Construction of variable step size multistep schemes

Claus Führer

Abstract

Multistep methods are classically constructed by specially designed difference operators on an equidistant time grid. To make them practically useful, they have to be implemented by varying the step-size according to some error-control algorithm. It is well known how to extend Adams and BDF formulas to a variable step-size formulation. In this paper we present a collocation approach to construct variable step-size formulas. We make use of piecewise polynomials to show that every $k$-step method of order $k+1$ has a variable step-size polynomial collocation formulation.