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ABSTRACT
Motivation: To study lowly expressed genes in microarray
experiments, it is useful to increase the photometric gain in
the scanning. However, a large gain may cause some pixels
for highly expressed genes to become saturated. Spatial stat-
istical models that model spot shapes on the pixel level may
be used to infer information about the saturated pixel intensit-
ies. Other possible applications for spot shape models include
data quality control and accurate determination of spot centres
and spot diameters.
Results: Spatial statistical models for spotted microarrays are
studied including pixel level transformations and spot shape
models.The models are applied to a dataset from 50mer oligo-
nucleotide microarrays with 452 selected Arabidopsis genes.
Logarithmic, Box–Cox and inverse hyperbolic sine transfor-
mations are compared in combination with four spot shape
models: a cylindric plateau shape, an isotropic Gaussian
distribution and a difference of two-scaled Gaussian distri-
bution suggested in the literature, as well as a proposed
new polynomial-hyperbolic spot shape model. A substan-
tial improvement is obtained for the dataset studied by the
polynomial-hyperbolic spot shape model in combination with
the Box–Cox transformation. The spatial statistical models
are used to correct spot measurements with saturation by
extrapolating the censored data.
Availability: Source code for R is available at http://www.
matfys.kvl.dk/~ekstrom/spotshapes/
Contact: ekstrom@dina.kvl.dk

INTRODUCTION
In order to study lowly expressed genes in microarray exper-
iments, it is useful to increase the photometric gain in the
scanning. However, a large gain may cause some pixels for
highly expressed genes to become saturated, i.e. the registered
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pixel values become censored at the upper limit, which with
16-bit precision is 216 − 1 = 65535. Techniques for adjust-
ment of highly expressed signal intensities are given in Wit
and McClure (2003) based on a small set of available spot
summaries, such as spot mean, spot median and spot vari-
ance. As mentioned in Wit and McClure (2003), it should
be possible to get more accurate adjustments when all pixel
values are available. In the present paper, we study spatial
statistical models for pixel values that should enable such
adjustments.

A convenient type of modelling is to transform data to
become approximately Gaussian distributed with a mean
value function determined by gene intensities and spot shapes
and a corresponding covariance function. For such models,
censored pixel values can be estimated optimally. We invest-
igate several types of transformations on the pixel level such
as the logarithmic transformation, the Box–Cox family (Box
and Cox, 1964) and the inverse hyperbolic sine transforma-
tion (Huberet al., 2002; Durbinet al., 2002), also called the
generalized logarithm (Rocke and Durbin, 2003). The inverse
hyperbolic sine transformation has been proven useful for ana-
lyzing microarray spot intensities, but here we apply it at the
pixel level. The Box–Cox transformation with exponent 0.5,
i.e. a square root transformation optimal for Poisson distrib-
uted counts, has been used at pixel level analysis of microarray
data by Glasbey and Ghazal (2003).

The spot shapes studied include three types suggested by
Wierling et al. (2002): (i) a cylindric plateau spot distribution,
(ii) an isotropic two-dimensional (2D) Gaussian distribution
and (iii) a crater spot distribution consisting of a differ-
ence between two scaled isotropic 2D Gaussian distributions.
These models does not seem to provide a satisfactory descrip-
tion for the dataset considered, and we introduce a new class of
models with polynomial-hyperbolic spot shape. With a second
degree polynomial we get a considerably improved perform-
ance. This spot shape may be regarded as a generalization of
the cylindric plateau spot shape.
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Spot shape models and transformations

The models are applied to a dataset obtained with a specially
designed spotted 50mer oligonucleotide microarray. Here, the
expression of 452 selected genes in transgenicArabidopsis
plants are compared with the corresponding genes in wild-
type plants. Data include scans with different photometric
gains ranging from no saturation to heavy saturation.

DATA,TRANSFORMATIONS AND
EXPLORATORY ANALYSIS
Materials
The data used for shape modelling and data transformation
are based on a transcriptome analysis (Kristensen and Bak,
personal communication) of metabolically alteredArabidop-
sis plants (Tattersallet al., 2000). The array is a custom
designed 50mer oligonucleotide array, 9× 18 mm, 350µm
dot spacing, spotted by MWG Biotech using a single pin
on epoxy-coated glass slides. The array contains probes for
452 selectedArabidopsis genes designed to cover the cyto-
chrome P450 (Paquetteet al., 2000; Werck-Reichhartet al.,
2002) (see http://www.biobase.dk/P450/) and glycosyltrans-
ferase (UGT) (Paquetteet al., 2003) multigene families as well
as genes that relate to aromatic amino acid biosynthesis, sec-
ondary metabolism and stress. The 50mer oligonucleotides
were designed by MWG Biotech, essentially as described
by Kane et al. (2000). mRNA was isolated from 30 days
old Arabidopsis rosette leaves using MicroPoly(A)Pure™
small-scale mRNA purification kit (Ambion). About 3–3.5µg
mRNA was used for direct incorporation of cy3- and cy5-
fluorescent dyes (Amersham Pharmacia Biotech) using Super-
script II kit (Invitrogen). Hybridizations and washings were
performed essentially according to the manufacturer’s instruc-
tions and subsequently scanned using a GMS 418 Array
Scanner (Affymetrix) using four different photomultiplier
gains: 30, 40, 50, 60 while keeping the laser power at 30.

The resulting 16-bit grey scale tiff-images are available
for two varieties: wild-type wt, transgenic line 3x.8, four
photomultiplier gains: 30, 40, 50, 60 and two dye swap
experiments: cy3, cy5, for a total of 16 images.

Transformations
Let Z = Z(x) denote the intensity of a pixelx. Here,Z is
a 16-bit integer, i.e. 0≤ Z ≤ 216 − 1 = 65535. LetY (x)

denote a transformation ofZ(x),

Y (x) = f (Z(x),λ), (1)

wheref (·,λ) is a family of transformation depending on the
parameter vectorλ.

In the following, we shall consider three transformations:
A logarithmic transformation

Y = k log(Z + λ1), (2)

whereλ1 is a positive offset parameter. A Box–Cox trans-
formation

Y =
{

k((Z + λ1)
λ2 − 1)/λ2 if λ2 �= 0

k log(Z + λ1) if λ2 = 0,
(3)

whereλ1 > 0, and an inverse hyperbolic sine transformation

Y = k arsinh

(
Z + λ1

λ2

)
, λ2 > 0. (4)

The constantk is used in all three transformations to scale the
transformed pixel intensities such that a saturated pixel (i.e. a
pixel with intensityZ = 216 − 1 = 65535) corresponds to a
value ofY = 1.

Note that arsinh(z)= log(z + √
z2 + 1) for z > 0, so

for large z we have arsinh(z)≈ log(2z). As a result, the
logarithmic transformation is essentially (at least for large val-
ues ofz) a special case of both the Box–Cox transformation
(with λ2 = 0) and the inverse hyperbolic sine transformation
(with λ2 = 2).

Figure 1 shows the inverted grey scale image of the
Y -intensities for the logarithmic transformation (2) withλ1 =
20 andk = 1/ log(216 + 20 − 1) for the wild-type green
(cy3) channel with photometric gain 60. Pixels withY -values
close to 1 are shown in black and pixels withY -values close
to 0 are light grey. The middle panel of Figure 1 shows the
corresponding saturated pixels whereY = 1. In the right
panel, we show the intensities for three spots with photomet-
ric gains 30, 40, 50 and 60, respectively, along horizontal lines
through the spot centres. Each of the intensity curve is given
for 25 pixels, the centre pixel and 12 pixels on each side. The
spots are the 6th, 10th and 12th spots in the 9th row in the
left panel; these three spots have numbers 102, 106 and 108,
and show medium, high and low spot intensity, respectively,
and the intensity curves are overlayed for all four gains. Spots
102, 106 and 108 are marked with boxes in the left panel of
Figure 1.

SPOT SHAPE MODELS
Based on empirical observations of spot intensity profiles
as seen in Figure 1 as well as in Dugganet al. (1999)
(Fig. 2) and Glasbey and Ghazal (2003) (Fig. 1), we desire
a spatial spot shape model to have the following three prop-
erties: (i) isotropic, i.e. that the average intensity at a pixel
x only depends on the distance fromx to the spot centre
and not on the direction from the centre; (ii) should allow
for spot-shapes resembling both ‘volcanos/craters/donuts’ and
‘plateaus’. Spot intensities are often highest near the edge of
the spot and smaller near the spot centre making the resulting
spot shape resemble a volcano (middle panel of Fig. 1); and
(iii) allow for spatial correlation, i.e. pixels close together and
with the same distance from the spot centre should be more
correlated than pixels further apart.
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C.T.Ekstrøm et al.

Fig. 1. Inverted grey scale image of cy3 wild-type with photometric gain 60 (left panel) and the corresponding saturated pixels (middle panel).
Horizontal intensity profiles through spot centres for wild-type cy3 images with gains 30, 40, 50 and 60 are shown for three spots (right panel).
The three spots depicted in the right panel are the ones marked with boxes on the left panel. The three spots marked with circles are used in
Figure 5.

Let S denote the set of spots. With each spots, s ∈ S,
we associate a setAs of pixels. We assume that no pixel
belongs to more than one such set, and some pixels may not
be associated with any spot. LetY = Y (x) denote the (pos-
sibly transformed) intensity at a pixel,x, with pixel centre
coordinatesx = (x1,x2). We assume thatY (x) andY (x′)
are independent ifx and x′ are associated with different
spots.

Consider now a spots and pixelsx ∈ As . Letcs = (cs1, cs2)

be the spot centre of spots, and let rs(x) = ‖x − cs‖
be the distance from pixelx to the spot centre. Assume
that

Y (x) = Bshs(rs(x)) + bs + ε(x), x ∈ As , (5)

whereBs measures the intensity of spots, bs is a constant
representing the background,hs(r) is a spot shape function
and ε(x) corresponds to zero-mean noise atx. We assume
that [Y (x),x ∈ As] has a multivariate normal distribution

with mean vectorµs and covariance matrixCs . Thus

µs(x) = Bshs(rs(x)) + bs ,

and the spot shape functionhs(r) may depend on parameters.
Some spot shape parameters may be common for all spots but
some may be spot-specific.

In the present paper, we only consider the simplest covar-
iance model where each pixel intensity is assumed inde-
pendent, i.e.ε(x) ∼ N(0,σ 2I ), where I is the identity
matrix. More complicated spatial correlation structures will
be investigated further in a later publication.

We consider the following four spot shape models:

The cylindrical shape model. Let

hs(r) = 1

πσ 2
s

1(r ≤ σs), (6)

where 1(P )= 1 if P is true and 1(P )= 0 otherwise. The
parameterσs > 0 is the radius of the spot.
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Spot shape models and transformations

Fig. 2. Examples of transformations of spots 102, 106 and 108
at gain 60. Original data ( ), logarithmic transformation (—),
inverse hyperbolic sine (· · · ) and Box–Cox (– - –).

The Gaussian shape model. Put

hs(r) = 1√
2πσ 2

s

φ

(
r

σs

)
, (7)

whereσs > 0 andφ is the standardized 1D normal density

φ(r) = 1√
2π

exp

(
−1

2
r2

)
.

The Gaussian difference shape model. Let

hs(r) = 1 + αs√
2πσ 2

s

φ

(
r

σs

)
− αs√

2π(βsσs)2
φ

(
r

βsσs

)
, (8)

whereσs > 0, αs > 0 and 0< βs < 1.

A polynomial-hyperbolic spot shape family. Put

gs(r) =
I∑

i=1

bsir
i − as

γs − r
, 0 ≤ r < γs ,

whereI ≥ 2, as > 0 andγs > 1. Put further

hs(r) =
{

Ks

σ 2
s

exp(gs(r/σs)) if 0 ≤ r < γsσs

0 if r ≥ γsσs ,
(9)

whereσs represents the radius of the spot andσsγs is the
distance from the spot centre where there are no more signal
from the spot. The constantKs is a function of the parameters
bs1, . . . ,bsI ,as ,γs such that∫ ∞

0

∫ 2π

0
hs(r)rdrdθ = 1,

a condition that is also satisfied by the spot shapes (6), (7)
and (8). The parametersas andγs determine the steepness of
the spot edge. It may be noted that the spot function (9) is zero
outside a circle around the centre forr > γsσs , similar to the
cylindric spot function (6), which is zero forr > σs . While
the cylindric spot shape function is discontinuous, the function
(9) is continuous and infinitely differentiable. However, the
cylindric spot shape may be obtained as a limiting case of the
polynomial-hyperbolic spot shape, see below.

We require the boundary condition

g′
s(0) = 0, (10)

i.e. that the spot intensities are flat near the centre of the spot.
Most often, we would also require that

g′
s(1) = 0, (11)

such that the spot intensity starts to decrease at value 1
(i.e. when the pixel is at distanceσs away from the spot centre).

For I = 2, the boundary conditions (10) and (11) result in
the following constraints on the parameters in the polynomial:

bs1 = as/γ
2
s

bs2 = as

2

{
1

(γs − 1)2
− 1

γ 2
s

}
.

If we here letas tend to zero andγs tend to one we get the the
cylindric spot shape as a limiting case.
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Fig. 3. Three-dimensional plot of observed intensities for spot 102 at
gain 60 (top surface) and estimated spot shape from the polynomial-
hyperbolic shape model (bottom surface).

We will use the condition (11) in the sequel but it may be
noted that if we specifyg′

s(1) as a negative constant we may
obtain spot shapes with a dome shape, and if we specifyg′

s(1)

as a positive constant we may obtain more pronounced crater
shapes.

Data and estimated spot shape for the polynomial-
hyperbolic spot shape model are shown in 3D in Figure 3
for spot 102 at gain 60, corresponding to the upper curve in
the right panel of Figure 1.

Fitted cylindrical, Gaussian, Gaussian difference and
polynomial-hyperbolic shape functions corresponding to the
spots in the right panel of Figure 1 are shown in Figure 4. It is
clearly seen that the polynomial-hyperbolic spot shape model
fits the data better than the three other models.

ESTIMATION OF PARAMETERS AND
SATURATED (CENSORED) VALUES
Parameter estimation
Let A′

s = {x ∈ As : Y (x) < 
c} andA′′
s = {x ∈ As : Y (x) ≥


c} denote the set of pixels inAs that are uncensored and
censored, respectively, at the level
c. Spot shape parameters
may be estimated by maximizing the log-likelihood function

LY = L1 + L2, (12)

where

L1 =
∑
x∈A′

s

log

{
1

σe

φ

(
Y (x) − Bshs[rs(x)] − bs

σe

)}

and

L2 =
∑
x∈A′′

s

log

{
1 − �

(

c − Bshs[rs(x)] − bs

σe

)}
,

whereφ and � are the standardized normal density func-
tion and distribution function, respectively. The log-likelihood
(12) can be maximized by standard iterative maximization
techniques, e.g. quasi-Newton or Nelder-Mead.

We note that if the spot shape parameters are varied indi-
vidually for spots we get six parameters for the spot shape
models (6) and (7):Bs , cs1, cs2, bs , σe andσs , and eight para-
meters for the models (8) and (9). The additional parameters
areαs andβs for model (8) andas andγs for model (9).

To estimate also parameters in the transformation (1), we
maximize

LZ = LY +
∑
x

log

(
∂Y (x)

∂Z

)
, (13)

Prediction of saturated (censored) values
Forx ∈ A′′

s , we denote the transformed estimated (predicted)
intensity by

Ŷ (x) = B̂s ĥs(rs(x)) + b̂s ,

whereB̂s andb̂s denote estimated parameters andĥs denotes
the spot shape function with estimated parameters. Iff is
the transformation employed, e.g. (2), (3) or (4), then the
corresponding estimated intensity is

Ẑ(x) = f −1(Ŷ (x)).

Once the predicted values for the saturated pixels are obtained,
we can plug in these values and analyze the spot as if all pixels
were completely observed.

RESULTS
Choice of transformation and spot shape model
The Box–Cox (3) and the inverse hyperbolic sine transforma-
tion (4) both contain the logarithmic transformation (2) as
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Spot shape models and transformations

Fig. 4. Horizontal intensity profiles through the centres of spots 102, 106 and 108 (each spot represented by a row) together with estimated
spot shapes for each of the four spot shape models: cylindrical, Gaussian, Gaussian difference, polynomial-hyperbolic (corresponding to each
column) for gains 30, 40, 50 and 60. Estimates are, for each spot, based on pixels in 25× 25 area, but are here (as well as in Fig. 5) displayed
as profiles through the spot centre.

Table 1. Comparison of transformations and spot shape models

Transformation Spot shape model
Cylindrical Gaussian Gaussian difference Polynomial-hyperbolic

Logarithma 171.57 330.45 191.98 57.79
Logarithm 136.30 329.60 185.41 17.00
Arsinh 127.19 258.70 144.39 13.86
Box–Cox 134.32 320.30 178.23 0.00

Median increase in log-likelihood (13) for 25 spots and four gains relative to polynomial-hyperbolic spot shape model with Box–Cox transformation.
aFixedλ1 to 1.

a special case. Thus we can use log-likelihoods to test if
either of them gives a significant improvement relative to the
logarithmic transformation for a given spot shape model.

The results shown in Table 1 are based on the analysis of
25 spots and for each of them four gains, which gives 100 data-
sets. The choice of spots was made so that both low, median
and high-intensity levels were represented but with a slight
over-representation of high intensities as one of our main

objective was to study reconstruction of spots with saturated
pixels.

Table 1 shows that the polynomial-hyperbolic spot shape
model clearly turned out superior to the other spot shape
models studied with the log-likelihood as criterion. This
was also suggested by Figure 4 where the polynomial-
hyperbolic shape gives a considerably better fit than the other
three spot shape models. The analyses also show, that the
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Box–Cox transformation provides the best transformation
for the polynomial-hyperbolic spot shape model, while the
inverse hyperbolic sine transformation yields better fits for
the cylindrical, Gaussian and Gaussian difference models.

Interestingly, the second best fit is provided by the simple
cylindrical model while the two Gaussian models give the
worst fit. This was also suggested by Figure 4 where the
Gaussian models—in contrast to the cylindrical and the poly-
nomial hyperbolic shape models—fit equally bad on the spot
boundary and at the spot centres.

For comparison, we fitted the polynomial-hyperbolic spot
shape model using the Box–Cox transformation with fixed
values ofλ1 = 1 andλ2 = 0.2. This model provides a bet-
ter median fit (median log-likelihood increase of 7.03) than
does the logarithmic and inverse hyperbolic transformations
with variableλ values. The logarithmic transformation with
variable offset parameterλ1 turned out to be considerably
better than the standard logarithmic transformation with fixed
λ1 = 1 (we useλ1 = 1 as fixed value rather thanλ1 = 0 as
some pixel values were zero).

A priori, we can not formally test the Box–Cox and the
inverse hyperbolic sine transformations against each other
as the statistical models are not nested. However, for the
polynomial-hyperbolic spot shape model it turned out that
in most of the 100 datasets the logarithmic and inverse hy-
perbolic sines were close, while the Box–Cox transformation
gave a considerable improvement relative to the logarithmic
transformation. Therefore, we conclude that the Box–Cox
transformation also was superior to the inverse hyperbolic sine
in the present study.

Selected median parameter estimates from the polynomial-
hyperbolic spot shape model with Box–Cox transformation
wereâs = 0.68,γ̂s = 1.75,λ̂1 = 0.99 and̂λ2 = 0.185.

Reconstruction of saturated values
Figure 5 shows the estimated spot profiles for the polynomial-
hyperbolic spot shape model when the pixels for spots 242,
352 and 787 are artificially censored at different intensities.
These three spots were chosen as those with the highest level
not exceeding the upper limit. Thus the the leftmost diagrams
show for each of these spots the estimate without censor-
ing, while the other diagrams show reconstruction for varying
degrees of censoring. In these diagrams, the Box–Cox trans-
formation was used with fixedλ-values,λ1 = 1 andλ2 = 0.2.
The parametersas andγs were also fixed and chosen empiric-
ally to mimic the results from the previous section,as = 0.65
andγs = 1.75.

The conclusion from Figure 5 is that with a small degree
of censoring corresponding to the second column in Figure 5
the reconstruction is satisfactory. For a higher degree of cen-
soring corresponding to the third column in Figure 5 we get
some overshoot. With increasing degree of censoring an im-
provement is in fact seen in the fourth column, while the
rightmost column corresponding to censoring at level 0.6 gives

a clear undershot. This undershot is even more pronounced for
censoring at level 0.5 (data not shown).

DISCUSSION
In this paper, we consider models for spot intensities on
the pixel scale and different transformations to approximate
normality and variance constance.

An empirical observation is that a logarithmic transforma-
tion with no offset is found to result in non-homogeneous
variation: low-range pixel intensities show larger variation
than mid-range or high-range pixels. The results from the
analyses show that inclusion of an offsetλ1 improves the
logarithmic transformation and that a further improvement
is obtained with either the inverse hyperbolic sine or the Box–
Cox transformation. The proposed polynomial-hyperbolic
spot shape model (9) is more flexible than both the cylindrical,
Gaussian and Gaussian difference models and is found to
provide by far the best fit (Table 1). The results from Table 1
also indicate, that a value ofλ2 near 0.2 (i.e. the 5th root) is
optimal for the Box–Cox transformation in combination with
the polynomial-hyperbolic spot shape model.

The results seen in Figure 5 indicate that with a small per-
centage of censoring (<30%, say) it should be possible to
estimate parameters and predict pixel intensities for the cen-
sored pixels in a satisfactory way. An obvious consequence of
this is, that the photometric laser gain in some situations may
be increased such that some pixels are saturated in order to
improve the pixel intensities of the low intensity spots without
any serious loss of information for the spot with highest pixels
intensities.

Figure 5 also suggests that some pixels from the spot centre
need to be observed in order to estimate censored pixel values
well. When only the edge and the background pixels of the
spot are observed (corresponding to the last column with arti-
ficial censoring at level 0.6 and even more pronounced at level
0.5, data not shown), the polynomial-hyperbolic spot shape
models has difficulties in reconstructing the non-observed
saturated pixel values.

It should also be possible to combine several runs with vary-
ing gains, compare the right panel in Figure 1. For spots with
saturated pixels, pixel values may be reconstructed as shown
in this paper. But if the censoring is too hard the correspond-
ing estimate should be down-weighted when combined with
signal intensities for runs with lower gains. To find optimal
weights further studies are necessary.

The proposed spot shape model may be improved by consid-
ering several spots and/or combining data from both channels
simultaneously. It can be argued that all spots should share
the same transformation parameters,λ1 and λ2, such that
their estimates should be based on the joint analysis of all
spots. With measurements in two channels additional inform-
ation may be gained by estimating parameters common for
both channels simultaneously. In particular, the spot centre
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Fig. 5. Horizontal intensity profiles through the centres of spots 242, 352 and 787 (each spot represented by a row) at photometric gain 60 for the polynomial-hyperbolic spot shape
model for different levels of (artificial) censoring as indicated by a horizontal line. For each profile both data (thin lines) and the reconstruction are shown. The average fraction of
pixels that were censored among the 25× 25 pixels regarded for each spot were (from the left) in the five columns: 0, 17, 29, 30 and 32%, respectively.2277
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parameters,cs = (cs1, cs2) and the spot size,σs are obvious
choices, since they should be identical for both channels.

We conclude by listing some additional items that may be
studied by use of a good spot shape model:

• To find accurate estimates of the local background level.
We note that the model (5) contains such a parameterbs

for the local background at spots.

• To make a quality control by finding spots that deviate
in some way as may be seen in left panel in Figure 1
(e.g. the second spot to the right of the middle
circled spot and several spots in the upper part of the
chip).

• To find improved estimates of spot centres and spot
diameters. It is also possible that the estimate of the
parameterBs in (5) could be used to estimate the total
intensity of a spot, but we rather think that an average
within an accurately determined circular disk would give
a more robust intensity estimate for spots with all pixels
uncensored.
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