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ABSTRACT. We study a quasi-static model for viscoelastic materials based on a
constitutive equation of fractional order. In the quasi-static case this results in
a Volterra integral equation of the second kind with a weakly singular kernel in
the time variable involving also partial derivatives of second order in the spatial
variables. We discretize by means of a discontinuous Galerkin finite element
method in time and a standard continuous Galerkin finite element method in
space. To overcome the problem of the growing amount of data that has to
be stored and used in each time step, we introduce sparse quadrature in the
convolution integral. We prove a priori and a posteriori error estimates, which
can be used as the basis for an adaptive strategy.

1. INTRODUCTION

The fractional order viscoelastic model, i.e., the linear viscoelastic model with
fractional order operators in the constitutive equations, is capable of describing
the behavior of many viscoelastic materials by using only a few parameters. The
drawback of using fractional order operators in the constitutive equations is that
they increase the mathematical complexity in the sense that the operators are
nonlocal in time. This means that, when computing the fractional order derivative
or integral, all function values from the previous time points need to be stored and
used at each new time point. This leads to to an excessive use of memory and high
computational cost. To make the fractional order models more practical to use
in the analysis of complex viscoelastic structures, efficient algorithms that employ
the discontinuous Galerkin method in time together with sparse quadratures have
been developed in Adolfsson et al. (2003, 2004). Goal-oriented error estimates and
adaptivity for the time integration are included in the algorithms.

It is important to be able to investigate the capability of the numerical model
to produce simulations with high accuracy. For this reason estimates of the error
due to discretization in both space and time, as well as adaptive strategies based
on these estimations, need to be included. Our previous work emphasized the
temporal discretization. Here we develop a space-time finite element formulation
in the quasi-static case (i.e., inertia effects are neglected). The formulation includes
error estimates and an adaptive strategy. We use a convolution integral formulation
of the fractional order viscoelastic model. The convolution kernel is weakly singular
and of Mittag-Leffler type. The resulting equation of motion is then a Volterrra
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integral equation of second kind with a weakly singular kernel in time and it involves
partial derivatives of second order in space.

The present study is based on related results for the corresponding elastic prob-
lem in Johnson and Hansbo (1992). A priori error estimates for equations with
smooth kernel were proved by Pani et al. (1992). Space-time discretization for frac-
tional order viscoelasticity has also been studied by Shaw and Whiteman, see, e.g.,
Shaw and Whiteman (2004). The unique feature of the present work is the use of
sparse quadrature.

2. FRACTIONAL ORDER LINEAR VISCOELASTICITY

Let 0;; and u; denote the usual stress tensor and displacement vector and define
the linear strain tensor:

1/0u; Ouj
i = §(ax,- o)
With the decompositions
$ij = 0ij — 30kk0ij, €ij = €ij — 5€xr0ij,
we formulate the constitutive equations, Bagley and Torvik (1983),
s5ij(t) + 771 D7 s;5(t) = 2G e (t) + 2GT D e;5(t),
okk(t) + 752 Do (t) = 3K oo€rk(t) + 3K 752 D €1 (t),
with initial conditions

Sij (0+) = 2G€ij (0+), Okk (0+) =3Keyy (0+),

meaning that the initial response follows Hooke’s elastic law. Note that we have two
relaxation times, 71,7 > 0, and fractional orders of differentiation, oy, as € (0,1),
where the fractional order derivative is defined by

DEf(0) = DD, 1) = Dig—s [ (4=a)2f(5) s

We solve for o by means of Laplace transformation, Enelund and Olsson (1999):
G-Gy [*
sii(®) =26 (e5() = T2 [ it~ 9)eis(9) ),
0

t
o (1) = 3K (ex (1) - % /0 folt = s)exe(s) ds),

where

0= (- (4)")

and

00 n
Eu(t) = T;] T +an)
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is the Mittag-Leffler function. We make the simplifying assumption (synchronous
viscoelasticity):

a=ar=a, T=T1=7, [=f=/f.
Then we may define a parameter -, a kernel 3, and the Lamé constants u, A,

_G-Gx K-Ku B B o
=—a =  PB=f0), p=G A=K-3G,

and the constitutive equations become

v

¢
Oij (t) = (2/1/61']' () + ek (t)éu) - / Bt —s) (Z,ueij(s) + Aegk (8)(5”) ds.
0
Note that the viscoelastic part of the model contains only three parameters:
0<vy<l, O0<ax<l 7>0.

The kernel is weakly singular:

0= (- () =5 B () v s

T \T T

and we note the properties

A(t) =0,

2 00
@ nmhmﬂ=A B(t) dt = 7(Ea(0) = Ea(e0)) =y < L.

The equations of motion now become:

pui — 0ijj = fi,  in g,
(3) u; =0, on I'p,
OijNj = i, on I'y.

We consider quasi-static motion, pu;4 =~ 0, in a domain @ C R?, d = 1,2,3. In
some of the analysis below we consider only the displacement boundary condition,
I =Tp.

3. ABSTRACT FORMULATION

We introduce the Ly norm and scalar product:

loll = ([ wda) ™, 50) = [ g,

and the function space:
L 3
v =[m@],
and a bilinear form on V:

a(u,v) = /Q (2[161']' (w)€i; (V) + Aesi(u)ej; (v)) dz.



4 K. ADOLFSSON, M. ENELUND, AND S. LARSSON

Recalling the constitutive equations we obtain the following weak formulation of
the quasi-static equations of motion: find u(t) € V such that

t
(4) a(u(t),v) = / B(t — s)a(u(s),v)ds + (f(t),v) VveV.
0
This corresponds to the strong formulation:
t

5) Aut) = [ (¢ = s)dus)ds + £(0),

0
where

(Au); = —(2peii(u) + Aexr (u)dij) ;-

4. REGULARITY OF SOLUTIONS

In some of the analysis below we assume the regularity estimate
(6) [vll2() < CsllAv]| Yo e H*(Q)NV.
This holds if T = T'p in (3) and Q is a convex polyhedron. In the presence of
non-convex corners or mixed boundary conditions (i.e., I'p and 'y are both non-
empty), this global regularity may not hold, see Remark 1 below. The presence of

the constant Cg in the results below indicates where the assumption (6) is used.
Taking norms in (5) and recalling (2) we obtain

t
[ Au(?)]] S/O Bt = s)l|Au(s)| ds + (| F D)l

< Bll, )1 Aul|L oo 0,7500) + 1l Lo (0,75L5)
=7[|Aul|r o 0,7;10) + [ fllLo(0,7;15)-

Together with (6) this implies the following spatial regularity estimate for solutions
of (5):

Cs
(7) lullz0,7;m2) < CsllAullr_0,1;L,) < T—~ ,YHf”Lm(O,T;Lz)'

In order to investigate the temporal regularity we differentiate the equation (5)
with respect to t:

Aug(t) = Dy / B(s) Aug(t — 5) ds + £,(t)
- / B(t — 5) Auq(s) ds + B(t) Au(0) + fu(t)

t
_ /0 Bt — 5) Aug(s) ds + () £(0) + fult).
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Taking norms and recalling (1) we obtain

t
llue (D] S/O B(t = s)llue(s)ll ds + BEIAT FO) + |A™ fe )]
SC/O (t = 8) " lue(s)ll ds + Ct AT O] + [ AT (@)

t
< C/ (t = 8) " lue(s)l ds + C(T AT fllwa o,1520), 0 <t T.
0

A generalized Gronwall lemma (allowing a weak singularity t~'*%) then implies
®) lue@Il < OO A7 fllwsorizay, 0<t<T.
The constant C(T') grows exponentially with 7" so this inequality is only useful over
short time intervals.

5. SPATIAL APPROXIMATION

We introduce a standard finite element space V;, C V consisting of continuous
piecewise linear functions on a triangulation {K} of Q. We define the mesh function
h as the piecewise constant function given by h(z) = hg for x € K, and we define
hmax = Imax hK.

The spatially semidiscrete finite element problem is: find up(t) € V4 such that

9) a(up(t),vp) :/0 B(t — s)a(up(s),vn) ds + (f(t),vn) Vup € V.

Defining Ap, : Vi, = V3 by

(10) (Apwp,vp) = alwp,vy) Ywp, vy € Vi,
and the orthogonal projection P, : Ly(Q2) — Vj, by

(11) (Prg,vh) = (g9,vn) Vg € La(2),vh € Vi,

we may write the equation in strong form as

t
(12) Avun(t) = [ 8t~ ) Apun(s) ds + P (D)
0
We begin by proving an a priori error estimate in the energy norm, defined by
[|lv]lv = v/a(v,v). We use the Ritz projection Ry, : V — V} defined by
(13) a(Rpv —v,vp) =0, Yo, € V.

This means that Rpv is the finite element solution of the stationary elastic problem
who’s exact solution is v. We recall error estimates for R;,. In the energy norm we
have

(14) [Brv = vllv < CIhD?v]| < Chumax|lv]| 2.
By the standard duality argument we also have

(15) [Rho = || < CCshiallv]l 2.
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Theorem 1. Let u and uy, denote the solutions of (4) and (9), respectively, and
let e(t) = up(t) — u(t) denote the error. Then

1+~
(16) llellz .. o,7;v) < —||Rhu_u||L°°(0,T;V)
1+
(17) <Cg 7||hD ull o (0.1:2)
1
(18) < CCg—17

Whmax”f”Lm(o,T;Lg)-

Proof. Since Vi, C V we may take v = vy € V4 in (4) and subtract it from (9) to
get

t

(19) ale(t),vn) — | Bt —s)ale(s),vp)ds =0 Vo, € V.
0

Hence, with p(t) = Rpu(t) — u(t),

0 0
1+ ”ﬂ”lq)”e”Loo(O,T;V)||p”Loo(0,T;V) + 1811z el 0,75

< A+ ellzworvlleloe o,z + el o.rv)»

which proves (16). Combining this with (14) we then obtain (17) and finally (7)
proves (18). O

Remark 1. The error estimate (17) means

llellz .o, 7;v) < C

sup (Z hK||D2U||L2(K))2)1/2.
K

—’Yte[OT

The regularity estimate (6) is only used to prove (18). So if (6) does not hold and
u is not globally in H?2, then we may replace (17) by

147 ) . 2\ 1/2
lellznorv) < C7—) sup (; (min{|Dull . x0), b1 Dullr 0 1))

Here we may use ||Dul|r, (k) for elements K where u ¢ H*(K).

The next result is an a priori error estimate in the Ly-norm.



FRACTIONAL ORDER VISCOELASTICITY 7

Theorem 2. Let u and uy, denote the solutions of (4) and (9), respectively, and
let e(t) = up(t) — u(t) denote the error. Then

1+~
(20) ”e”Lw(O,T;Lz) < mHRhU - UHLOO(O,T;LQ)
14+
(21) < CCs T Monsallullnc 02500
1+7y
(22) < ch’ (1 — 7)2 h’?nax”f”Lw(O,T;Lz)'

Proof. We use a duality argument based on the stationary adjoint elastic problem
with arbitrary data g: find ¥ € V such that

(23) a(w,¥) = (w,9), VweV.

Its strong form is Ay = g. We write n = ¢ — Ry, p(t) = Rpu(t) — u(t), and use
(13) and (23) to get

ale;n) = a(p,¥) = (p, AY) = (p,9), ale;P) = (e, A¢) = (e, 9).

Taking w = e(t) in (23) and using (19), then leads to
t t
(e(t),9) = ale(t), ¥) — / B(t — s)a(e(s), ¥) ds + / B(t — s)a(e(s), ¥) ds
t t
= a(e(t),n) - / B(t — s)ale(s),n) ds + / B(t — s)ale(s), v) ds

t t
= (o(t),9) / B(t — 5)(p(s), 9) ds + / B(t — 5)(e(s), g) ds

< (V4 1B, Yol o152 gl + 184l 0,720l
< (Ut Dol 01582 Il + Vel o752 911

With g = e(t) we conclude (20). Combination with (15) and (7) then proves (21)
and (22). O

We next turn to a posteriori error estimates. We introduce the residual:
t
28 (R0 =alun(®),0) - [ At = s)a(un(s),0)ds = (F(O,0) Vo,
0
and note that (19) means
(25) (R(t),vn) =0 Vo, € Vj,.
Combining (4) and (24) we obtain an equation for the error: e(t) € V satisfies

t
(26) a(e(t),v) _/0 B(t — s)a(e(s),v)ds = (R(t),v) Vv e V.

We prove
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Theorem 3. Let u and uy, denote the solutions of (4) and (9), respectively, and
let e(t) = up(t) — u(t) denote the error. Then

C
lellzw,7sv) < T MRl (0,7:10),
-
where the computational residual is divided into three parts:
R=R; + R + R3,
which are defined piecewise with respect to the mesh {K}, i.e., for x € K they are
defined by

Ry (2,1) = =V - oup) (&, 1) + / B(t = )V - o(un)(, 5) ds — [ (z,1),

Ry(z,t) = 3h 2K |20 (un) (-, 1) - 0]l agorcy

t
R3(z,t) = %h_l/QlKl_I/z’/ Bt = s)lllo(un)(-,5) - n]llL,(ok) ds-
0
Here
o(up) = 2ue(up) + AV - upl.
and [o(up) - n] is the jump in the normal stress over the element edge OK.

Proof. Since R(t) satisfies the orthogonality (25), we may use the results of Johnson
and Hansbo (1992) to prove the following estimate of the residual:

(R(8),0) < CIhR| s oramlitlly Vo€ V.
We then use v = e(t) in (26):

t
eIl = (R(#), e(t)) +/0 B(t = s)a(e(s), e(t)) ds

< C|hR|| L 0,151 lellL. 0,75v) + ||/3||L1||e||2Lw(o,T;V)
< C|IAR||L (0,758 lell 2 0,75v) +l€llZ . 0,7:v)
which leads to
lle(®)llv < ClIhR||L,(0,7;10) + VellLo0,1:v)>
and the desired result follows. |
We also have an estimate in the Lo-norm.

Theorem 4. Let u and uy, denote the solutions of (4) and (9), respectively, and
let e(t) = up(t) — u(t) denote the error. Then, with R as in Theorem 3,

CCs
-y

llellz . 0,750,) < IW*Rl|z.. (0,7:1.0)-

Proof. Since R(t) satisfies the orthogonality (25), we may use the results of Johnson
and Hansbo (1992) to prove the following estimate of the residual:

(R(t),v) < CIW°Rllz 0,700 lWllm= Yo € VN H?(9).
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We then use w = e(t) in (23) and v = v in (26):
(e(t),9) = ale(), ) = (R($),9) + / B(t — s)a(e(s), ) ds

¢
— (R0~ Rt} + [ (e s)(e(s),9)ds
0
< ClIW* Rl oo (0,782 19| o (0,7, 72) + 1Bl L4 llel| 2 0,752 9]
< CCS”hQR”Lm(O,T;Lz)||g|| + el 0,752 19l-
Here we also applied the regularity estimate (6) to v, recalling that Ay = g. With

g = e(t) we obtain the desired result. O

6. TEMPORAL DISCRETIZATION — DISCONTINUOUS GALERKIN

We introduce a temporal mesh, 0 =ty <t; < --- <t 1 <t, <--- <ty =T,
with intervals I, = (t,—1,t,) and steps k,, = t, —t,—1, and discrete function space:

WD:{w:w(t):wn fort € I,, w, € Vy, n:l,...,N}.

The completely discrete finite element problem is: find U € Wp, such that for
n=1,...,N

0 [ (a@aro) - [ 8- a).v0)ds
- (f(t),v(t))) dt=0 YveWp.

Writing U,, = Ulr, € Vi, v|1, = x € V3, and recalling Ay and Pj from (10) and
(11), we note that this is a time-stepping method, where in each step we solve the
equation, cf. (12),

ApUn — qn(AnU) — Pofn =0,

with
~ 1 [tn
fn = k_ e f(t) dt
gn(ARU) = k / B(t — s)ARU (s) ds dt
th—1
1 ti At
= / Bt — s)ApU; dsdt
tne 1j 1/t
Z iwni AnUj,
1 Nt
Wnj = T / B(t —s)dsdt, t; At =min(t;,t).
nij Jt,_1 Jtja
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Thus, in each step, we have to solve

n—1

(I = nwnn) AnUn = Y kjwn; AU + Py fn,
j=1
where according to (1), for k,, small,
1 [t gt

B(t — s)dsdt

knwnn = +—
kn tn—1 JEn—_1

@
~mrarasals) <t

Therefore the equation is solvable. Note that the right-hand side of the above
equation is a convolution sum, which requires that the whole history is stored and
which must be re-computed in each time step. This leads to an excessive use of
memory and high computational cost. This can be alleviated by means of sparse
quadrature as shown in Section 8 below.

7. ERROR ESTIMATES
We begin by proving an a priori error estimate.
Theorem 5. Let u and U denote the solutions of (4) and (27), respectively, and

lete(t) =U(t ) u(t ) denote the error. Then, with the piecewise constant function
u defined by a(t) = - fl s)ds fort € I,

147 _
(28) llellzos(o,1;0) < T”Rhu ~ullLe(o,mins) + 72 7||U — || Lo (0,7;L2)

1+'y

1
h2 max ¥l Lo (0,75H2) + I el ny(1,5L0) -

(29) < CCsy o max

Remark 2. The last term can estimated as follows

max (el i) < max min (el 2o, Ballllz i)

Hence this term converges as O(k,,) except near t = 0, where according to (8)

k1
|mmmﬂﬂwq/t4wﬁ:cw_
0
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Proof. We imitate the proof of Theorem 2. Taking w = e(t) in (23) and using (27),
leads to

/ (e(t), ) dt

[ (ot~ [ 506= et vy s+ [ 5 yatels), ) as) ai

n

‘/In /575—3 8),77)ds+Atﬂ(t—s)a(e(s),¢)ds) dt
/ /ﬂt—s s),g)ds_}./otﬂ(t—8)(6(3),g)d5) dt

<k (14 ||ﬂ||L1)||p||Lm(0TL2>||g|| + FallBll el 0,752 9]
<k,

A+ Mol Lo, 7520 9l + Envllell o 0,702 9l

With e, = - L[ e 7. €(t) dt this implies

ns9) < (14 NP0,z +lelrnioria) ol
and hence, using g = é,,
lex]] < (1 + ol Leo,1:L2) + VellLow(o,75L2)-
To complete the proof we note that, since U(t) = U,, we have U — 4 = &, so that
llellz o 0,7520) < WU =@l (0,1;20) + |8 = ullL 0,7;L0)

= ax, llenll + llu — ull Lo (0,7:L5)

LA +NPlrw,1;:L2) + Yllellzoo,7522) + 18 — ullL,0,7:L)-
This proves (28). Then (29) follows by (15) and the mean value theorem. O
We finally prove an a posteriori error estimate.

Theorem 6. Let u and U denote the solutions of (4) and (27), respectively, and
let e(t) = U(t) — u(t) denote the error. Then

||e||L°°(0TL2)_ (CCS||h2R”L (0,7;L2) + CllRall L. OTL2))

where the spatial residual R = Ry + Ry + Rz is as in Theorem 8 and the new
temporal residual Ry is defined in each mesh simplexr K by

t
Ru(z,1) = (An)U(z,1) — / B(t — 8)(AnU)(z, 8) ds — (Puf) (@, 1).

Proof. The proof is based on a time-dependent adjoint problem: find ¢(t) € V such
that

T
(30) a(w, ¢(t)) —/t B(s — t)a(w, ¢(s)) ds = (w, g(t)) Yw € V.
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Taking w(t) € V and integrating leads to

T t T
| (atwer o) = [ 5= satwis)ew)ds) at = [ wio.gw)de
Vw € Loo(0,T; V).

Summing (27) from 1 to N gives

/ (e ®.0(0) - / Bt = )alU(e),v(0) ds — (£(1),0(8)) dt =0 Vo € W,
0 0

and integrating (4) from 0 to T' = tn gives

T t
| (atat), o)~ [ 8¢~ s)atuls), o) ds ~ (50, v(e)) dt = 0
0 0
Yo € Loo(0,T; V).

Subtracting them we get

T t
@) [ (ate®.00) — [t~ a(e(s),v(0) ds = (£, ) dt =0
Yv € Wp.

We define the residual by
T
| R0 de
0

T t
= [ (s o®) - [ 8t = aU(s),00) ds - (7(0), ) de
0 0
Yo € Loo(0,T;V).

We get the error equation

[ (ateo@n - [ 5= syt as) = [ w0 a
Vo € Loo(0,T; V).

We now take w = e in the adjoint equation and v = ¢ in the error equation to get,
using v = Pr¢ € Wp in (31),

T T
/ (e(t), g(¢)) dt = / (R(1), (1)) dt
0 0
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Here the first term on the right is of the same type as the spatial residual in
Theorem 3 and the second term is the new temporal residual:

T T T -
/ (e(t), g(8)) dt = / (RE), (1) — Pud(t)) dt + / (Ra(t), (8(t) — $(1))) dt
0 0 0

< C|R*Rl|po.0,7:12) 18l 0. 7582) + 21| Rall oo (0,7520) 19| 21 0,72

CC
< thZRnL (om)ngnh(mg)+—||R4||LM<OTL2>||A L9112 0,7 10)

CCS c
s( SN Rl o) + 7 IRallzaomiea) ol o iz

Here we used the fact that the adjoint equation is formally the same as (5) so that
we have the regularity estimates

C
||¢||L1 0,T;H2) < ||g||L1(0TL2)7

C
||¢||L1(0TL2) S 1—||A 9||L1 (0,T;L2) < 1_ ||g||L1(0TL2);

which are proved in the same way as (7). We finish the proof by using that

fo ), g(t)) dt

||e||L000T-L = sup
Ok =5 II!JIILI(o,T;Lg)

8. SPARSE QUADRATURE

We briefly describe how the convolution integral can be computed by a sparse
quadrature rule introduced by Sloan and Thomée (1986) and analyzed for pure
temporal discretization of viscoelasticity in Adolfsson et al. (2004).

We introduce sparse time levels 0 = tpr, < tar, < ta, < --+ < tyr, and replace
the kernel S(t — s) by a piecewise linear interpolant:

/B(t - tMt—1)¢1,l(3) + ﬂ(t - th)¢2,l(5)= s € [tMl—17tMl]’
Bts) = I=1,...,I,
ﬂ(t_s)a s € [tML7t]7

where

tu, — S s —1tn,_
$1.(s) = }Q , B2u(8) = Tll, Ky =ty —tym_ys

are piecewise linear basis functions. Due to the singularity of 3(t — s) at s =t we
take L to be the largest integer such that ¢t — 5, > 7, where 7 is the relaxation
time in Section 2. We showed in Adolfsson et al. (2004) that the quadrature error

t ~
Fo(t) = / (B(t,s) — B(t — )U(s) ds
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is bounded by

My,
(32) 1EQllzuto,mira) < D kiens Ul
Jj=1
where
1 .
€nj = §||ﬂ”||Lm(Inz)Kl27 J =Ml*17"'7Ml7
and

Inl = [tn—l - tM“tn - tMl_l]-

Hence, we may choose the large steps K ~ vk and save on storage and computa-
tional work.

Theorem 7. Let u be the solution of (4) and U the solution of (27) with 8 replaced
by B, and let e(t) = U(t) — u(t) denote the error. Then

1 ~ .
lellzwto:2i2) < 7= (CCsIN*Rllzcto.ria) + ClBsllc 0258

+ ||EQ||L(X,(O,T;L2))7

where the spatial residual R=R +Ry +R3 and the temporal residual R4 are as in
Theorem 8 and Theorem 6 but with 8 replaced by B and Eq is bounded as in (32).

Proof. We modify the proof of Theorem 6:

T T
| tewnamar= [ R, o)
0 0
T t
= / (oW, 60) = | Bt = $)a(U(s), 6(2)) ds = (1(2), () dt
T t
= [ (aw, o) - [ At s)aU),60)ds - (7(6),6(0)
0 0
+ [ (B(t.5) = (e = 9)a(U(), 6 ds)

- / (R(1), o(0)) dt + / (Eq(t), Ad(t)) dt.

The first term is handled as in Theorem 6. The additional term is estimated as

T
/0 (Eo(t), A(t)) dt < | Ealls... 0.2 A1z, (0,110

< EgllL..(0,1;L2) lgll L, (0,7;L2)-

I—v
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

F1G. 1. Undeformed mesh.

Note that use of 3 in the residuals R; means that they can be computed in a
sparse way. The a posteriori error estimate of Theorem 7 can be used as a basis for
an adaptive algorithm as described in Johnson and Hansbo (1992) and Adolfsson
et al. (2004).

9. NUMERICAL EXPERIMENT

We illustrate the theory by a numerical experiment: Cooke’s membrane in two
dimensions, see Figure 1. We use the boundary conditions: v = (0,0) at z = 0,
g=(0,—1) at x = 1.5, and g = (0,0) on the remaining boundaries, cf. (3). We use
the model parameters: v = 0.5, 7 = 0.5, @ = 0.5. The deformed mesh at t/7 = 20
is displayed in Figure 2 with the displacement magnified by the factor 10%. The
time evolution of the node displacement at the point (1.5,1.5) is shown in Figure 3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x [m]

F1G. 2. Deformed mesh.
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2 4 6 8 10 12 14 16 18 20

F1G. 3. Time evolution.
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