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Summary

A new framework for the estimation of diffusion coefficients
from data on fluorescence recovery after photobleaching
(FRAP) with confocal laser scanning microscopy (CLSM) is
presented. It is a pixel-based statistical methodology that
efficiently utilizes all information about the diffusion process
in the available set of images. The likelihood function for a
series of images is maximized which gives both an estimate
of the diffusion coefficient and a corresponding error. This
framework opens up possibilities (1) to obtain localized
diffusion coefficient estimates in both homogeneous and
heterogeneous materials, (2) to account for time differences
between the registrations at the pixels within each image,
and (3) to plan experiments optimized with respect to the
number of replications, the number of bleached regions
for each replicate, pixel size, the number of pixels, the
number of images in each series etc. To demonstrate
the use of the new framework, we have applied it to a
simple system with polyethylene glycol (PEG) and water
where we find good agreement with diffusion coefficient
estimates from NMR diffusometry. In this experiment, it is
also shown that the effect of the point spread function is
negligible, and we find fluorochrome-concentration levels
that give a linear response function for the fluorescence
intensity.

Correspondence to: J.K. Jonasson. Tel: +46(0)31-7725317; fax: +46(0)31-161973;

e-mail: jenny@chalmers.se

Introduction

Mass transport in supramolecular biomaterials is of crucial
importance for many industrial applications such as controlled
release of drugs in pharmaceuticals, release of flavour,
aroma and vitamins in foods, protein purification, water
management in hygiene products and swelling properties
of hydrogels. Molecular mass transport is determined by
the interaction between the transported molecules and the
surrounding microstructure in which the molecules are
transported (Hermansson et al., 2006) and also the interaction
between the transported molecules themselves. Several mass
transport mechanisms exist depending on the length scales
present in the material and the properties of the diffusing
molecules. Here the focus will be on molecular self-diffusion.

There exist many methods to determine the molecular
diffusion rate (Westrin et al., 1994). One of the most frequently
used methods is nuclear magnetic resonance diffusometry
(NMRd). With NMRd it is possible to determine the diffusion
rate with high accuracy in many types of materials non-
invasively. However, the interpretation of the NMRd results
in complex systems regarding the actual diffusion mechanism
is not trivial. Previous work has shown that it is beneficial
to combine NMRd with different microscopy techniques
and modelling in order to separate between structural
and interaction mechanisms (Lorén et al., 2005; Walther
et al., 2006). Many industrially important systems such as
emulsions, gels and phase-separated polymer mixtures are
heterogeneous at the micrometre scale. In these systems, the
local diffusion properties most probably vary with the position
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due to heterogeneity, and the global diffusion properties will
be a result of some kind of averaging of the local diffusion
properties. To be able to understand the relationship between
the diffusion properties and the structure of heterogeneous
systems, it would therefore be highly useful to be able to
simultaneously determine, in a spatially resolved manner, the
diffusion rate and the structure.

Fluorescence recovery after photobleaching (FRAP) offers
possibilities to determine the local diffusion rate and the
surrounding structure simultaneously. In FRAP, the diffusion
rate of fluorescent molecules is determined locally directly in
the microscope. The fluorescent molecules are deactivated or
bleached in a limited volume through a short high intensity
laser pulse. This results in a local decrease of the fluorescence
in the bleached volume. After the bleaching, or more
precisely immediately after the start of the bleaching, adjacent
unbleached fluorochromes diffuse into the bleached volume
and vice versa, resulting in a broadening of the bleached
volume and a recovery of the fluorescence intensity inside it.
The rate of recovery is proportional to the local molecular
diffusion rate, which makes it possible to quantitatively
determine diffusion coefficients. For reviews of the FRAP
method and its application to different materials and research
areas, see (Meyvis et al., 1999; Lippincott-Schwartz et al.,
2001; Phair & Misteli, 2001; Weiss, 2004; Sprague &
McNally, 2005).

The first FRAP experiments and FRAP data evaluation
models were mainly based on the use of nonscanning
fluorescence microscopes (Axelrod et al., 1976; Soumpasis,
1983; Tsay & Jacobson, 1991; Berk et al., 1993). These models
described the relation between the diffusion in a bleached two-
dimensional region and the fluorescence recovery. Confocal
laser scanning microscopy (CLSM) is a fluorescence-based
microscopy technique in which the images emerge from a
thin optical section in the material (Pawley, 2006). Arbitrary
regions can be bleached in the CLSM, making it an excellent
equipment with which to perform FRAP experiments, and
the combination CLSM-FRAP is a versatile technique to
simultaneously determine a spatially dependent diffusion rate
and the corresponding structure directly in the microscope.
To determine local diffusion properties, CLSM-FRAP has been
used in different applications with structures such as cells,
membranes, gels and solutions (Smedt et al., 1997; Burke
et al., 2000; Cheng & Prud’homme, 2002; Verkman, 2003;
Sonesson et al., 2005; Chen et al., 2006; Perry et al., 2006;
Alvarez-Mancenido et al., 2006).

For use with CLSM, only a few FRAP models exist
(Braeckmans et al., 2003). A first practical but approximate
three-dimensional model that uses a stationary laser beam
for bleaching and a line-scanning beam for recording
the fluorescence recovery was developed in 1993 (Blonk
et al., 1993). Then, two- and three-dimensional models
for high numerical aperture objectives, fast line-scanning,
multiphoton, and diffusion during bleaching have been

developed (Kubitscheck et al., 1994; Wedekind et al., 1994,
1996; Kubitscheck et al., 1998; Brown et al., 1999; Siggia et al.,
2000; Braga et al., 2004). Recently, a FRAP model considering
line-wise bleaching of arbitrary regions (Braeckmans et al.,
2003) and a fast complementary line FRAP model
(Braeckmans et al., 2007) have been developed. Up to now,
most FRAP models determine the diffusion rate from the time-
dependent variation of the average intensity of the bleached
region. Attempts to develop models that take the time-
dependent evolution of the entire concentration profile have
been made (Keuren & Schrof, 2003; Seiffert & Oppermann,
2005). However, existing methods typically do not contain
any model for the measurement noise and do not include
standard errors for the obtained diffusion coefficient estimates.

In this paper, the diffusion rate will be estimated from a
pixel-based statistical model for the time-dependent changes
of the pixel intensities. A likelihood function is computed
for all observed pixel values in a series of consecutive
images. This likelihood function can be numerically optimized,
which gives both an estimate of the diffusion coefficient
and the corresponding standard error. The effect of the
detection point spread function is included in the model and
the effect of it is analysed by the use of simulations. To
demonstrate the use of the new model, an experiment with
polyethylene glycol was performed, in which the diffusion
coefficient was estimated and compared with corresponding
NMR diffusometry measurements. We discuss computational
details and find regions with proportionality between
fluorescence intensity and fluorochrome concentration,
which is a requirement for unbiased diffusion coefficient
estimation. In the concluding discussion, we describe how the
suggested methodology can be used to design optimal CLSM-
FRAP experiments.

Theory

Model

The pixels in the images will be modelled individually,
combining a solution to the diffusion equation and
statistical likelihood theory (Pawitan, 2001). The diffusion
of flourochromes is supposed to follow the usual diffusion
equation (Crank, 1975)

∂C
∂t

= D
(

∂2C
∂x2

+ ∂2C
∂ y2

+ ∂2C
∂z2

)
, (1)

where C is the concentration of unbleached fluorochromes and
D is the diffusion coefficient. Regard a rotationally symmetric
bleached region and assume that there is no net diffusion in
the z-direction and that the fluorescent molecules are initially
uniformly distributed. Using polar coordinates, the diffusion
equation can be written

∂C
∂t

= D
(

1
r

∂C
∂r

+ ∂2C
∂r 2

)
, (2)
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where r is the distance from the centre of the bleached region.
Let C 0(r ) denote the concentration function at time zero,
and let I0(x) = (1/π )

∫ π

0 exp(−x cos t)dt denote the modified
Bessel function of order zero. Then the solution of Eq. (2) can
be written on the form

C (r , t) = 1
2D t

exp
(

− r 2

4D t

)

×
∫ ∞

0
uC 0(u)I0

( ru
2D t

)
exp

(
− u2

4D t

)
du. (3)

Immediately after the bleaching the concentration profile
is approximately described by an inverse top hat function.
However, after the bleaching, the diffusion starts to blur this
profile and an approximately Gaussian concentration profile
develops. Let us therefore assume an initial concentration of
the form

C 0(r ) = a0 − a1

r 2
0

exp
(

−r 2

r 2
0

)
, (4)

an assumption which will be studied in the result section
below. Then the solution in Eq. (3) simplifies to

C (r , t) = a0 − a1

4D t + r 2
0

exp
(

− r 2

4D t + r 2
0

)
. (5)

If the concentration of fluorochromes is low enough, the
fluorescence is proportional to the concentration. Hence,
the pixel value, p(i, t), at pixel i at distance r i from the
centre of the bleached region at time t is proportional to the
concentration C (r i , t). The noise in the images is assumed to
be independent between pixels and in time and, in addition,
normally distributed with mean zero and constant variance
σ 2. Hence the pixel value p(i, t) is normally distributed with
mean C (r i , t) and variance σ 2, and its probability density is

f
(

p(i , t); a0, a1, D , r0, σ 2) = 1√
2πσ 2

× exp
(

− ( p(i , t) − C (ri , t))2

2σ 2

)
.

The likelihood function is defined as the joint probability
distribution function for all pixels at all times and due to the
independence it is

L
(
a0, a1, D , r0, σ 2) =

∏
t∈T

∏
i∈S

f
(

p(i , t); a0, a1, D , r0, σ 2)

=
∏
t∈T

∏
i∈S

1√
2πσ 2

× exp
(

− ( p(i , t) − C (ri , t))2

2σ 2

)
,

where T is the set of times and S is the set of pixels. The
likelihood, or rather the log-likelihood,

l(θ ) = log L (θ ) = −|T ||S|
2

log (2πσ 2)

− 1
2σ 2

∑
t∈T

∑
i∈S

( p(i , t) − C (ri , t))2, (6)

is maximized with respect to the parameter vector
θ = (a 0, a 1, D , r 0, σ 2) to find the most likely parameter
values, the ml estimates, given the observed images. Likelihood
theory allows straightforward computation of error estimates
of the parameters. For large samples the parameter estimates
are approximately multivariate normally distributed with a
covariance matrix that can be approximated with the inverse
of the observed information matrix. The entry in row j and
column k of the observed information matrix is

− ∂2

∂θ j θk
l(θ ),

evaluated at θ = θ̂ , where θ̂ is the ml estimate of θ . If the
coordinates of the centre of the bleached disk are unknown,
there will be two extra parameters in the likelihood.

Fluorescence intensity and fluorochrome concentration

The analysis of FRAP data relies on the assumption that the
fluorescence intensity is approximately linearly proportional
to the concentration of fluorochromes. This relation is
only valid if the concentration of fluorescent molecules is
sufficiently small. Otherwise photons may be subject to
quenching by multiple absorptions and emissions, an effect
called inner filtering (van Oostveldt & Bauwens, 1990).
Generally the fluorescence intensity F is given (Herman,
1998) by the equation F = Q I 0(1 − e−A), where I0 is the
light intensity, Q is the quantum yield of the fluorochrome,
and A is the absorbance. The amount of light absorbed by
the fluorochromes is proportional to the concentration of
flourochromes, and we can replace A with kc, a constant times
the concentration c, and obtain the equation

F = Q I0(1 − e−kc ). (7)

When c is small, 1 − e−kc ≈ kc . Thus for small concentrations
we have approximately

F = Q I0kc. (8)

The detection point spread function

Following Braeckmans et al., (2003) we assume that the
detection point spread function is of the form

Id (x, y, z) = I0d exp
(

−2
x2 + y2

r 2
r

)
exp

(
−2

z2

r 2
z

)
,

where I od is a constant, rr is the resolution in the x and
y directions and r z is the resolution in the z direction. The
detected fluorescence in a point (x, y, z) at time t is then

F (x, y, z, t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Id (x′, y′, z′)

× C (x − x′, y − y′, z − z′, t) dx′ dy′ dz′.

Using Eq. (5) we get with polar coordinates
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F (r , t) = I0d rzr 2
r

(π

2

)3/2
(

a0 − a1

4D t + r 2
0 + r 2

r /2

× exp
{
− r 2

4D t + r 2
0

· 8D t + 2r 2
0 + 2r 2

r

8D t + 2r 2
0 + r 2

r

})
.

(9)

Equation (5) or (9) is then used in Eq. (6) to estimate the
parameter vector θ . If the resolution in the x and y direction is
small compared to the radius of the bleached disk the effect of
the detection point spread function on the measured diffusion
is negligible and Eq. (5) can be used instead of Eq. (9).

Materials and methods

Materials

The polyethylene glycol used, with an average molecular
weight (Mr ) of 3000 Da, was made by Fluka. Deuterium
oxide with a purity of 99.8% was provided by ARMAR
Chemicals, Switzerland. The fluorescent probe, made by
Fluka, was Sodium Fluorescein with a molecular weight of
376.28 Da.

Sample preparation

A solution containing 20 (w/w%) polyethylene glycol, sodium
fluorescein and deuterium oxide was made. The polyethylene
glycol was mixed with sodium fluorescein and deuterium
oxide and dissolved during gentle stirring over night at room
temperature. All solutions containing sodium fluorescein were
covered by aluminium foil in order to avoid bleaching of the
solution in advance. The solution was then analysed using
CLSM-FRAP and NMR diffusometry.

Confocal laser scanning microscopy

The CLSM system used consists of a Leica SP2 AOBS
(Heidelberg, Germany). The solution was poured into a small
metallic cup with a diameter of approximately 15 mm and
a depth of 2 mm which was sealed with a cover glass. The
solution was analysed at room temperature (21◦C) with the
CLSM. A water immersion objective with 20× magnification
and a numerical aperture of 0.5 was used with water as
immersion medium. The pinhole was set to one Airy unit and
no beam expander was used resulting in a smaller effective
numerical aperture. The emission maximum at 488 nm of a
75 mW Argon laser was used in the FRAP experiments and
wavelengths between 510 nm and 590 nm were detected. The
laser intensity before the AOTF (Acusto optical tunable filter)
was set to approximately 60 % of full power. The FRAP protocol
was as follows. First, 25 pre-bleach images were recorded with
the AOTF set to 2%. Then, the bleaching was performed once,
i.e. only one bleach-image was recorded. The AOTF was set to

100% during the bleaching. In addition, the zoom-in-function
was used to increase the efficiency of the bleaching in order
to fulfil the condition that the distance between adjacent lines
during bleaching is less than half of the spatial resolution
(Braeckmans et al., 2003). Finally, 100 images were recorded
during the post-bleaching with the AOTF set to 2%. All FRAP
series were recorded at a position 30 micrometres under the
surface of the sample. The size of the bleached region was 30
micrometres and always placed in the centre of the image.
The small numerical aperture of the objective and the large
bleached region result in a cylindrical bleaching geometry.
Four well-separated positions in the solution were analysed
with FRAP. The FRAP images were stored as 12-bit tif-images.
The size of the images was chosen so that the intensity of the
corners in the images should not be influenced with more than
around 1% reduction in intensity by the bleaching. An image
size of 187.5 micrometres and a zoom factor four were used
in this work. Two different combinations of image format and
scan rate were used to determine the effect of pixel size and
the number of information carrying pixels on the diffusion
coefficient estimate. The image format and the scan rate were
combined so that the pixel dwell time was constant. In the
first combination, an image format of 128 × 128 pixels and a
scan rate of 800 Hz were used, leading to an image acquisition
time of 0.34 s. In the second combination, an image format of
256 × 256 pixels and a scan rate of 400 Hz were used, leading
to an image acquisition time of 0.99 s.

In practise, based on the assumptions made in the present
model the following conditions should be met in the CLSM-
FRAP experiment:

• Initially, the fluorescent molecules are uniformly distributed
• An isotropic diffusion process takes place in a medium

considered to have infinite size
• There is no flow in the medium
• Objectives have a low numerical aperture
• At the first post-bleach image the concentration profile is

approximately Gaussian

The last assumption is specific to the algorithm used in the
present paper, but not to the likelihood approach in general.
The assumption is discussed in the concluding section of the
paper.

NMR diffusometry

The NMRd experiments were performed on a Varian Unity
Inova 500 MHz spectrometer equipped with a dedicated
diffusion probe supplied by DOTY Sci. USA. The probe provides
4.8 T/m at 10 A current. The stimulated echo pulse sequence
was used in all experiments and the gradient pulse length was
4 ms. Sine-shaped gradients were used to minimize eddy
current effects. The maximum gradient strength was varied
so that at least a ten-fold decrease in signal intensity was
obtained at the highest gradient strength used for each
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diffusion experiment. The diffusion constant was estimated
by a standard nonlinear least square fitting procedure in
Matlab. The corresponding standard deviation was obtained
by a Monte Carlo approach in which the fitting procedure
was repeated 500 times with random signal intensities as
calculated from the deviation between the previous fit and
the raw data.

Partial derivatives of the log likelihood

Computation of the partial derivatives of the log likelihood
in Eq. (6) with respect to the parameters improves the
optimization. The partial derivatives are

∂l
∂σ 2

= −|T ||S|
2σ 2

+ 1
2σ 4

∑
t∈T

∑
i∈S

( p(i , t) − C (ri , t))2,

and

∂l
∂θ j

= 1
σ 2

∑
t∈T

∑
i∈S

( p(i , t) − C (ri , t))
∂C (ri , t)

∂θ j

for θ j = a 0, a 1, D , r 0. The partial derivatives of C in Eq. (5)
are straightforward to compute. For instance, we find

∂C (ri , t)
∂ D

= 4a1t(
4D t + r 2

0

)2 exp
{

− r 2
i

4D t + r 2
0

}(
1 − r 2

i

4D t + r 2
0

)
.

Starting point for the likelihood maximization

To find a good starting point for the maximization of Eq. (6),
we can fit the model for one image at one time point. Put

C (r ) = b0 − b1 exp
(−b2r 2)

(10)

and maximize the log-likelihood

l(b0, b1, b2, σ 2) = −|S|
2

log (2πσ 2)

− 1
2σ 2

∑
i∈S

( p(i ) − C (ri ))2. (11)

Note that if we have estimates of b 0, b 1 and b2 in Eq. (10) we
get corresponding estimates of a 0, a 1 and 4D t + r 2

o in Eq. (5).

The derivatives of the log likelihood in Eq. (11) with respect
to the parameters are,

∂l
∂b0

= 1
σ 2

∑
i∈S

{
p(i ) − b0 + b1 exp

(−b2r 2
i

)}
,

∂l
∂b1

= − 1
σ 2

∑
i∈S

{
p(i ) − b0 + b1 exp

(−b2r 2
i

)}
exp

(−b2r 2
i

)
,

∂l
∂b2

= 1
σ 2

∑
i∈S

{
p(i ) − b0 + b1 exp

(−b2r 2
i

)}
b1r 2

i exp
(−b2r 2

i

)
,

∂l
∂σ 2

= − |S|
2σ 2

+ 1
2σ 4

∑
i∈S

( p(i ) − C (ri ))2.

Setting these partial derivatives equal to 0, we get the following
equations for the mL parameter estimates,

σ̂ 2 = 1
|S|

∑
i∈S

( p(i ) − C (ri ))2,

b̂0 = 1
|S|

∑
i∈S

p(i ) + b̂1
1
|S|

∑
i∈S

exp
(−b̂2r 2

i

)
,

b̂1 =
1
|S|

∑
i∈S p(i ) exp

(−b̂2r 2
i

) −
(

1
|S|

∑
i∈S p(i )

)(
1
|S|

∑
i∈S exp

(−b̂2r 2
i

))
(

1
|S|

∑
i∈S exp

(−b̂2r 2
i

))2
− 1

|S|
∑

i∈S exp
(−2b̂2r 2

i

) .

The estimate b̂2 is obtained by solving the equation

1
|S|

∑
i∈S

p(i )r 2
i exp

(−b̂2r 2
i

) −
(

1
|S|

∑
i∈S

p(i )
)

×
(

1
|S|

∑
i∈S

r 2
i exp

(−b̂2r 2
i

)) +
{

1
|S|

∑
i∈S

p(i ) exp
(−b̂2r 2

i

)

−
(

1
|S|

∑
i∈S

p(i )
)(

1
|S|

∑
i∈S

exp
(−b̂2r 2

i

))}
×

{
1
|S|

∑
i∈S

r 2
i exp

(−2b̂2r 2
i

) −
(

1
|S|

∑
i∈S

exp
(−b̂2r 2

i

))

×
(

1
|S|

∑
i∈S

r 2
i exp

(−b̂2r 2
i

))}/

{(
1
|S|

∑
i∈S

exp
(−b̂2r 2

i

))2

− 1
|S|

∑
i∈S

exp
(−2b̂2r 2

i

)} = 0

for b̂2.

Computational details

Before the analysis the background is subtracted from the
images. A sequence of 25 pre-bleach images is obtained. An
average background image is created as a pixel-wise average of
all these pre-bleach images. The background is then subtracted
from all the post-bleach images. To get the same order of
magnitude in the pixel levels as before the subtraction, the
average over all pixels in the averaged background is added to
the post-bleach images.
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To maximize the log-likelihood in Eq. (6) it is essential to
have a good initial guess of the parameter values. To achieve
this we look at the likelihood for single images with known,
or otherwise determined, centre coordinates, which makes
it possible to solve for all but one of the parameter values
analytically as described in the previous section. Analysis of
the first two bleach images gives estimates of all parameters.
These parameter values are then used as initial guesses
when maximizing the total likelihood. The computations are
performed in MATLAB 7.3.0 using the optimization routine
fminunc. Partial derivatives of the likelihood function are
used in the optimization. Calculation of initial guesses of
the parameters and the maximization of the total likelihood
takes about 20 s for 48 images of size 128 × 128 pixels and
about 30 s for 18 images of size 256×256 pixels using a laptop
with 2.0 GHz processor and 2 GB RAM. The MATLAB program
is available upon request to the corresponding author.

If the centre coordinates are unknown they could in
principle be estimated using the total likelihood. When
necessary we have instead used only the first image to estimate
the centre coordinates and then diagnostic plots, see the
Result section below, can easily determine whether or not
the bleached area or the sample has moved.

Results

Fluorescence intensity and fluorochrome concentration

Experiments were performed to study the relationship between
fluorescence intensity and fluorochrome concentration with
solutions of PEG and deuterium oxide. All experimental
conditions except the fluorochrome concentration were held
constant in the two experiments. In the upper part of
Fig. 1 we show results from an experiment with high
fluorochrome concentrations and a corresponding fit of
Eq. (7). We see that the equation with the exponential
curve gives a good fit and that we are well out of the
domain of linearity between fluorescence intensity and
fluorochrome concentration. Conversely, the lower part of
Fig. 1 shows results from an experiment with low
fluorochrome concentrations and a corresponding fit of Eq. (8).
Here we see that the equation with the linear response curve
gives a good fit and that we are well within of the domain of
linearity between the two variables. Therefore, based on these
results, a fluorochrome concentration of 25 ppm was chosen
for the subsequent FRAP experiments.

Effect of the detection point spread function

The experimental resolution should theoretically be r r =
0.61λem/NA, where λem is the emission wavelength and
NA is the numerical aperture, which in our case gives
r r = 0.622 μm. The relation r r = 0.61λem/NA is valid
for conventional fluorescence microscopy. But for CLSM,
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Fig. 1. Relationship between fluorescence intensity and fluorochrome
concentration in two series of experiments. The upper graph shows results
from a series with high fluorochrome concentrations and a corresponding
fit of the exponential response curve in Eq. (7), and the lower graph shows
results from an experiment with low fluorochrome concentrations and a
corresponding fit of the linear response curve in Eq. (8).

the spatial resolution is approximately 30% better than in
conventional fluorescence microscopy (Diaspro, 2002). On
the other hand, the effective spatial resolution in the present
experiments was somewhat worse than indicated by the
formula since no beam expander was used.

The effect of the detection point spread function will be
negligible if the spatial resolution rr is small enough. To see
how small it needs to be simulations have been made using
Eqs (5) and (9) with different values of the resolution. The noise
is independent and normally distributed with variance σ 2 as
described above. The parameters are estimated with the log-
likelihood in Eq. (6), e.g. the resolution is not estimated. The
true parameter values and the average diffusion coefficient
D̂ estimated from 500 simulations are shown in Table 1.
The random number generator was reset to the same seed
before each simulation series. The diffusion coefficients are
calculated from 18 images with pixel size 0.732 μm/pixel,
256 × 256 pixels per image and 0.995 s between the images.
In the simulations, resolutions of r r = 0.622 μm times an
integer were used. It is seen in Table 1 that the result of the
point spread function is a decrease of the diffusion coefficient
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Table 1. Results from simulations with different resolutions, when the
point spread function is not used in the estimation of the diffusion
coefficient. The values of the parameters are a 0 = 0.7, a 1 = 160.75 μm2,
D = 64.300 μm2/s, r 0 = 26.39 μm and σ = 0.0548.

r r (μm) D̂ (μm2/s) s (μm2/s)

- 64.389 0.586
0.622 64.358 0.595
1.244 64.206 0.586
2.489 63.670 0.597
4.978 61.561 0.610

estimate, and the influence of the point spread function is
increasing with increasing resolution r r .

In particular, the simulation results show that in this
work the spatial resolution r r is sufficiently small and the
bleaching area is sufficiently large for the effect of the detection
point spread function to be negligible. Hence, to simplify the
estimation of the diffusion coefficient the formula without the
detection point spread function will be used hereafter.

Diffusion in PEG solutions

To demonstrate the use of the framework developed in this
work, we have applied our model and FRAP experiments to
a solution of PEG and deuterium oxide. This solution was
used because it is easy to alter the viscosity without changing
the solubility conditions. However, here the aim was to
demonstrate the likelihood FRAP framework and not to study
the effect of viscosity on diffusion rate and, therefore, only one
solution was prepared. The results of the estimation of the
diffusion coefficients and the associated standard deviations
from the likelihood are shown in Table 2. The standard
deviation in column 4 in the table refers to the standard
deviation computed via the likelihood method. The average
and standard deviation in columns 5 and 6 are the average
and standard deviation of the four replicates, i.e. the four
measurement positions.

Table 2. Results from estimation of diffusion coefficients. For the first four
estimates 48 images were used and for the last four images 18 images
were used.

Replicate No pixels D (μm2/s) s (μm2/s) D̄ (μm2/s) srepl (μm2/s)

1 128 × 128 64.3 0.8
2 128 × 128 60.1 0.8
3 128 × 128 61.1 0.8
4 128 × 128 59.6 0.8 61.3 2.1

1 256 × 256 61.0 0.5
2 256 × 256 61.8 0.5
3 256 × 256 60.8 0.4
4 256 × 256 63.8 0.5 61.8 1.4

An example of analysed images and the fit to the
concentration function are shown in Figs 2 and 3. As the
images are noisy it is hard to see the fit plotting the pixel values
of all pixels versus the distance from the centre of the bleached
disk. Instead the averages of pixels within annuli, centred at
the bleached region, with the same width are calculated. These
averages are plotted versus the centres of their annuli together
with the estimated function in Eq. (5).

The results from the NMRd measurements were D =
62.0 μm2/s with a standard deviation of 1.9 μm2/s.

Discussion, conclusions and outlook

The diffusion coefficient estimated using the likelihood
approach agrees well with the NMRd measurements and the
error estimates are rather small. It can be seen that the error
estimates are smaller for the 256 × 256 pixels images than
for the 128 × 128 pixels images. The fit of the model is
also good judging from the diagnostic plots, Fig. 3, with the
possible exception of a minor deviation in the first image. This
is not surprising because of the chosen initial concentration
function. Using another initial concentration function, we
could in principle solve the integral in Eq. (3) numerically.
In combination with the likelihood optimization this seems
too time consuming, but alternative methods are currently
being developed, see below. Note, however, that already in the
second image in Fig. 3 obtained after 1 s the fit with a Gaussian
profile is good (except for the first noisy point based on very
few pixels).

The images were not compensated for drift in the laser signal,
since the observed drift was small and compensation for it
did not improve the results. Similarly, use of more images in
the analysis only caused marginal changes in the diffusion
coefficient estimates and the error estimate did not decrease.
This pinpoints the stability of the suggested likelihood-based
framework.

Comparing with other methods the likelihood FRAP
analysis has the advantage of using the data more effectively
since every pixel value is used individually. As this framework
leads to more precise evaluation it requires less laser intensity
during bleaching and thus decreases the risk of photo damage
of sensitive structures. Moreover, it is straightforward to
compute standard errors of the diffusion coefficient estimates.
Methods that utilize the average intensity in the bleached
region have estimates that are sensitive to the specification of
the right size of the bleached region. That is not the case with
the likelihood FRAP analysis, since the size of the bleached
region is a parameter in the model which is estimated.

The main aim of this paper is to show the advantages of using
the likelihood approach in the FRAP modelling and analysis.
Several improvements can, however, be made, for instance
regarding the concentration modelling and the description of
the error distribution. The noise is probably better described
by a Poisson distribution since the detector counts photons.
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Fig. 2. Plots of original images of the first replicate of the 256 × 256 images. The first image after bleaching is the one to the left at the top, then follows
images about 1 s, 2 s, 4 s, 8 s and 16 s later.

The initial concentration function may be modelled either as
an inverse top hat distribution modified by diffusion during a
suitable small time interval, or more generally by an arbitrary
nondecreasing function in the first image. Both these models
are currently being developed, and it turns out that they
give more accurate diffusion coefficient estimates at the price
of a considerable increase of computation time. The fast
Gaussian profile algorithm described in the present paper is
sometimes adequate and gives otherwise excellent starting
values for the more time consuming methods. It is further

possible to consider the scanning of the image by assigning an
individual time to each pixel. We can also extend the analysis
to irregularly bleached regions and inhomogeneous media,
if microscope images are obtained simultaneously with the
FRAP measurements. In studies of heterogeneous media we
expect that experiments could preferably be performed with
many very thin cylindrical bleaching pulses distributed over
the volume of interest. Then the Gaussian profile algorithm,
being exact for infinitely thin cylindrical pulses, should be
highly suitable.
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Fig. 3. Plots of the fitted concentration, Eq. (5), and average pixel values
for the first replicate of the 256 × 256 images. The first image after
bleaching is the one to the left at the top, then follows images about 1 s, 2
s, 4 s, 8 s and 16 s later.

For optimal design of FRAP experiments we need to find
suitable combinations of pixel size, the number of pixels, the
number of images in each series, the number of replicates
and the number of bleached images in each replicate. The
key to optimal design is to find components of variance for
each source of variability, and the likelihood approach allows
estimation of these variance components. Two such variance
components can be obtained from the standard deviations s
and s repl in Table 2.

List of symbols

a0 parameter in the initial concentration function
a1 parameter in the initial concentration function
C concentration of unbleached fluorochromes
C0 initial concentration function
p pixel value
r0 parameter in the initial concentration function
r i distance of pixel i from the centre of the bleached region
r r resolution
σ 2 variance of pixel value
S set of pixels
T set of times
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