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Abstract

Positions of individual trees in high-resolution aerial photographs are estimated by use of templates derived from an

optical tree crown model and the geometry at image acquisition. The template is bounded by an ellipse, for which we

®nd the optimal size, eccentricity and translation along one axis. Tree top positions are estimated as local maxima of the

correlation function for the successively transposed template over the whole image. Performance is evaluated using

three images from a thinning experiment in spruce. The templates are compared with empirical shapes obtained by

averaging over the individual trees in the image. Ó 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Smoothing by convolution with isotropic
Gaussian kernels was used to estimate the number
of trees per hectare from high resolution aerial
photographs of spruce stands in (Dralle and
Rudemo, 1996) and to estimate individual tree
positions in (Dralle and Rudemo, 1997). The
method was found to perform satisfactorily for
trees reasonably close to the nadir point in the
photograph (Dralle, 1997).

An alternative method was studied in (Larsen
and Rudemo, 1997) and (Larsen, 1997), where an
optical tree crown model introduced in (Pollock,
1994a,b, 1996) was extended. The method gives a
template for an individual tree adapted to the ge-

ometry at image acquisition. Tree top positions are
estimated as local maxima of the correlation
function for the successively transposed template
over the whole image. The method was found to
improve the kernel smoothing method for
o�-nadir viewing angles. Some such angles might
actually give the most accurate tree top position
estimates for spruce and other trees with similar
morphology (such as ®r).

For the kernel smoothing method a crucial issue
is the choice of the shape and size of the kernel,
and one main issue in (Dralle and Rudemo, 1996)
was to introduce and study a method for optimal
size (bandwidth) estimation for an isotropic
kernel.

For the method based on the optical tree
crown model there is a similar problem on esti-
mation of the optimal size and shape of the
boundary within which the single tree template is
valid. In the present paper we study estimation of

Pattern Recognition Letters 19 (1998) 1153±1162

* Corresponding author. E-mail: ml@dina.kvl.dk.
1 E-mail: rudemo@math.chalmers.se.

0167-8655/98/$ ± see front matter Ó 1998 Elsevier Science B.V. All rights reserved.

PII: S 0 1 6 7 - 8 6 5 5 ( 9 8 ) 0 0 0 9 2 - 0



the optimal size and shape of an elliptic boundary
for this template and the optimal placement along
the tree trunk of the boundary relative to the tree
top.

Performance is evaluated by use of three images
from a thinning experiment in Norway spruce,
corresponding to sidelighted, backlighted and
frontlighted trees, respectively. The templates for
these three geometries are also compared with the
empirical shapes obtained by averaging over the
individual trees in the image.

2. The optical model

We use the optical tree model from (Larsen,
1997). By including re¯ection from two types of
scatterers: ``needles'' and ``branches'' this model
extends the model in (Larsen and Rudemo, 1997),
which in turn extends the model in (Pollock,
1994a,b, 1996) by including background to the
modelled tree crown. The basic elements are a
single tree crown, a ``ground'' plane, light sources
and a camera.

2.1. Light sources and camera

Only the sun and the sky are considered. The
di�use illumination from the ground and from
interre¯ections between trees is ignored. The sun is
modelled as a collimated beam of light, and the
direction to the sun is computed from the time and
place of image acquisition.

The clear sky is modelled as a number of dis-
crete collimated light beams emanating from di-
rections evenly distributed over the sky hemisphere
as suggested in (Woodham and Gray, 1987). As an
approximation we use a uniform distribution for
the distribution of light in the sky, and we do not
take the shadowing by neighbouring trees into
account. The power of the sun relative to the clear
sky is set to 1.6, based on light±shadow contrasts
in the images used.

The camera is assumed to be a pinhole camera.
Its location, resolution, the direction of the optical
axis and the ``up'' direction in the image plane are
computed from the image recti®cation parameters
(Dralle, 1997).

2.2. Tree crown shape

The basic tree crown shape is modelled as a
generalised ellipsoid that in �x; y; z� coordinates has
the surface

�z2�n=2

an
� �x

2 � y2�n=2

bn
� 1; �1�

where z is the vertical axis, the ``centre'' of the tree
crown is at the origin, a is half the length of
the ellipsoid, b is half the width and n is a shape
parameter; in the experiment described below
we use a� 17.7 m, b� 2.84 m and n� 1.6 as in
(Larsen, 1997).

The crown ellipsoid is truncated downwards by
a horizontal plane intersecting the vertical axis at
z � zbase, ÿa6 zbase < a. This is especially relevant
for spruce or ®r, where in this work only the upper
half of the ellipsoid is used.

2.3. Crown and light interaction

The interior of the tree crown is assumed to
contain randomly oriented scatterers (needles,
twigs, etc.). The scatterers can be of several (here
two) di�erent types t 2 T having di�erent optical
properties and distributions. Their density within
the tree crown envelope is assumed proportional
to a function f �t��r�P 0, r � �x; y; z�, such that the
proportion of a ray of light that will pass without
interaction (be transmitted) through a volume
containing scatterers is given by

ptr�L� � exp ÿ
Z

L

X
t2T

f �t��r� dw

0@ 1A �2�

(Beer±Lambert's Law). The integral is over the
path L of the ray through the volume, with
r � r�w�. The light not transmitted will be either
absorbed or re¯ected by the scatterers. Only single
re¯ections are modelled, so the proportion prefl�r�
of non-transmitted light isotropically re¯ected in a
small volume around r is equal to

prefl�r� �
P

t2T preflf �t��r�;P
t2T f �t��r�; �3�

where p�t�refl is the re¯ectivity factor for the scatterers
of type t.
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If C is the path of a camera ray through the tree
crown and Pi is the power per unit area perpen-
dicular to the beam direction of light source i then
the power per unit area P �C� of the light re¯ected
by the tree crown in the direction of that camera
ray is

P �C� � Krefl

X
i2lights

PiR�i;C�; �4�

R�i;C� �
Z
C

ptr�Cs�r��ptr�Li�r��prefl�r�

X
t2T

f �t��r�
 !

dr

dw

���� ���� dw; �5�

where Krefl is a constant giving the proportion of
the total re¯ected light which is re¯ected towards
the camera, Cs�r� is the subpath of C towards the
camera from the point r � r�w� on C and Li�r� is
the path through the tree crown from r towards
light source i, see Fig. 1.

2.4. Crown composition

As in (Larsen, 1997), where more details are
given, we assume that the crown of a Norway
spruce consists of two types of scatterers: needles

and branches. The density of needles within the
crown is given by

f �needles��u� � c0� u
ud
�c1�1ÿ u

ud
�c2 06 u6 ud;

0 otherwise;

�
�6�

where u is the horizontal distance from the closest
point on the tree crown envelope and ud is the
maximum depth of live needles within the tree
crown. The parameters c0 > 0, c1 > 0 and c2 > 0
are determined from ud together with the depth of
maximum needle density umax, the average needle
density favg and the maximum needle density fmax

(Pollock, 1996). In the present work the values
ud � 2 m, umax � 0:5 m, favg � 1 and fmax � 2.
These values are based on information found in
(Oker-Blom and KellomaÈki, 1982; Koppel and

Oja, 1984). The panchromatic re¯ection factor

p�needles�
refl is set to 9% based on (Williams, 1991).

The model including needles as the only scat-
terer was found to be unable to reproduce the
sharp contrast between light and shadow observ-
able quite near the top of spruce trees backlighted
by the sun. This motivated the introduction of
something to model the trunk and branches.

The density function for the scatterers corre-
sponding to the branches is set to

f �br��v� � c3 exp�ÿc4vc5�; �7�
where v is the horizontal distance from the vertical
axis of the tree relative to the radius of the tree
crown envelope, 06 v6 1. The parameters c3 > 0,
c4 > 0 and c5 > 0 are computed from the desired
values of f �br��0:1�, f �br��0:3� and f �br��0:6�, corre-
sponding roughly to trunk, large branches and
small branches, and the densities 0.5, 0.08 and 0.02
respectively were chosen. The panchromatic re-
¯ection factor p�br�

refl was set to 0% to obtain a pure
shadowing e�ect.

2.5. The ``ground'' plane

A ``ground'' plane is included in the model to
provide a background for the modelled tree crown,
thereby giving a brightness edge at the crown
boundary and, for some angles, allowing the mod-
elled tree to cast a shadow in the ray-traced tem-
plate. With properly chosen re¯ectance parameters
this is a simple way to describe the average e�ectFig. 1. Illustration of the elements in Eq. (5).
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of the complex background of neighbouring trees
partly in light and partly in shadow.

The ``ground'' plane is a horizontal surface that
re¯ects and absorbs light. The re¯ectance function
used is the Minnaert re¯ectance function, cf.
(Woodham and Gray, 1987), where the power Pg

of the light re¯ected in the direction of the camera
can be computed from the incident angle hi of the
light from the light source i and the exit angle hc of
the light re¯ected towards the camera:

Pg�i� � Piq
k � 1

2p
cosk�hi� coskÿ1�hc�; �8�

where q is the re¯ectance factor and 06 k6 1 is a
constant characterising the surface (the value
k � 1 chosen in this work yields a Lambertian
surface). The re¯ectance factor q should be chosen
to yield a ``ground'' plane re¯ection corresponding
to the average background for tree crowns in the
actual image. The values q � 0:014, 0.017 and
0.020 were used for the three images ``120'', ``124''
and ``144'', respectively (see Section 4 for an
explanation of the image numbers).

3. Local correlation maxima

The geometric-optical model is used to produce
a template image, bounded by an ellipse, of a
single tree as it would look if it was placed in the
centre of the stand. For near-nadir views or for
large stands it may be necessary to produce several
templates for di�erent positions within the stand.
The bounding ellipse has one axis along the tree
trunk projection as seen from the camera. The size
and shape (eccentricity) of the ellipse and the po-
sition of the ellipse centre along the tree trunk
projection are three parameters that we optimize.

For each image pixel within the stand the local
correlation between the template and the image is
computed. The positive local maxima of the
resulting correlation image correspond to the
locations that (locally) resemble the template most
closely and hence adjusted for the position of the
model tree top within the template are candidates
for tree top positions.

Usually there will be too many candidate posi-
tions, some where a tree top is detected at multiple

nearby locations and some corresponding to large
branches, artifacts due to the overlapping of tree
crowns or minor variations in the image intensity
in low-contrast parts of the image. Several possible
strategies for retaining as many of the true tree top
positions as possible while removing as many false
positions as possible are examined in (Larsen and
Rudemo, 1997).

The approximate number of trees in the stand
may be known in advance, for example from au-
tomatic estimation methods such as the method
described in (Dralle and Rudemo, 1996). In this
case the number of candidates to be retained is
equal to the expected number of trees, Ntrees.

In this work the Ntrees candidates corresponding
to the highest correlation values were selected,
subject to the restriction that no selected candidate
could be closer to a selected candidate of higher
correlation value than a certain distance dmin,
measured in a horizontal plane placed at average
tree top level.

A greedy algorithm selecting candidates in or-
der of descending correlation and omitting any
candidates too close to already selected candi-
dates was used. The parameter dmin was set equal
to 1 m.

4. Experiment

Images showing a sub-plot of a thinning ex-
periment in Norway spruce is used for testing the
algorithm. The images were acquired about 40 km
northwest of Copenhagen from an altitude of 560
m in clear-sky conditions in the morning of 4
August 1994. At image acquisition the trees were
48 years old. The average tree height was 22.7 m
and the stem number was 386 trees per hectare.
There were Ntrees � 171 trees visible from the air in
the sub-plot. The digital image was scanned from
contact prints and the ®nal image resolution ob-
tained was about 15 cm per pixel; see (Dralle and
Rudemo, 1996) for further details on the image
material.

Three images were selected from those avail-
able: one where the trees were sidelighted by the
sun (image ``120''), one where they were back-
lighted (image ``124'') and one where the trees were
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frontlighted, i.e. the sun was behind the camera
(image ``144''). See Figs. 2±4.

4.1. Matching and parameter optimization

Tree base positions measured in the ®eld were
extrapolated to estimated average tree top height
(Dralle and Rudemo, 1997) and superimposed on
the images to yield an initial estimate of the true
tree top positions. These positions were adjusted
by manual inspection of the images to correct for
the errors introduced by errors in the tree height
estimates, variations due to wind, and imprecis-
ions in the image recti®cations. The resulting tree
top positions coincide with the centres of the
circles plotted in Figs. 2±4. They were used as
``ground truth'' in the computations described
below.

In this paper we will for each image consider
two planes, the rendered image plane, as seen in the
left parts of Figs. 2±4, and a parallel model tree top
plane through the top of a model tree placed at the

centre of the stand. Points in one plane are pro-
jected through the (pinhole) camera focal point to
points in the other and as the planes are parallel
any shape will simply be scaled through this pro-
jection. When we in the following refer to dis-
tances in meters we refer to distances measured in
the model tree top plane.

Three parameters, size r, shape s and transla-
tion t, for the ellipse bounding the tree crown
template were optimized by minimization of a
suitably chosen penalty function. Here r is the
radius of a circle (in the model tree top plane) with
the same area as the ellipse, and s is the width to
length ratio of the ellipse. Here ``length'' is the
dimension of the ellipse along the projected image
of the tree trunk, e.g. from lower left to upper right
in the small right upper image in Fig. 2, and
``width'' is the dimension orthogonal to the tree
trunk. Further, t is the translation in r-units of the
centre of the ellipse downwards from the tree top
along the tree trunk, i.e. tr is the downwards
translation in meters.

Fig. 2. The sidelighted image ``120'' with the 171 tree tops as manually marked and automatically estimated, the corresponding single

re¯ection optical model with the optimal boundary (right upper) and the empirical average shape (right lower).
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A simple procedure was used to match a given
set of tree top candidates with the ``ground truth'':
Pairs of positions from the two sets were found in
order of increasing error distance such that each
position in each set was used only once. This
procedure was stopped when the error distance in
the next match would be greater than or equal to
dmax� 1 m (this value is equal to what was chosen
for the threshold dmin). All trees not matched at
this point were declared ``unmatched''.

The penalty measure used to compare the set of
tree top candidates with the ``ground truth'' data
for a single image was a modi®ed standard error
measure computed as follows:

SE� �
���������������������������������������������������������������������P

i2matched jxi ÿ �xj2 � nunmatchedd2
max

nmatched � nunmatched

s
; �9�

where the sum is taken over all matched tree tops,
xi is the error vector for matched tree top i, j � j is

the Euclidian distance, �x is the average error vec-
tor for all matched tree tops, nmatched and nunmatched

are the number of matched and unmatched tree
tops, respectively, and dmax is the maximum error
accepted in the matching algorithm as outlined
above. This penalty measure takes into account
any systematic di�erences between what the
human interpreter perceives as the tree top and
what is the tree top according to the method used
to produce the given set of candidates.

To optimize the parameters for the images used
in the present study, the arithmetic average
SE��r; s; t� of the standard errors (9) for the three
individual images was used as penalty function.
This penalty function was computed for
�r; s; t� 2 G, where G is a suitable grid of parameter
combinations. Then, for a close grid Gclose around
the minimizing parameter combination, a second
degree polynomial in r, s and t was ®tted and
minimized.

Fig. 3. The backlighted image ``124'' with the 171 tree tops as manually marked and automatically estimated, the corresponding single

re¯ection optical model with the optimal boundary (right upper) and the empirical average shape (right lower).
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4.2. Results

As a ®rst step in estimating the optimal pa-
rameter values the grid

�r; s; t� 2 G �f1:0; 1:5; . . . ; 4:0g
� f0:5; 0:6; . . . ; 1:3g
� fÿ1:0;ÿ0:5; . . . ; 2:0g �10�

was used, and the penalty minimum was obtained
for r� 1.5 m, s � 1.0 and t � 0.0. In a second step
the grid

�r; s; t� 2 Gclose �f1:25; 1:30; . . . ; 1:75g
� f0:80; 0:85; . . . ; 1:20g
� fÿ0:50;ÿ0:45; . . . ; 0:50g �11�

was investigated, and a second degree polynomial
was ®tted. The minimum of the penalty function
was obtained for

r � 1:5 m; s � 0:9; t � 0:2; �12�
which thus gave the estimated optimal parameters.

With these optimal parameters the numbers of
missed trees, which in the present setup means the
number of trees not found within 1 m of the esti-
mate found by a human interpreter, are given in
Table 1 for the three images together with the
standard error in estimation of the tree top posi-
tion.

The tree top estimates for the optimizing pa-
rameter combination are shown in the left parts of
Figs. 2±4 together with the tree tops found by a
human interpreter. The corresponding templates
are shown in the right upper parts of these ®gures,

Fig. 4. The frontlighted image ``144'' with the 171 tree tops as manually marked and automatically estimated, the corresponding single

re¯ection optical model with the optimal boundary (right upper) and the empirical average shape (right lower).

Table 1

Number of missed trees for the three images

Image

120 124 144

Total number of trees 171 171 171

Number of missed trees 15 6 3

Percent of trees found 91 96 98

Standard error in cm (matched only) 27 24 28

Modi®ed standard error (9) in cm 39 30 31
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and in the right lower parts are shown empirical
average shapes obtained by averaging the pixel
values around the tree top positions found by the
human interpreter. The grey level distributions in
the images with the empirical averages in Figs. 2±4
have been stretched to enhance contrasts.

The scales in Figs. 2±4 are identical for the two
small images in the right parts of the ®gures. To
compare scales between the right and left parts in
the ®gures, one may note that the circles around
tree tops in the left parts have radii 1 m, and the
ellipses in the upper right parts have areas identical
to the area of a circle of radius r� 1.5 m.

Fig. 5 shows sensitivity functions, i.e. penalty
functions (9) plotted for marginal variation of the
three parameters around the global minimum. The
®gure shows results both for the three individual
images and for the arithmetic average over the
images.

5. Discussion

A recent trend in nonparametric function and
density estimation is to use local modelling such as
local polynomial ®tting (Fan and Gijbels, 1996)
and local likelihood estimation (Tibshirani and
Hastie, 1987). Under some conditions these
methods have better asymptotic properties than
kernel smoothing methods. The template method
for ®nding tree tops (or uniform objects in other
spatial point processes) studied in the present pa-
per seems to have similar advantages compared to
the kernel smoothing method (Dralle and Rude-
mo, 1996, 1997).

The results presented in the present paper with
an estimated standard error for the tree top posi-
tion estimates of the order 25±30 cm and a
recovery percent of 91±98% are quite satisfactory.
Further improvement should be possible by com-
bining results from several images by stereo
methods.

Concerning the global optimum we were as-
tonished to ®nd the optimal size of the bounding
ellipse to be so small, to ®nd the optimal shape to
be so close to a circle (we expected that the ellipse
should be eccentric with a smaller width), and to
®nd the optimal placement of the ellipse centre to

Fig. 5. Sensitivity functions, i.e. modi®ed standard errors (9), of

the optimal tree crown boundary with respect to variations in

size (upper diagram), eccentricity (middle diagram) and trans-

lation along tree trunk (lower diagram). Diagrams are given

both for the three individual images and for their average (the

bold curve).
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be so close to the tree top (we expected it to be
translated downwards).

Looking at Fig. 5 we see that the global optimal
size, shape and placement of the bounding ellipse
are generally quite good, although we could get
some improvement by adapting the ellipse geom-
etry to the individual images. In particular, for
image 144 we could improve the ellipse by making
it less wide and by sliding it further downwards
along the tree trunk. For a near optimal all-round
performance using only one parameter to deter-
mine the match window bounds one could on the
other hand choose to have a simple circular match
window centered at the model tree top, leaving
only the match window size to be chosen for each
stand.

Using a larger set of images and tree densities
(we have here only studied the subplot with very
heavy thinning) it should be possible to ®nd how
the optimal bounding ellipse should vary with the
geometry at image acquisition and the tree density.
With respect to tree density we expect that the
curve giving the optimal size of the ellipse as a
function of tree density should be essentially par-
allel to the curve that can be obtained by inverting
the external curve in Fig. 7 in (Dralle and Rude-
mo, 1996). We expect that for Norway Spruce we
can obtain good tree top identi®cation results for
tree densities which allow at least an average of 50
visible pixels per tree crown. This is because the
conelike shape near the top of these trees assures
that most ``background'' pixels will map to the
shaded lower parts of the canopy which for mod-
erate sun elevation angles are in good contrast to
the sun-lit tree tops. For more closed canopies
such as in deciduous forest the method will have to
rely almost solely on the self-shading properties of
the individual crown and can therefore not be
expected to show the same performance.

Comparing the optimal templates for the single
re¯ection model with the empirical averages in the
right parts of Figs. 2±4 we ®nd that the general
appearance seems convincing. However, due to
di�erent sizes and varying close neighbourhoods
of the individual trees the edges between di�erent
regions in the templates are smoothed in the
empirical averages. Perhaps one could modify our
templates by a corresponding minor blurring, but

we are uncertain of whether this would yield im-
proved performance.

6. Conclusions

The optimal shape and placement of the
bounding ellipse for a tree template used to ®nd
tree positions in high resolution aerial photos have
been estimated for a plantation with Norway
spruce with heavy thinning. The optimal parame-
ters for this ellipse seem fairly stable with respect
to variations in the geometry at image acquisition.
A comparison with empirical average shapes for
three images with varying acquisition geometry
shows a good general agreement with the theo-
retical templates.
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