SPATIAL APPROXIMATION OF STOCHASTIC CONVOLUTIONS

MIHALY KOVACS!, FREDRIK LINDGREN!, AND STIG LARSSON!:2

ABSTRACT. We study linear stochastic evolution partial differential equations
driven by additive noise. We present a general and flexible framework for rep-
resenting the infinite dimensional Wiener process which is driving the equation.
Since the eigenfunctions and eigenvalues of the covariance operator of the pro-
cess are usually not available for computations, we propose an expansion in an
arbitrary frame. We show how to obtain error estimates when the truncated
expansion is used in the equation. For the stochastic heat and wave equations
we combine the truncated expansion with a standard finite element method
and derive a priori bounds for the mean square error. Specializing the frame to
biorthogonal wavelets in one variable, we show how the hierarchical structure,
support and cancellation properties of the primal and dual bases lead to near
sparsity and can be used to simplify the simulation of the noise and its update
when new terms are added to the expansion.

1. INTRODUCTION
We study linear stochastic evolution problems of the form
(1.1) dX(t) = AX(¢t)dt + BdW(t), t >0; X(0)=0,

where X (t) is a stochastic process on a probability space (2, F,P) with values in
a separable Hilbert space H. The operator A is the infinitesimal generator of a
strongly continuous semigroup e*“ of bounded linear operators on H, W (t) is a Q-
Wiener process on a Hilbert space U, and B : U — H is a bounded linear operator.
The covariance operator @ of W(t) is a self-adjoint, positive semidefinite, bounded
linear operator on U.

Under appropriate assumptions, has a unique weak solution which is given
by the stochastic convolution (see Subsection [3.2| below),

X(t) = Wa(t) = /0 te(t’S)AB dW (s).

The motivation for studying the stochastic convolution W, is that this is the first
step towards studying more general evolution problems driven by additive noise of
the form

dX(t) = (AX(t) + f(X(t))) dt + BAW (), t > 0; X (0) = X.
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This can be given a rigorous meaning as an integral equation,

¢ t
X(t) = et Xy + / e(t_s)Af(X(s)) ds + / et=9)Ap dW (s)
0 0

=Y () + Wa(t),
where Y satisfies
Y'(t) = AY (t) + f(Y (t) + Wa(t)), t > 0; Y (0) = Xo.

Thus, once W4 is known, we may study Y by means of methods for evolution
differential equations with random data. This abstract framework is sufficiently
general to include the stochastic heat equation, the stochastic wave equation, and
the stochastic Cahn-Hilliard equation. The above program; that is, splitting the
solution of a semilinear problem into the stochastic convolution and the solution of a
random PDE, is carried out, for example, for the stochastic Cahn-Hilliard equation
in [B 20, 22]. The analysis methods for W4 and Y are usually quite different, both
on the PDE level and on the numerical level, and the present work is focused on
the numerical approximation of the stochastic convolution W4.
The @Q-Wiener process is often represented as an orthogonal series,

Wi(t) = Z 2 Bi() fi,
k=1

where {v;}2° ;| are the eigenvalues and { f }72 ; an orthonormal basis of eigenvectors
of the covariance operator ) and {8}, are independent real-valued Brownian
motions. However, these eigenvectors are not always available for computations.
We therefore propose an expansion in terms of an arbitrary frame which is not
related to Q.

Let thus {¢;};es, with countable index set J, be a frame for U with corre-
sponding dual frame {J); }jeg, so that (¢, q~5]> = 0;; and

f:Z<f?éj>¢j7 era
JjeET
see [9]. Let J C J be a finite set and define a projector P; by
Pif = (f.¢;)¢;, feU.

JjeJ

Define the truncated finite dimensional process
W(t) =D (W(1), ;)85 t > 0.
jeJ

and the corresponding stochastic convolution
t
Wi(t) = / =DAB AW (s).
0
In Theorem we prove a formula for the mean square of the truncation error,

t
E(IWa() = WD) = [ 1480 - P)Q s ds,
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which is the basis for our further analysis. Here, ||T'||gs denotes the Hilbert-Schmidt
norm of a bounded linear operator T': U — H given by

(1.2) IT ;s = > ITfull?
k=1

for some and, hence, for any orthonormal basis {fx};>, of U.

In Section 4] we introduce the deterministic heat and wave equations and their
spatial approximation by a standard Galerkin finite element method. In particular,
we consider the elliptic operator Au = —V - (aVu) 4 cu in a spatial domain D with
boundary condition © = 0 on 9D as an unbounded linear operator on the Hilbert
space H = Ly(D). Its finite element approximation is denoted Ay,.

The stochastic heat equation is then of the form with A = —A, B =1,
H = U = Ly(D) and the spatial finite element discretization leads to the truncated
stochastic convolution,

t t
W1 () := / e(t=) 4 p, Py AW (s) = / e =M PPy AW (s),
0 0

where A, = —Aj, and P, is the orthogonal projector onto the finite element function
space.
For the discretization error we prove in Theorem the convergence estimate

L1 1
E(IW3(0) - Wi, (1)]2) < Ch¥ A" PyQ* |

= Ch2ﬂ Z <A%¢],A%¢k> <Qq§j,q~5k>v ﬂ € [0,7’],

j,keJ

where h is the mesh size and » > 2 is the order of the finite element method.
Similarly, for the truncation error we show in Theorem that

1 1 1
E(IWa(t) - WAW)I2) < SIA~H( - P)Q} s
:% > (AT, k) Q5 dk).
JkeT\J

Analogous convergence estimates are proved for the stochastic wave equation in
Section [Bl

The first form of the above convergence estimates, expressed in terms of the
Hilbert-Schmidt norm, can be evaluated easily by if A and @ have a common
eigenbasis; that is, if A and @ commute, and if W is expanded in the common
eigenbasis. This approach is taken in several papers on numerical methods for
stochastic partial differential equations, for example, [23], [30], and [31].

However, it is often not realistic to assume that A and @ commute. Then the
latter form of the estimates is useful if the frames {¢;}jc7, {®;}jcs are chosen so

that we can exploit decay properties and near sparsity of (A% d)j,A% or) and
(Qdj, dr).

This is exemplified in Section [7] where we specialize to biorthogonal wavelets
in one variable. Assuming that the covariance operator @) is an integral operator
with smooth kernel, we show in Theorem [7.I] how to balance the discretization and
truncation error so that the total error convergences with rate O(h?).
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We also demonstrate how the hierarchical structure of the wavelet basis can be
exploited to simplify the simulation of the Wiener process and its update when new
terms are added to the expansion.

The study of numerical methods for evolution partial differential equations driven
by noise started with the works of Grecksch and Kloeden [12] and Gy6ngy and
Nualart [I5]. Further contributions include Allen, Novosel, and Zhang [I], Davie
and Gaines [I0], Du and Zhang [11], Gyongy [13] [14], Hausenblas [I7, [18], Shardlow
[26], Miiller-Gronbach and Ritter [23], Yan [31}[30], Quer-Sardanyons and Sanz-Solé
[25], and Walsh [28] 29].

The present work was inspired by [I], where the noise is viewed as a martingale
measure on space-time, which is approximated by a random function, piecewise
constant in space-time. The resulting differential equation is then solved by the
finite element method. This method does not generalize to spatially correlated
noise and is therefore limited to one spatial dimension. This is because the solution
of the stochastic heat equation with uncorrelated noise in multiple dimensions is
not smooth enough to admit convergence estimates. The Haar wavelet was used
in [II] together with correlated noise, but this work is also limited to one spatial
dimension.

2. PRELIMINARIES

Let H and U denote two separable real Hilbert spaces. We denote both their

scalar products and norms by (-,-) and || - ||; they are distinguished by the context.
The space of bounded linear operators from U to H is denoted by B(U, H) with
standard norm also denoted || - ||. We write T' > 0 if T € B(H, H) is selfadjoint,

positive semidefinite.
A countable subset {¢;};es C H is a frame for H if there exist a,b > 0 such
that

(21) all 1P < K00 <OIfIP, feH.

Jje€T
The numbers a and b are called frame constants. Then there exists a frame {q;] Yiea
with <¢j,¢j> = (Sij and

bUISIP < DO WS e P <a ISP f € A

Jjeg
The frame {¢;};c7 is called the dual frame of {¢,};c7, sce, for example, [9]. We
may now write

= (f05)0;5, [eH.
JjET
Let £1(U, H) denote the set of nuclear operators from U to H; that is, T €

L1(U,H) if T € B(U, H) and there are sequences {a;}32, C H, {b;}52, C U with
> 521 llagll[b;l] < oo and such that

(2.2) Tf=Y (fbj)a;, feU

j=1

These operators are also referred to as trace class operators from U to H. Clearly,
trace class operators are compact. It is well known that £, (U, H) is a Banach space
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with the norm
o0 o0
1711y = inf {37 o el 7 = D4 b)ay |-
j=1 j=1

Below we collect some facts about trace class operators.

Lemma 2.1. Let T € L£1(H, H) and {¢;}jcs be a frame with corresponding frame
constants a and b. Then the trace of T,

(2.3) To(T) = Y (T¢;,é;),

Jj€T
is well defined and is independent of the choice of frame. If, in addition, T > 0,
then

(2.4) aTr(T) <Y (Té;,¢;) < bTe(T).
s

Proof. Since T € £1(H, H) we have (2.2). Then (T, dr,) = > i1 (Pnsb ) {aj, dr)
and hence

> Téw, o) \<ZZ|¢!€, (aj, o) ZZ (61, bj) (az, ok)|

keJ keJ j=1 j=1keJg

sf(zm, ”)? (3 ) \fzna]nnb | <.

j=1 keJ
Therefore, the series in converges absolutely and by Fubini’s theorem

> (Tor, dr) = ZZ bk, b;){aj, Pr) Z > bk bz, dx) =D (aj,b;)
keJg keJ j=1 j=1keJ Jj=1

is independent of the frame. This proves the first statement; for the second we refer
to [9, p. 64]. O

Lemma 2.2. IfT € £1(Hy, Hs), S1 € B(Hay, H3), and Sy € B(Hs, Hy), then S1T €
£1(H1,H3) and TSy € ﬁl(Hg,HQ). Moreover, if T € El(Hl,HQ), S e B(HQ,Hl),
then

(2.5) Tr(ST) = Te(T'S) < S| T]x-

If T >0, then T € L1(H, H) if and only if the series in (2.3 converges for some
orthonormal basis {¢;}jcs and in this case |T'||, = Tr(T).

Proof. The proofs for H; = H are given in [6 Appendix C]. The general case is
proved in the same way. [

Lemma 2.3. Let T € B(U,H) and assume that TT* € L1(H,H). Then T*T €
L1(U,U) and Te(TT*) = Tr(T7T).

Proof. Since TT* > 0, it follows from the spectral theorem and Lemma that
|ITT*||y = Te(TT*) = Y. ;2 Ai, where {\;} C Ry are the eigenvalues of TT*.
Let {e;} C H be corresponding orthonormal eigenvectors. Since (T*T)T*e; =
T*(TT*)e; = \T*e;, \; are eigenvalues of T*T. By assumption TT* is compact
and, since (T*T)? = T*TT*T = T*(TT*)T, it follows that (T*T)? is compact and,
hence, so is T*T. Finally, as above, eigenvalues of T*T are eigenvalues of TT* and



6 M. KOVACS, F. LINDGREN, AND S. LARSSON

thus their eigenvalues coincide. Hence, Tr(TT*) = Tr(T*T) by the last statement
of Lemma 2.2 O

Finally, we recall that T' € B(U, H) is a Hilbert-Schmidt operator if

(2.6) ITlfs = Y NTFell> = D AT T fi, fi) < o0
k=1 k=1

for some and hence, for any orthonormal basis {fz}72, of U. in U. It is well
known that the set of Hilbert-Schmidt operators, denoted by Lo(U, H), becomes
a separable Hilbert space under the usual addition and scalar multiplication and
with scalar product (S,T) = > po;(Sfx, T fi), where {f}°, is any orthonormal
basis of U. It is clear from the above that

I Tfis = Te(T*T) = Te(TT*) = || T*|[s
and, by (2.4 , we have the norm equivalence

(2.7) b T < T lRs = Te(T*T) < a™' Y | Te; )1

jeT JjET

for any frame {¢;};c7 in U. This makes it possible to estimate the trace, or Hilbert-
Schmidt norm, by using an arbitrary frame instead of an orthonormal basis, which
will be crucial in the following. More generally, we have the following result for a
product of operators.

Lemma 2.4. Let Q € B(H) with Q > 0 and with an orthonormal basis of eigen-
vectors. Let T € B(H) and let {¢;};cq be a frame for H. If QT*T € L,(H, H),
then | TQ? ||lus < oo and
* 1 « -~ -~
Te(TQT") = |TQ%|[fs = Te(QT"T) = Y (T;, Ton)(Qd;, bk)-
iked

Proof. Let {(vk, f)}32, be eigenpairs of @), cf. Remark [3.]] . Since QT*T is trace
class, we may use . ) to expand Tr(QT*T) in {fi}32:

oo oo

Te(QT*T) = > (QT T fy, fr) = Y (TfrTQfx) = i’}’k<Tfkank>

k=1 k=1 k=1
=N ITQ* fill? = S ITQ% fil® = ITQ* s = To(TQT™),
k=1 k=1

where (2.6) was finally used. On the other hand, by expanding in {¢;};cs and
using Qé; = >y c 7(Qdbj, dr) dx, we conclude

To(QT"T) = Y (QT*T¢;,¢;) = > (T, TQd;) = > (T, Tw)(Qdj, bk).-
j€edJ JjET i,keg
[l

3. APPROXIMATION OF THE STOCHASTIC CONVOLUTION

3.1. Wiener process. Let (Q, F,P,{F,;};>0) be a filtered probability space. Let
U be a separable Hilbert space and @ € B(U,U) with @ > 0 (selfadjoint, positive
semidefinite). Let {W(¢)};>0 be a U-valued stochastic process on (€2, F,P) which
is adapted; that is, W(t) is Fi-measurable. We say that W is a Q- Wiener process
in U if
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(i) W(0) =

(ii) W has contmuous trajectories (almost surely),

(iii) W has independent increments,

(iv) W(t) — W(s) is a U-valued Gaussian random variable with zero mean and
covariance operator (t — s)@ for 0 < s < t.

The last statement means that @ is the unique operator defined by

(31) (W) = W(),a) (WD) - W(s),)) = (t—5)(@z,v), wyeU.

Condition (iv) implies that Tr(Q) < oo because the covariance operator of a Gauss-
ian random variable is necessarily of trace class, see [0, Proposition 2.15]. Therefore,
W is also called a nuclear Wiener process.

A nuclear Wiener process can be constructed starting from its covariance oper-
ator @ and the construction extends to the case when Tr(Q) = oo in the following
way. Let Q € B(U,U) with @ > 0. The Cameron-Martin space is defined as
Up := Q2U endowed with the scalar product (x,y)0 := (Q’%x, Q’%y>, where Q71
is understood as the pseudo-inverse if @) is not injective. Let {ej};.”;l be an or-
thonormal basis for U, let {/3;}32; be mutually independent real-valued Brownian
motions on (2, F, P).

Let Ly(2,U) denote the space of square integrable U-valued random variables
endowed with the usual norm

Xl = (BOX12)) " = ([ 1xX@)13 aPw) "

If Tr(@) < oo, then the series

(3:2) W(t) = Br(t)ex
k=1

converges in L2(Q,U) to a U-valued stochastic process, which has a version that is
a nuclear Q-Wiener process, see [0, Section 4] and [24], Section 2].

If Tr(Q) = oo, then the series does not converge in Lo(92,U). However,
it converges in Lo(2,U;) for a suitable (usually larger) space U; (see [6, Section
4.3.1]) to a Uj-valued stochastic process, which has a version that is a Uj-valued
nuclear Wiener process. The constructed process, still denoted by W (¢), is called
a cylindrical Q- Wiener process in U. Also, it is easy to see that

(33) Z/Bk ek7 7 HS U7

exists in Ly(Q,R) and defines a real-valued Wiener process (Brownian motion)
satisfying

(3.4) E(W.(OW, (1)) = tQu.y), ayel,

cf. (3.1). Hence, we may write formally (W(t),z) = W,(t) although the process
W (t) constructed from takes values in U;.

In either case, Tr(Q) < oo or Tr(Q) = oo, we denote by W (t) the series in (3.2)),
which is formal in case Tr(Q) = oo, and call it a Q- Wiener process in U.

Remark 3.1. It is often the case that there is an orthonormal basis { fx } 72, in U con-
sisting of eigenvectors of ) with corresponding non-negative eigenvalues {vx}7° ;.
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Then e, = QY2 f), = ’Y;/ka is an orthonormal basis for Uy and, in particular, (3.2))
becomes

271/2

However, we prefer to avoid the eigenvector expansion of W(t).

3.2. Stochastic convolution. In what follows we need a simplified case of the
stochastic integral, namely where the integrand is deterministic. In this case the
class of integrands can be easily described. Let F': [0,00) — L2(Uy, H) be a mea-
surable function, where Lo(Uy, H) is regarded as a Hilbert space endowed with its
Borel sigma algebra, and assume that F' is square integrable,

t t
/0 V)12, 0y ds = / |F(5)Q% |3 ds < o.

Then the stochastic integral fo s)dW (s) is a well defined Gaussian random vari-
able with covariance operator

Qr(t)r :/o F(s)QF*(s)rds, € H,

and the It isometry,

(3.5) H / F(s

holds, see [0, Chapter 4] and [24, Chapter 2]. In particular, let A generate a Cp-
semigroup e*4 on H and let B € B(U, H). Assume that the operator Q 4(t), defined
by

/ 1F(5)Q% s ds = Tr(Qr(1))

Lz(Q H)

t
(3.6) QA(t)x:/ A BQB* e’ x ds,
0

has finite trace for all ¢ > 0. Note that, by (2.5, the latter always holds in case
Tr(Q) < co. Then the stochastic convolution,

(3.7) Wal(t) = /Ot e=)AB AW (s),

exists and defines an H-valued a Gaussian random variable with covariance operator
Q(t). Furthermore, W, is the unique weak solution of

dX(t) = AX(t)dt + BdW(¢), t > 0; X(0)=0.
More precisely, this means that W, is the unique (up to modification) solution of
t t
(38)  (X(t)n) = / (X(s), A*n) ds + / LBAW(s), t>0, Vne D(A),
0 0

where I,,: H — R is given by I, = (z,7n) (see [6, Theorem 5.4]).
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3.3. Truncation of the Wiener process. We now approximate the stochastic
convolution by truncating the expansion of W (t) in an arbitrary frame. Thus, let
{¢;}jes C U be a frame for U with frame constants a, b and dual frame {¢;};c 7.
Let J C J be a finite set and define a projection onto Sy := span(¢;);es by

Pyx = Z(:L’,Q%)qu, xeU.

jeJ
The adjoint P of P; is given by Pjz := Zj€J<x,¢j>qBj, x € U. Set
(3.9) W (t) =D (W(t).6;)¢5,
JjeJ
where (W (t),d;) = ( ) = 352, Br(t){ex, ¢;) is well defined by even if

Tr(Q) = oo and thus W is not necessarily U-valued.

Lemma 3.1. If {W(t)}i>0 is a Q-Wiener process in U given formally by (3.2),
then the process {WJ(t)}tZO in (3.9) is a nuclear Q; = P;QP;-Wiener process in
U.

Proof. We have that

Jt)ZZW~j ZZﬁk ek?¢j

jGJ jeJ k=1

*Zﬂk )> en, di)b; = Zﬁk )Prex,

jeJ

(3.10)

where the latter series converges in Lo(2,U). The continuity of the paths follows
from the fact that the processes {Wj (t)}, j € J, are real-valued Brownian motions
and that the index set J is finite. That the increments are independent and have a
Gaussian law with the proper covariance operator can be verified from . ([

Note that if Tr(Q) < oo, then W/ (t) = P;W(t) and the lemma above is even
more straightforward. We define the corresponding stochastic convolution

t
(3.11) Wit) = / AR AW (s),
0

which exists as Tr(Q ) < co. Next we provide a formula for the truncation error.

Theorem 3.2. Let Q € B(U,U) with Q@ > 0. Let A generate a Cy-semigroup
et on H, let B € B(U,H), and let W(t) be a Q-Wiener process in U. Assume
that Tr(Qa(t)) < oo, t > 0, where Qa(t) is defined in (3.6). Then the stochastic

convolutions in (3.7) and (3.11) are well defined and
t
Walt) —Wi(t) = / e=)AB(T — Py)dW (s)
0
and

(3.12) E(HWA(t) - Wi(t)||2) = /Ot Tr (GSAB(I — P)Q(I — PJ)*B*GSA*) N

t
- / |4 B — P)QY2 |3 ds.
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Proof. We first show that W (t) = Z(t) a.s., where
t
Z(t):/ =)ABP; AW (s).
0

We have that Z and W;j are, respectively, the unique solutions of
t

(X(t),n) = /Ot(X(s),A*m ds + ; l,BP;dW(s), t >0, Vn € D(A"),

and
(X(t),n) :/0 (X(s), A™n) ds—&—/o l,BAW’(s), t >0, ¥n € D(A*),

where [,;: H — R is given by [,z = (z,7); cf. (3.8). Since Tr(Qs) < oo, it follows
that W+ is U-valued and f(f l,BdW7(s) = 1,BW(t). A simple calculation, similar
to that in the proof of Lemma [3.1] shows that

1L, BWY(t) =" B(t)l, BPsey.
k=1
Now it is not hard to see that the latter equals to fot l,BPydW (s), almost surely and
hence the claim is proved. Therefore, Wa(t) — W (t) = fot et=)AB(I — Py) dW (s)
and thus (3.12)) follows by It6’s isometry (3.5)). d

4. THE FINITE ELEMENT METHOD FOR THE DETERMINISTIC PROBLEM
In this section we set the deterministic heat and wave equations in the form
X'(t)=AX(t), t >0; X(0)= Xp.

We also consider spatial approximation by the finite element method and recall
some error estimates.

4.1. An elliptic operator. Let D C R?% d = 1,2,3, be a bounded spatial domain
with sufficiently smooth boundary 0D. We introduce the elliptic operator

Au:= -V (aVu)+cu, inD,

where a, ¢ are smooth coefficients with a(x) > ap > 0 and ¢(z) > 0 for all x € D.
Together with the boundary condition u = 0 on 0D this defines an unbounded
operator A in Ly(D) with domain of definition D(A) = H?(D) N H}(D).

In order to describe regularity of fractional order we introduce the norms

© 1/2
(4.1) ol s = I1A720) = (32 M0, 00)?) ) BeR,
j=1
where (-,-), ||| are the scalar product and norm in Ly(D) and A;, ¢; denote the

eigenvalues and corresponding orthonormal eigenvectors of A. The corresponding
spaces are
H? = D(AP?), B>,

and, for 3 < 0, H? is the closure of Ly(D) with respect to the norm in (&.1).
Clearly H° = Ly(D), and it is known that, for integer 3 > 0, these spaces can be
described in terms of standard Sobolev spaces and that the norms are equivalent to
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the standard Sobolev norms. For example, H' = H} (D) and H?> = H?(D)NH} (D)
with
[l g = lollmes ve B ollge = [v]lg2, ve H,
see [27, Lemma 3.1]. The spaces of negative order can be identified with dual
spaces, H~7 = (H")* with ||f|| ;- = sup, (f, v)/|[v|| ;75-
We now introduce the standard finite element method. For this purpose we

consider the equation Au = f. Its weak formulation is: find u € H} (D) = H' such
that

(4.2) a(u,v) = (f,v), Yve H',

where a(u, v) = (aVu, Vv) + (cu,v) is the bilinear form associated with A.

Let {7,} be a regular family of triangulations of D with meshsize h. Let
{Vh}o<h<1 be a family of finite dimensional subspaces of H*, where each Vj, con-
sists of continuous piecewise polynomials of degree < r — 1 (r > 2) with respect to
a triangulation 7.

The approximate solution uy, € V}, of is defined by

(4.3) alun,x) = {f;x), VX € Va.

We define orthogonal projectors Py, : H® -V, and Ry,: H! =V, by
(Puf,x) = (f,x),  a(Rnv,x) = (v,x), VfeH’ YveH', Vx eV,

We also define the linear operator Ay : V; — Vj, by

(Anth, x) = a(,x), Y¥,x € Vh,

so that equation (4.3) can be written Apup = Py f.
Our assumptions about the finite element method are summarized in the follow-
ing error estimate:

(4.4) IRy — || < CB" o]l 3., Vo € H.

For d =1 this holds in great generality. For d = 2,3 this holds for piecewise linear
finite elements (with r = 2) in convex polygonal domains D. For domains with
curved boundary, and for higher order elements, there are additional difficulties
concerning the approximation near the boundary, which we do not address here,
see [27]. Actually, v € H"(D) N Hg (D) would be sufficient for the error estimate in
but the present formulation is more convenient.

4.2. The deterministic heat equation. We now consider the parabolic problem
u'(t) + Au(t) =0, t > 0; u(0) =,
and its spatially semidiscrete finite element approximation
up, (t) + Apup(t) =0, t > 0;  up(0) = Pho.

Their solutions given by the analytic semigroups on H = H° generated by A = —A
and A, = —Ay, respectively,

Np

o0
u(t)y =e Mo =3 e (vpp) e unt) =M Pw = e (v, 0n) ong-
j=1 j=1
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Here {(Aj,5)}521, {()\h,j,@w)}éy:"l are orthonormal eigenpairs of A and Ay, re-
spectively. We will use the smoothing property

(45) / ol ds < 2ol
Finally, we introduce the error operator
(4.6) F(t)yv = e "M Py — ey,
Under the above assumptions we have the following error estimate, where 0 < g < r,
(4.7) (/t ||Fh(3)v||2ds)1/2 < ChOlfv| s, t>0.
0

This follows from [27, Theorem 2.5].

4.3. The deterministic wave equation. We now consider the wave equation,

(4.8) u'(t) + Au(t) =0, t > 0; u(0) =1, u'(0) = vy,
and its spatially semidiscrete finite element approximation,
(4.9) uy (t) + Apup(t) =0, t > 0;  up(0) = Py, u)(0) = Pyw

In the standard way we set

_|u _|n |0 T
oL} vl A=)
Then A is an unbounded operator on H = H® x H~! with

_ . _ | v2 _ 70 =1\ _ gyl 0
D(A)_{UEH.AU—{_AUJEH_H x BV = ' x HO,

Here A is regarded as a bounded linear operator H' — H~'. The operator A is
the generator of a strongly continuous semigroup (Co-semigroup) e*4 on H and

s [ om o AEsE
—AY25(1) cw |’
where C(t) = cos(tA'/?) and S(t) = sin(tA'/?) are the cosine and sine operators.

For example, using {(};, ¢;)}72,, orthonormal eigenpairs of A, we have

ATY28(t)w = A=Y 2 sin(tAY?)w Z)\ 1/2 51n(t)\1/2)(v ©;)p;
7j=1
Defining A, and e*4* in the analogous way,

Ay = [ 0 I} oA — Ch(t) Ay S (t)
—An 0 — A28 (1) Cu(t) |’

where Cy(t) = cos(tA %) and Sj(t) = sin(tA,ll/Q), we may write the solutions of

- and . as
U(t) = eV, Uu(t) = e P,V.

We will find that it is relevant to focus on the error in the first component u;, = Uj ,
with initial-values v; = 0, v = v and define an error operator by

(4.10) Fu(t)yv = A, 28, () Poo — A28 (t)w.
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Under the above assumptions we have the error estimate, where 0 < g <r + 1,
(4.11) 1En()oll < C(L+t)h 7 |lv]| ga, > 0.

This follows from [2T, Corollary 4.3, Theorem 5.3].

5. APPLICATION TO THE STOCHASTIC HEAT EQUATION
We now consider the stochastic heat equation
dX(t) + AX(t)dt =dW(t), t >0; X(0)=0,
which. is of the form with H = U = H°, A= —A, W a Q-Wiener process on
U = H° and B = I. We thus study the stochastic convolutions

X(t)=Wa(t) = /Ot olt=5)A AW (s) = /Ot o (t=9)A AW (s),

t t
X7 (t) = Wi(t) = / o(t=94 P, VY (s) = / e~ (=9 p, AW (s),
0 0

t t
Xjl(t) =Wy, (t) = / e=)An Py P AW (5) = / e (t=)An py P AW (s).
0 0
The condition Tr(Q(t)) < co now becomes, see (3.5)), (3.6), (2.6), and (4.5]),
t t 0o
(Qa(0) = [ e QHlhsds = [ 3" ey ds
0 0
J

=1
oty 11 1 & _1.1
(5.1) =3 [ IateetatiQhe Pas < 5 Y IAEQEg,
j=1 J=1

1., 1 1
:§||A 2Q7 fis < oo.

This guarantees the existence of the stochastic convolutions, see Theorem We
begin with the discretization error.

Theorem 5.1. Let A = —A, A, = —Ayp,, and let W a Q-Wiener process in H°.
Assume ||A%Q%||Hs < oo for some B € [0,7]. If {$;}jer is a frame for HO with
®; € HB=Y then

B-1 1
(5.2) E(IWA(t) - Wi, 0F) < Ch¥ A" PyQ* 3.
If, in addition, Q has an orthonormal basis of eigenvectors and ¢; € HP=1, then

(5:3)  E(IWA6) - WA, 0) < Cn¥ 37 (A 65, 0% 61)(Qd5 ).

j.keJ

Proof. With F, as in (4.6)), we have

WA(t)— Wy (t)= /0 Fiu(t — s)P;dW (s)



14 M. KOVACS, F. LINDGREN, AND S. LARSSON

and hence, by using (3.5), (2.6), (4.7), and an orthonormal basis,
0ot
B(IWA0 - W4 0F) = 3 [ 156)P/@H 1P as
=1

< OWP Y AT PyQEf|P = Ch*PIA™T PrQd s,
j=1
This proves (5.2). Using Lemma [2.4] with T = A% P;, we obtain
B-1 1 B-1 -1 -~
A= PQ2 s = D (A7 Prgy, A7 Prow)(Qdj, br)
jked
6-1 B-1 - =
= D (AT 9, AT 1)(Qd;, ),
jked
which proves (5.3). [
We now consider the truncation error. We assume that QA~! is trace class.
By Lemma with 7 = A~z this implies that A*%Q% is Hilbert-Schmidt as
required in (5.1)). Clearly, the two assumptions coincide when A and () commute,

in particular, when Q = 1.

Theorem 5.2. Let A= —A and let W be a Q- Wiener process in HO, where Q has
an orthonormal basis of eigenvectors. Assume QA=Y € L1(H®, H®). If {¢;}jes is
a frame for H, then

E([Wa) - WAMIP) < 1A = PR s

> (AT, k) Q0 bn)-

G keT\I
Proof. By using (3.12)), (4.5), and an orthonormal basis, we get

E([Wa(t) — WA®I?) = > / e ~ P)Qtex]*ds

N = N

1 > _1 1 2 1 1 10
<5 L INTHI- PQRal? = gIAHT - PQ! s

Lemma with T = A~z (I — P;) now gives
IA=2(I = P))Q3 s = > (A™2(I = Py)¢j, A== (I — Py)ow) (Qdj. k)

J.keg
= ) (Ao, 00)(Qy, d)-
JykeIT\J
([
The same framework, with A = —A?, 4, = —AZ, applies to the linear stochastic

Cahn-Hilliard equation,
dX(t) + A2°X(t)dt =dW(t), t >0; X(0) =0,

see [22], where an analog of (4.7) and error estimates for W4 (t) — Wa, (t) with-
out truncation are proved. Theorems, analogous to Theorems [5.1 may then
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be proved but we refrain from giving the details. The importance of studying
the W4 and its numerical approximation when handling the full semilinear sto-
chastic Cahn-Hilliard equation was explained in the Introduction. We would like
to mention that the error analysis of the finite element method for the stochas-
tic Cahn-Hilliard equation is difficult not only because of the nonlinear term but
also because the finite element method involves A, = —A?. This makes the error
analysis for Fj,(t) = e "% P, — e~*A” associated with the Cahn-Hilliard equation
significantly more complicated than the one for the heat equation in (4.7); compare
[22] Theorem 2.1] and [27, Theorem 2.5].

6. APPLICATION TO THE STOCHASTIC WAVE EQUATION
We now consider the stochastic wave equation
dX, (t) = Xo(t) dt,

AXo(t) = —AXi () + aw(p), =% X0 =X(0=0,

which is of the form (T.1) with H = HO x H 1,

A= o] m=[i)

as in Subsection and W a Q-Wiener process on U = H°. We thus study the

stochastic convolutions

X(6) = Wa(t) = /O =94 quyr(s) = /O t [A;(f(t ;)5)] AW (s),

_ I . C[T[AES(E - s)
XJ(t)_Wj(t)_/O el )APJdW(s)—/O [ i - s) ]PJdW(s),
A2 Sy(t - )Py

t t
X0 =wi,0) = [ e aw) = [ Colt— )Py

0

Py dW (s).

Estimating Tr(Q(¢)) by means of (3.5), an orthonormal basis, and the bounded-
ness of the sine and cosine operators, we get

t . 1 t o0 s N
T (Qa(t)) = / "4 BQ¥ 2, ) ds = / S e BQ 4y ds
j=1

t oo
6.1) = [ (A sk + 1A E Q0 ) ds
j=1
<2ty [[AT2Q 457 = 2t A2 Q2 s
=1

We thus have Tr(Qa(t)) < oo, and existence of the stochastic convolutions, under
the same condition as for the heat equation, namely, ||A’%Q% s < oo, see (5.1]).

We begin with the discretization error. We restrict the analysis to the first
component X = W‘A]’l in order to shorten the presentation.
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Theorem 6.1. Let W and W, be as above. Assume ||A%Q%HHS < oo for
some B € [0,r +1]. If {¢;}jes is a frame for HO with ¢; € HP=1 then
2 g Bl 1
62  B(IWi,0 Wi, @) < CORFEIAT PQH s
If, in addition, Q) has an orthonormal basis of eigenvectors, then

(6.3) B(IWL, () = Wi, ,(01F) < CORFT ST (A7 65, A" 01)(Qdy, )

jkeT

Proof. With Fj, as in (4.10) we have

W) - Wi, (t /th—s>PJdW<>

and hence, by using (3.5)), (4.11]), and an orthonormal basis,

B(IW4, 0 - W, 017) = [ Z IF(s)PoQEes | ds
=1

_2r_ > B—-1 1
< CWIFP S AT PiQes|2 = COMFTAT PQY .
j=1

This proves (6.2). The bound (6.3) is then obtained in the same was as (5.3). O

‘We now consider the truncation error. Recall from the discussion before Theorem

that QA1 € L£1(H, H) implies ||A*%Q%||%IS < oo as required in (6.1)).

Theorem 6.2. Let WX and Wih be as above. Assume that W is Q-Wiener pro-

cess in HO where @ has an orthonormal basis of eigenvectors. Assume QAL €
L1(HO HO). If {¢;}jes is a frame for H, then

B([Wat) - WA®)?) < 2031 - PR3|I
=2t > (A1, k) Q). br)-

G keI\J

Proof. By using (3.12)) and an orthonormal basis we get

B(wat) - wielF) - | > e 1 = Pa)Qefy

:/0 > (IA28(s)(I = Pr)Q%ex|* + [A"2C(s)(I — Py)Q%ex|”) ds

k=1
< QtZ IA=2(I = P))Q%ex||* = 2t|| A2 (I — P))Q? |[}s.
The proof is now completed in the same way as the proof of Theorem 4

7. APPLICATION TO WAVELETS

In this section we investigate the error bounds for the heat equation in Section
when d = 1 and various assumptions on () and choices of the frame {¢;};cs. The
error bounds for the wave equation in Section [6] can be dealt with in a similar way.
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7.1. White noise. Let Q = I and {¢;};es C H?' (3 < r) be a frame for H.
Theorems [5.2] and [5.1] then yield

E([Wa(t) — WA, (0)]2) < 2B(|Wa@) - WA®2) + 2B(IWA (1) - Wi, 0)]?)
< A3 (I = Py)llfs + CR| A" Py lis
<C Y IATEG I+ CR Y IATT 6P,

JEITN\J jeJ
where we used . to evaluate the Hilbert-Schmidt norm. Let now d = 1, D =
0,1), A = —dmz and ¢; =y, T ={j=(,k):k=0,....,2L =1, 1 =0,1,...},

Where {{y, k}2 o152, is the Haar wavelet basis for La(D). Then, with g8 = 1,
={(l,k) € J : 1 < N}, and anticipating the bound for (A=, x4 1) in ,
we have

oo 20—1 N 2'—-1

E(HWA() WA, )SC Z Z (A~ ¢lk’¢lk —|—Ch2ZZl
I=N+1 k=0 =0 k=0
oo 2t—1
<C Y Zz—2l+0h2221<02— + Ch%2N.
I=N+1 k=0 =0

To optimize the error estimate choose h = 2~ and obtain
E(|Wa(t) = Wi, (®)I1?) < Ch.

If instead we choose ¢;(x) = ¢;(x) = v2sin(rjz), j = 1,2, ..., the orthonormal
eigenfunctions of A, and again § = 1, we get

N 2 2 2
E(IIWA(t)fWAh(t)H ) <C %1J—+Ch 21 <c + Ch2N.
J

Optimizing by setting h = %, we obtain

B(IIWa(t) - WA, (1)) < Ch.

Thus, in both cases we obtain the mean square rate of convergence O(h%), which
is optimal for @ = I. Note that without truncation we would have (cf. [30])

E(IWa(t) = Wa, (0)I2) < CR2 A" s,
where ||A%7 ||Zg = 72 325203271 < oo if and only if 8 < 3.

7.2. Smoother noise. When turning to concrete examples one usually assumes
that the frame and its dual satisfy support and cancelation conditions. To make
this more precise we assume that there is a levelwise organization of the frame;
that is, 7 = {(j,k) : j € N, j > jo, k € J;}, where J; is an index set whose size
depends on j and the spatial dimension d. Then the support and the cancelation
conditions can be written as

(H1) diam(supp ¢;x) ~ diam(supp ;%) ~ 277, j > jo,
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(H2) for f € W™(D) we have
|<f7 ¢j,/€>‘ < CQij(s+d/2)|f‘Wsﬂ‘>°(supp¢>j,k)7 s < ’ﬁl, .] > jOa

and for f € W™ (D) we have
|<f7 &j,k)‘ < CQ?j(Ser/z)Lf‘Ws,oo(

Here D C R? with polygonal or smooth boundary and | f|yys.(.) denotes the usual
&1

Suppti;j,k)’ s<m, j > j0~

seminorm. We remark that in the wavelet literature condition ([2.1)) is often referred
to as H-stability or stability. For example, the Haar basis in one dimension satisfies
the above conditions with m = m = 1. In multiple dimensions for nontrivial
domains it is highly complicated to construct an explicit basis together with a
dual basis satisfying these conditions. Even in one dimension for an interval the
construction is tedious, but there are explicit wavelet bases (with explicit dual
bases) satisfying (H1) and (H2) for all m < m with m + m even, see [8]. Assuming
a frame with properties (H1) and (H2) and enough regularity, one obtains decay
estimates for scalar products like (Q@J, qgj,k> and <A% bil, A ¢ k) needed for
the error estimates in Theorems [5.1] and see [7].

Finally, we demonstrate in a simple concrete example how to get optimal error
estimates by choosing an appropriate frame if the noise is smooth enough. Let
d=1,D=(0,1),U =H = Ly(D), B=1, and Au = —(av’)’ + cu with smooth
coefficients a > ag > 0, ¢ > 0. Let @ be given as an integral operator (Qf)(z) :=
fol q(z,y)f(y)dy. Unless the functions a,c,q are very special, A and @ do not
commute and their eigenfunctions are not known explicitly. Since @ is assumed to
be given, one can simulate the truncated noise W efficiently, see Subsection

We will use the wavelet basis constructed in [8]. It satisfies (H1) and (H2) with
m < m and m + m even. Moreover, for j € N, one obtains inverse estimates

165.kll (D) < C2]1 )kl Lapy, 0 <5<,
165kl (D) < C27]1 skl Lopy, 0 <5 <7,

where v =m — % and 4 can be chosen as large as we want by using m large in the
construction (see also [4]). Further, the number of frame elements on level i; that
is, #J; (this index set is the same for the primal and dual frames), satisfies

(7.2) #J < C2°.

We also have a bound on the number of basis functions that have intersecting
supports. For this purpose, let

(7.1)

(7.3) Ak := Supp ¢; , N supp ¢; ;.

Then, for j > ¢, the number of ¢; ;, whose supports intersect the support of a fixed
¢4, is given by

(7.4) #{k€Jj: Djpa #0} < C277°

Taking also into account the number of ¢; ; given by (7.2)), and finally interchanging
the roles of 7 and j, we conclude

(7.5) #{l e Ji, ke Jj: Ajpa # 0} < C2mex(@i),

The reason why (7.4]) holds is that the construction in [8] may be performed so
that, except for some boundary functions whose number is uniformly bounded in
j, the ¢, are linear combinations of a uniformly bounded number of translates
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and dilates 6,41, of a function 6 with compact support. This is done in such a
way that the supports of the ¢; move equally fast as the 6;4;  when k£ grows.
More precisely, 0; ;(z) = 0(27z — k), and there exists a non-positive integer N and
a non-negative integer M such that for all j > jo and k € J; \ JP (where J7 refer
to the boundary functions), ¢, » may be written as

M
bjk = E 51 k19541 k1
I=N

for some real numbers a;j41 k4. To show (7.4)) is then a matter of computing bounds
on the number of £ for which Ajz;; is nonempty.

Theorem 7.1. Letd = 1, D = (0,1), U = H = Ly(D), B = I, and A =
—Au = —(—(au') + cu) wz’th smooth coe]fﬁcz'ents a>ay>0,c>0, and W4 as

E Let (Qf)(x fo y) dy with ¢ € W (D x D). Let {¢jr}
be a frame with dual fmme {qﬁj,k} as constmcted in [8] with properties (H1) and
(H2) with m > 2 and m > 2 so large that holds with v =4 = 1. Then, for
J={(,k) €T :j <N} and h =2, we have

in Section

B([IWat) - Wi, (1)) < Cn'.

Proof. We use Theorems and with 8 = 2. We must bound <Q$i7l7éj7k>,

(A1, djk), and (AZg; 1, AZ ;).
By using (H2), first with s = 2, then with s = 1, we obtain

Qs djx)| < C2_j(2+1/2)|Q¢~>z‘,z|W2,w(supp i)
=230 ess-sup | (gl (z, ), i)

TESUpP Pk
(7.6) <02 ¥ esssup |42y (2, )]
TESUPD Hj, 1, YESUPD Pi 1
(.7) < C2H gl oy < C27HH

Since @ is symmetric we have the same estimate with 7 and j interchanged, so that

(78) |<Q¢Z I8 d)j k>‘ < C2 3 mdx(z,] mln(z,])7

and, alternatively,

(7.9) (Qébit, Di)| = \/<Q¢;i7la(£j,k><Qq3j,kvéi,l) < 2720,
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By our assumption on A we have (A~1u) fo y) dy, where Green’s
function g € WH°°(D x D). Thus, by (H2) Wlth s=1 and ( ) we get

_ _ 34 _
(AT 0, 05,6 < C27 27 [AT s 1l wrioo (supp 6.)

[ st
0

=22 ess-sup

TESUPP @j &
1
(7.10) <Cr¥ e o) [ ou)dy
TESUPP ¢k, YESUPP P; 1 0
1
_ 35
(7.11) < €274 gy~ ) / 1661()| dy
0

) < 02787 E

By the symmetry of A~!, we conclude
(7.12) (AT i, dy0)| < C270FD.

This also holds for the Haar basis used in Subsection [[-1] because it has m = m = 1.
Since [[A2u| 1,0y < Cllull g (p for u € HY(D), we have, by (7.I) with s = 1,

(7.13) [(AZ ¢, A2 )| < €20 = Cmax(ing)+minig)

If Ajri == supp ¢jr Nsupp¢;; = O (cf. (7.3)), then the left hand side of (7.13)
vanishes. This is because A is a local operator. More precisely, if Ajj; = 0, then

(A2 600, A20;) = (ad) ), ) i) + (chits &) = 0.
To finish the proof we use Theorem (7.2), (7.9), (7.12), and h = 2=, to get

E(IWa) - WiOF) < 3 Y 5 ST (A 000 0,0(Qbus i)

i=N+1leJ; j=N+1keJ;

<C Z Z 9i9ig—(i+1)9=2(i+j) — C( Z 9~ 21) < 024N — opt,

i=N+1j=N+1 i=N+1

Finally, by Theorem [5.1| with 8 = 2, . , and -, we get
E([Wi®) - Wi, <t>||2) SO S Y (Ao A0 (@ G

i=jo l€J; j=Jjo kEJ;
N N

<ot Z $ (i) gmax(i) bminGid)g -~ § max(id)~  min(i)
i=Jjo j=Jjo
oy Z Z o= (max(i.)+min(ig) _ crpt Z Z o= (i+5)
i=Jjo j=Jjo i=jo j=Jo
N 2
- Ch4( 3 2—%1) < Ch.
1=Jjo

This completes the proof. (I
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Remark 7.1. In applications the kernel ¢ and its derivatives up to a certain degree
often exhibit a decay; that is, D%q(z,y) — 0 as |z — y| — oo for |o| < M. This
decay can be taken into account when estimating and instead of using the uni-
form estimate that leads to one obtains additional decay for terms involving
basis functions with disjoint supports based on the decay of the appropriate deriva-
tive of ¢. The same applies when estimating by in case the differential
operator is of higher order with corresponding decay of its Green’s function. This
additional decay results in a lower truncation level N than the N = —logy(h)
required in Theorem to balance the order of the truncation error and the dis-
cretization error. This is also the case when using a wavelet (dual wavelet) basis
with higher order of cancelation and smoothness provided the noise is more smooth;
that is, if m > 2 we may obtain a higher rate in .

Remark 7.2. If the noise is less smooth but still trace class, say ¢ € W1>°(D x D),
then the convergence rate in Theorem reduces to O(h?), but no smoothness of
the wavelets is needed and lower order cancelation property suffices; that is, the
simple Haar basis can be used. For example, the case @ := A~! is covered here,
corresponding to an SPDE arising in path sampling problems for SDE’s [16].

7.3. Computational considerations. The key to the approximation of the noise
is the ability to simulate the truncated process W (t), or for practical purposes,
in the presence of time discretization, its increments AW (t) = W7 (t + At) —
W (t). In order to do this, one needs to generate AW (t), an R#7-valued Gaussian
random variable with covariance matrix (Q s (t))jx = At(Qj, di). This can be
achieved in the following way. First generate an R#“/-valued random variable A
with independent standard Gaussian components. Then compute the Cholesky
factorization @ A5, (t) = Ls(t)Ls(t)* of the covariance matrix of AW (t). Finally,
AW (t) = L;(t)Z (in distribution) and AW (t) = 3=, ;(AW (1)) ;¢

In [2] it is shown that the Cholesky factorization can be obtained by successively
updating an initial factorization by adding rows successively to the initial Cholesky
factor. It is also shown there that adding one row and column results in roughly
log?(#.J) operations (as #.J — 0o0) when updating the Cholesky factorization for
a nearly sparse matrix and that the Cholesky factor of such a matrix remains
nearly sparse. This implies that the cost of computing the Cholesky factorization is
O(#Jlog?(#J)) and the matrix vector multiplication with L;(t) can be achieved
in O(#J log(#J)) operations. If the kernel g of the covariance operator @) exhibits
decay as discussed in Remark then the matrix @ AW (1) will be nearly sparse
(see [2] and [3]). Thus the above computational complexity applies. If one wants to
refine the finite element mesh, then one needs to truncate the process on a higher
level J D J in order to preserve the order of the finite element method according
to Theorem However, since the approximation of the process is independent
of the finite element method and it is expanded in a hierarchical basis, there is no
need to simulate the process, or its increments, from scratch. The new covariance
matrix @, (t) is obtained from @, (t) by adding #J" — #J new rows and
columns. If one stores the initial random variable Z one just generates #J' — #J
additional independent standard Gaussian random variables, updates the Cholesky
factor L;(t) to Ly (t) by computing #J" — #J new rows and then updates the
AW (t) to AW (t) by computing the last #.J’ — #.J components.
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Remark 7.3. Since the decay in the error estimate in Theorem [7.I] comes mainly
from the smoothness (and decay) of ¢ it might be worthwhile to interchange the
roles of the primal and dual basis. Usually the primal basis is easier to work with
and if the dual basis does not have some of the desired properties (cancelation,
small support), then the loss in the error estimate can be compensated, if the
kernel ¢ is smooth (or decays) enough, by using the good properties of the primal
basis. This will also make the computation of the elements of the relevant matrix

(Q s (1)1 = At{(Qej, dr) simpler.

Remark 7.4. The finite dimensional process P, W (t) could be simulated directly
via a finite eigenfunction expansion which is very expensive in general as it requires
the diagonalization of P,Q Py in V},. The other main drawback of this approach in
contrast to the biorthogonal wavelet expansion, is that it does not allow updates.
That is, when using a different mesh, the eigenvalue computation has to be done
from scratch, while for the wavelet expansion of W the existing computations can be
updated. Nevertheless, this direct approach is quite feasible in the case of stationary
kernels analytic at 0, such as the Gauss kernel, and the orthogonal expansion of
P, W (t) can be truncated severely without losing the asymptotic order of the finite
element method [19].
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