
ter dispersion of 0.2 μm particles was diluted to a factor of
1900, 2400, 3400, 5800 and 14 800. Single-particle exper-
iments were carried out on each dilution and the concen-
trations were estimated. The theoretical number concentra-
tion in particles mL−1 of the stock solution can be estimated
using

C theoretical = 6 × 1010 × SρL

πρSd 3
, (9)

where S = 1 is the weight percentage of solids, with a relative
standard deviation of 5%, ρL = 1.00 g cm−3 is the density of
the suspension, ρS = 1.05 g cm−3 is the density of the solid
particles (all values according to manufacturer), and using
dynamic light scattering the mean diameter of the particles
was found to be d = 0.207 μm with a standard deviation of
0.008 μm (in correspondence with manufacturer results
for that particular batch of nanospheres). Second, a water
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Fig. 5. Estimated concentrations for different dilutions of 0.2 μm par-
ticles with estimated 95% confidence intervals (‘inverse dilution’ is
a ‘relative concentration’). The concentration as estimated from the
stock solution concentration (solid line) with estimated 95% con-
fidence intervals (dashed lines) is shown (upper). Also, typical ex-
amples of the underlying Smoluchowski processes are shown, with
colours red/green/blue/cyan/magenta in order of decreasing concentra-
tion (lower).

dispersion of 0.5 μm particles was diluted to a factor of 140,
190, 240, 380 and 750. Using dynamic light scattering, the
mean diameter of the particles was found to be d = 0.497 μm
with a standard deviation of 0.009 μm (in correspon-
dence with manufacturer results for that particular batch of
nanospheres). Using the standard propagation of error equa-
tion, theoretical number concentrations with standard devi-
ations can be found for all dilutions, and compared with the
results from our method.

As is clear from the results in Figures 5 and 6, an ex-
cellent agreement was found between the theoretically and
experimentally obtained concentration values. All values
are within the confidence intervals for the reference values.
Note that we used the diffusion coefficients D=2.32 μm
2 s−1 for 0.2 μm particles and D=0.98 μm2 s−1 for 0.5 μm
particles (obtainable by, e.g. dynamic light scattering mea-
surements). We would like to stress the fact that this result is
obtained without any precalibration of the detection region
volume, and that the detection region volume is estimated in-
dependently for each dilution. See Supporting Information for
experimental data sets.

Discussion and conclusion

In this work, we have derived and validated a theoretical model
for particle count fluctuations, the so-called Smoluchowski
process, in a single-particle imaging experiment and demon-
strated its use for estimation of the particle detection region
volume and the absolute number concentration of nanopar-
ticles in a dispersion. Confidence intervals for both the detec-
tion depth parameter and the absolute concentration, giving
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Fig. 6. Estimated concentrations for different dilutions of 0.5 μm par-
ticles with estimated 95% confidence intervals (‘inverse dilution’ is
a ‘relative concentration’). The concentration as estimated from the
stock solution concentration (solid line) with estimated 95% con-
fidence intervals (dashed lines) is shown (upper). Also, typical ex-
amples of the underlying Smoluchowski processes are shown, with
colours red/green/blue/cyan/magenta in order of decreasing concentra-
tion (lower).

accurate accounts of the uncertainty of the estimates, can also
be acquired. The method was experimentally validated by es-
timating the number concentration of different dilutions of
0.2- and 0.5-μm fluorescent carboxylated polymer
nanospheres. We found a very good agreement between our
concentration estimates and the reference measurements. In
conclusion, we have demonstrated the validity and useful-
ness of this approach for accurate, absolute particle number
concentration measurements, using a model which takes the
inherent variability of particle detection due to image process-
ing and other conditions into account. We believe this to be
highly useful for characterization of nanoparticles in many
situations, in particular in (even undiluted) biological fluids
where single-particle techniques have shown much promise
(even though one obvious drawback of the this work is the
required separate estimation of the diffusion coefficient), es-
pecially for high concentrations where unambiguously de-
termining single particle trajectories becomes problematic.
Further work might include a performance comparison be-
tween this method and Fluorescence Correlation Spectroscopy
and Image Correlation Spectroscopy for different particle sizes,
concentrations and polydispersity. It might also include model
extensions to the cases of directed motion, anomalous diffusion
and polydispersity, as well as investigations on the impact of
particle detection accuracy with regard to e.g. photobleaching
on the result.
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Appendix A: Transition probabilities

Let the number of particles residing within the detection
region at time n�t be Xn ∈ {0, 1, 2, . . .}. We want to formu-
late a model for the number of particles Xn+1 residing in the
detection region at time (n + 1)�t. In principle, the number
of particles entering the detection region in each time step fol-
lows a binomial distribution, but since at any given moment
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the number of particles in the liquid suspension which are not
residing within the detection region is large, we can approx-
imate this binomial distribution with a Poisson distribution.
Not conditioned on how long the particles have resided within
the detection region, the number of particles exiting the detec-
tion region is binomially distributed. We can write

Xn+1 = Xn + In − On, (10)

where In is the number of particles entering the detection re-
gion in the time interval from n�t to (n + 1)�t and is Poisson
distributed with parameter λ. Hence, its probability distribu-
tion is

P (In = k|λ) = λk e−λ

k!
, k ≥ 0. (11)

Moreover, On is the number of particles (out of the Xn particles)
that exit the detection region between n�t and (n + 1)�t
and is, conditionally on Xn = i , binomially distributed with
parameters i and μ, i.e.

P (On = k|i, μ) =
(

i
k

)
μk (1 − μ)i−k, 0 ≤ k ≤ i, (12)

where (
i
k

)
= i !

k!(i − k)!
(13)

is the binomial coefficient. We assume now that {Xn} is ap-
proximately a Markov chain with transition probabilities de-
termined by Eq. (10) with On and In binomially and Poisson
distributed as described earlier. This gives

pij(λ,μ) = P (Xn+1 = j |Xn = i )

= P (In − On = j − i )

=
∞∑

k=0

P (In = k)P (On = i − j + k) (14)

of which the terms obviously are nonzero if and only if
0 ≤ i − j + k ≤ i and k ≥ 0; these two constraints can be
summarized by max(0, j − i ) ≤ k ≤ j . We finally reach the
result

pij(λ,μ) = e−λ

j∑
k=max(0, j−i )

λk

k!

×
(

i
i − j + k

)
μi− j+k (1 − μ) j−k (15)

for i ≥ 0 and j ≥ 0.

Appendix B: Probability of a uniformly distributed particle to
exit the detection region

We compute the probability of a uniformly distributed particle
to exit the detection region. Assume that the lateral sizes of the
detection region are 2ax and 2a y, respectively. Assume that
the axial size is 2az . Let φ denote the standard normal density

and � the standard normal cumulative distribution function

φ(z) = 1√
2π

e− 1
2 z2

and �(z) =
∫ z

−∞
φ(t)d t. (16)

Assuming thermodynamic equilibrium, particles in the de-
tection region are uniformly distributed over the box V =
[−ax, ax] × [−a y, a y] × [−az, az]. The probability density of
their location is hence

u(x, y, z) =
⎧⎨
⎩

1
8axa yaz

, (x, y, z) ∈ V

0, /∈ V.

(17)

We consider the evolution during one sampling interval of
length �t. Diffusive motion of the particle currently within
the detection region is then described by convolving u(x, y, z)
with the isotropic Gaussian propagation in 3D

G (x, y, z) = G (x)G (y)G (z), (18)

where

G (·) = 1√
2D�t

φ

( ·√
2D�t

)
. (19)

We compute this convolution

h(x, y, z) = u ∗ G (x, y, z) = 1
8axa yaz

∫ ax

−ax

G (x − x0)d x0

×
∫ a y

−a y

G (y − y0)d y0

∫ az

−az

G (z − z0)d z0, (20)

which simplifies to

h(x, y, z) = 1
8axa yaz

[
�

(
x + ax√

2D�t

)
− �

(
x − ax√

2D�t

)]

×
[
�

(
y + a y√

2D�t

)
− �

(
y − a y√

2D�t

)]

×
[
�

(
z + az√
2D�t

)
− �

(
z − az√
2D�t

)]
. (21)

Now, the probability of exiting the detection region is the in-
tegral of h outside of the detection region

Pexit(az) =
∫∫∫

R3\V
h(x, y, z)dxdydz

= 1 −
∫∫∫

V
h(x, y, z)dxdydz. (22)

This gives by straightforward computation

Pexit(az) = 1 − (2D�t)3/2

8axa yaz

{
2ax√
2D�t

[
2�

(
2ax√
2D�t

)
− 1

]

+ 2φ

(
2ax√
2D�t

)
− 2φ (0)

}

×
{

2a y√
2D�t

[
2�

(
2a y√
2D�t

)
− 1

]
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+ 2φ

(
2a y√
2D�t

)
− 2φ (0)

}

×
{

2az√
2D�t

[
2�

(
2az√
2D�t

)
− 1

]

+ 2φ

(
2az√
2D�t

)
− 2φ (0)

}
. (23)

Appendix C: Stationary distribution

Because of diffusion equilibrium, the Markov chain has the sta-
tionary distribution as its initial distribution, and {Xn} is hence
a stationary process. There is a unique stationary distribution,
since the chain is irreducible and all the states are nonnull re-
current. It follows from Grimmett & Stirzaker (2001), that the
stationary distribution {πk} of the Markov chain described by
the transition probabilities {pij} is a Poisson distribution with
parameter λ/μ, i.e.

P (Xn = k) = πk = (λ/μ)k e−λ/μ

k!
(24)

for all k ≥ 0 and all n.

Appendix D: Materials and methods

The experimental study was performed using a custom-built
laser widefield epifluorescence microscope setup, based on a
Nikon TE2000E microscope (Nikon BeLux, Brussels, Belgium)
with a Nikon Plan Apochromat 60x NA1.20 water immersion
objective lens. The sample was illuminated by a 100 mW Ca-
lypso 491 nm solid state laser (Cobolt, Solna, Sweden), from
which the beam passes through an acousto-optic tunable fil-
ter (AA Optoelectronic, Orsay, France) which allows control
of the intensity. The acousto-optic tunable filter can be syn-
chronized with the charge-coupled device (CCD) camera, so
that the sample only is illuminated during the light integrat-

ing phase which reduces photobleaching. The laser beam is
directed through a 10◦ Light Shaping Diffuser (Physical Op-
tics Corporation, Torrance, CA, U.S.A.), which in combination
with an achromat lens in front of the microscope entrance
provides widefield Kohler illumination at the sample. The flu-
orescence light coming from the sample is collected again by
the objective lens and sent through the side port of the micro-
scope towards the CCD camera. The fluorescence light is sep-
arated from the laser excitation light using a dichroic mirror
and accompanying laser notch filter (AHF Analysentechnik,
Tübingen, Germany). A pair of achromat lenses was placed
between the CCD camera and the microscope side exit for an
extra 1.5× magnification of the final image on the CCD chip.
Since fast and sensitive image capture is required for single-
particle imaging, an electron multiplying CCD camera was
used (Cascade II:512; Roper Scientific, Tucson, AZ, U.S.A.).
Image acquisition was performed using the Nikon Elements
R imaging software. High-speed movies of individual particles
diffusing in the suspension are acquired. Typically 5 μL of
a water-particle solution was applied between a microscope
slide and a cover glass with a double-sided adhesive sticker of
120 μm thickness (corresponding to Az = 60 μm) in between
(Secure-Seal Spacer; Molecular Probes, Leiden, The Nether-
lands). This provides for a 3D environment in which the par-
ticles can diffuse freely, while the sample is sufficiently thin to
avoid convective drift. The microscope was always focused at
least 20 μm from the cover glass to avoid deviations from free
diffusion due to the presence of the cover slip. All experiments
were carried out at 21◦C and the full CCD chip was used, result-
ing in 512 by 512 pixel images. For the 0.2 μm particles, the
physical pixel size and the sampling interval were 0.1329 μm
and 38.2 ms, respectively. For the 0.5 μm particles, the phys-
ical pixel size and the sampling interval were 0.1329 μm and
58.0 ms, respectively. Forty videos for each dilution were ac-
quired, all approximately 10 s long. The movies are analyzed
using custom developed software to detect individual particles
(see Braeckmans et al., 2010a; Röding et al., 2011).
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