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Abstract. We prove an additional result on the linearized Cahn-Hilliard-

Cook equation to fill in a gap in the main argument in our paper which was

published in SIAM J. Numer. Anal. 49 (2011), 2407–2429. The result is a
pathwise error estimate, which is proved by an application of the factorization

argument for stochastic convolutions.

1. Introduction

The proof of [3, Theorem 5.3] is incomplete and in the present note we provide
an additional convergence result to fill in the gap. In order to do so one has to
replace [3, Theorem 2.2], which is quoted from [4], by Theorem 2.1 below. Theo-
rem 2.1 provides optimal order of convergence for the linearized Cahn-Hilliard-Cook
equation in a stronger topology than the one in [3, Theorem 2.2] in exchange for a
slight additional regularity requirement on the covariance operator Q. In particu-
lar, it implies pathwise convergence with essentially optimal rate for the linearized
equation, which is an important ingredient in the proof of the main result in [3].

The note is organized as follows. In Section 2 we state and prove the result which
is missing from [3] and in Section 3 we outline what additional small changes one
has to make in the arguments of [3] as a consequence.

2. The convergence result

For the explanation of notation we refer to [3].

Theorem 2.1. Let ε ∈ (0, 1
2 ], β ∈ [1, 2], and p > 2

ε . Then there is C = C(p, ε, T )
such that(

E
(

sup
t∈[0,T ]

‖WA(t)−WAh
(t)‖p

))1/p

≤ Chβ‖A(β−2)/2+εQ1/2‖HS.

Proof. Let ε, β, p be as stated and select α ∈ ( 1
p ,

ε
2 ). We denote E(t) = e−tA

2

,

Eh(t) = e−tA
2
h , and let Fh(t) = E(t) − Eh(t)Ph be the deterministic error opera-

tor. From [1, Lemma 5.2] and a standard interpolation argument we obtain error
estimates with smooth and non-smooth data:

‖Fh(t)v‖ ≤ Chβ‖Aβ/2v‖, t ≥ 0,(1)

‖Fh(t)v‖ ≤ Chβt−(β−γ)/4‖Aγ/2v‖, t > 0, γ ∈ [−1, 1].(2)
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Following the factorization method [2, Chapter 5], we write

WA(t) = cα

∫ t

0

E(t− σ)

∫ t

σ

(t− s)−1+α(s− σ)−α dsdW (σ)

= cα

∫ t

0

(t− s)−1+αE(t− s)
∫ s

0

(s− σ)−αE(s− σ) dW (σ) ds

= cα

∫ t

0

(t− s)−1+αE(t− s)Y (s) ds

and, similarly,

WAh
(t) = cα

∫ t

0

(t− s)−1+αEh(t− s)
∫ s

0

(s− σ)−αEh(s− σ) dW (σ) ds

= cα

∫ t

0

(t− s)−1+αEh(t− s)Yh(s) ds.

Therefore,

WA(t)−WAh
(t) = cα

∫ t

0

(t− s)−1+αFh(t− s)Y (s) ds

+ cα

∫ t

0

(t− s)−1+αEh(t− s)[Y (s)− Yh(s)] ds =: I1(t) + I2(t).

First, by Hölder’s inequality and (1),

E

(
sup
t∈[0,T ]

‖I1(t)‖p
)

≤ cα

(∫ T

0

(
s−1+α‖Fh(s)A−β/2‖

) p
p−1

ds

)p−1 ∫ T

0

E
(
‖Aβ/2Y (s)‖p

)
ds

≤ Cαhβp
(∫ T

0

s
p

p−1 (−1+α) ds

)p−1 ∫ T

0

E
(
‖Aβ/2Y (s)‖p

)
ds.

The first integral is finite because p > 1
α . To bound the second integral, first

notice that AY (s) is a Gaussian random variable for all s ∈ [0, T ] and hence, by [2,
Corollary 2.17],

E
(
‖Aβ/2Y (s)‖p

)
= E

(∥∥∥∫ s

0

(s− σ)−αAβ/2E(s− σ) dW (σ)
∥∥∥p)

≤ C
(∫ s

0

∥∥(s− σ)−αAβ/2E(s− σ)Q
1
2

∥∥2

HS
dσ
) p

2

= C
(∫ T

0

s−2α
∥∥A1−2αE(s)A(β−2)/2+2αQ

1
2

∥∥2

HS
ds
) p

2

≤ CKp
α‖A(β−2)/2+2αQ

1
2 ‖pHS,

where we used that∫ T

0

s−2α
∥∥A1−2αE(s)v‖2 ds ≤ K2

α‖v‖2, for α ∈ [0, 1
2 ).
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Therefore, since 2α ≤ ε,

E

(
sup
t∈[0,T ]

‖I1(t)‖p
)
≤ Cα,pThβp‖A(β−2)/2+εQ

1
2 ‖pHS.

To bound I2, we use Hölder’s inequality and ‖Eh(s)‖ ≤ 1 to get

E

(
sup
t∈[0,T ]

‖I2(t)‖p
)

≤ cα

(∫ T

0

(
s−1+α‖Eh(s)‖

) p
p−1 ds

)p−1 ∫ T

0

E (‖Y (s)− Yh(s)‖p) ds

≤ cα

(∫ T

0

s
p

p−1 (−1+α) ds

)p−1 ∫ T

0

E (‖Y (s)− Yh(s)‖p) ds.

Again the first integral is finite because p > 1
α . To bound the second integral,

notice that Y (s)− Yh(s) =
∫ s

0
(s− σ)−αFh(s− σ) dW (σ) and hence it is Gaussian

for all s ∈ [0, T ]. Therefore, using [2, Corollary 2.17] again, together with (2) with
γ = −(2− β − 2ε) ∈ [−1, 1], we get

E (‖Y (s)− Yh(s)‖p) ≤ C

(∫ T

0

s−2α‖Fh(s)Q
1
2 ‖2HS ds

) p
2

= C

(∫ T

0

s−2α‖Fh(s)A(2−β−2ε)/2A(β−2)/2+εQ
1
2 ‖2HS ds

) p
2

≤ Chβp
(∫ T

0

s−2αs−1+ε ds

) p
2

‖A(β−2)/2+εQ
1
2 ‖pHS

≤ Cp,α,εhβp‖A(β−2)/2+εQ
1
2 ‖pHS,

because ε > 2α. Thus,

E

(
sup
t∈[0,T ]

‖I2(t)‖p
)
≤ Cα,p,εThβp‖A(β−1)/2+εQ

1
2 ‖pHS

and the proof is complete. �

3. The necessary changes

The main gap in [3] occurs when deriving the last inequality on page 2426 using
[3, Theorem 2.2]. Indeed, one could then only conclude the existence of a set
Ωε = Ωε,h,t such that the inequality holds. The dependence on t of the set then
compromises the rest of the proof of [3, Theorem 5.3] and hence also the proof of [3,
Theorem 5.4]. This can be avoided by using Theorem 2.1 instead. The dependence
on h does not cause a problem but it should appear explicitly.

First, [3, Corollary 3.2] has to be modified as follows.

Corollary 3.1. Assume that ‖Aγ/2Q1/2‖HS < ∞ for some γ > 1 and that X0 is
F0-measurable with values in H1 satisfying

‖X0‖2L2(Ω,H1) + ‖X0‖4L4(Ω,L4) ≤ ρ
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for some ρ ≥ 0. If X is a weak solution of (3.3) and Xh is the solution of (3.6),
then

E
[

sup
t∈[0,T ]

(
‖∇X(t)‖2 + ‖X(t)‖4L4

)]
≤ KT ,

E
[

sup
t∈[0,T ]

(
‖∇Xh(t)‖2 + ‖Xh(t)‖4L4

)]
≤ KT ,

where KT depends on ρ,KQ, T . Moreover, for every ε ∈ (0, 1) and h > 0, there is
Ωε,h ⊂ Ω with P(Ωε,h) ≥ 1− ε and

‖∇X(t)‖2 + ‖X(t)‖4L4
≤ ε−1KT on Ωε,h, t ∈ [0, T ],

‖∇Xh(t)‖2 + ‖Xh(t)‖4L4
≤ ε−1KT on Ωε,h, t ∈ [0, T ],

‖X(t)‖21 + ‖Xh(t)‖21 ≤ ε−1KT on Ωε,h, t ∈ [0, T ],

‖WA(t)‖23 ≤ ε−1KT on Ωε,h, t ∈ [0, T ],

‖WA(t)−WAh
(t)‖ ≤ ε−1KTh

2 on Ωε,h, t ∈ [0, T ].(3)

The novelty in Corollary 3.1 compared to [3, Corollary 3.2] is the explicit depen-
dence on h in Ωε,h instead of Ωε and the additional inequality (3). The latter is a
consequence of Theorem 2.1 with β = 2, proved by using Chebychev’s inequality
and noting that ‖Aγ/2Q1/2‖HS <∞ for some γ > 1 implies that ‖AεQ1/2‖HS <∞
for all 0 < ε ≤ 1

2 .
Next, in [3, Theorem 5.3] and in its proof, the set Ωε has to be replaced by

Ωε,h. Furthermore, the proof of the last inequality on page 2426, where the main
gap appears, is now included in the new Corollary 3.1. Finally, in the proof of [3,
Theorem 5.4], the set Ωε has to be replaced by Ωε,h.
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