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Abstract. The stochastic heat equation driven by additive noise is discretized
in the spatial variables by a standard finite element method. The weak con-

vergence of the approximate solution is investigated and the rate of weak con-

vergence is found to be twice that of strong convergence.

1. Introduction and Main Result

We consider the stochastic heat equation driven by additive noise,

(1.1)

dX −∆X dt = dW, in D × R+,

X = 0, on ∂D × R+,

X(·, 0) = X0, in D.

Here D ⊂ Rd is a convex polygonal domain and ∆ =
∑d
k=1 ∂

2/∂ξ2
k is the Laplace

operator. Let H = L2(D) with the usual norm ‖ ·‖ and scalar product 〈·, ·〉. Define
A = −∆ with D(A) = H2(D) ∩H1

0 (D) and write (1.1) as

dX +AX dt = dW, t > 0; X(0) = X0.(1.2)

Let (Ω,F ,P, {Ft}t≥0) be a filtered probability space, let Q : H → H be a self-
adjoint, positive semidefinite bounded linear operator, let W be a Q-Wiener process
in H adapted to the filtration, and assume that X0 is an F0-measurable H-valued
random variable. Then (1.2) has a unique mild solution given by

(1.3) X(t) = E(t)X0 +
∫ t

0

E(t− s) dW (s),

where E(t) = e−tA is the analytic semigroup generated by −A and the stochastic
convolution is well defined, see [1]. Note that A and Q need not commute.

We approximate (1.2) by a standard finite element method. Let thus D be a
polygonal domain such that sufficient regularity estimates hold (see (2.7) below)
and let {Sh}h>0 be a family of function spaces consisting of continuous piecewise
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polynomials of degree ≤ r − 1 with respect to a quasi-uniform family of triangu-
lations of D and such that Sh ⊂ H1

0 (D). The parameter h is the maximal mesh
size of the triangulation and r may be referred to as the order of the finite element
method.

The finite element approximation of (1.2) is, see [7],

dXh +AhXh dt = Ph dW, t > 0; X(0) = PhX0,(1.4)

where Ph : H → Sh denotes the orthogonal projection and Ah : Sh → Sh is the
”discrete Laplacian” defined by

〈Ahψ, χ〉 = 〈∇ψ,∇χ〉, ∀ψ, χ ∈ Sh.

It can be verified that PhW is a Qh-Wiener process in Sh with Qh = PhQPh and
the solution of (1.4) is given by

(1.5) Xh(t) = Eh(t)PhX0 +
∫ t

0

Eh(t− s)Ph dW (s),

where Eh(t) = e−tAh is the analytic semigroup generated by −Ah.
In order to describe the spatial regularity of functions we introduce the following

spaces and norms. Let

Ḣγ = D(A
γ
2 ), ‖f‖Ḣγ = ‖A

γ
2 f‖, γ ∈ R.

It is clear that Ḣ0 = H, Ḣ1 = H1
0 (D), Ḣ2 = H2(D) ∩ H1

0 (D) with equivalent
norms. We also need the Hilbert-Schmidt norm for bounded linear operators,

(1.6) ‖K‖2HS =
∞∑
k=1

‖Kφk‖2 = Tr(K∗K),

where {φk}∞k=1 is an arbitrary ON-basis in H, and we define L2(Ω, Ḣβ) by

‖f‖L2(Ω,Ḣβ) = E
(
‖f‖2

Ḣβ

) 1
2 =

(∫
Ω

‖f(ω)‖2
Ḣβ

dP(ω)
) 1

2
.

In [7] the following strong convergence result was proved:
Let r ≥ 2 and 0 ≤ β ≤ r and assume that ‖A−

1−β
2 Q

1
2 ‖HS < ∞ and X0 ∈

L2(Ω, Ḣβ). Then there is C such that, for t ≥ 0,

(1.7) ‖Xh(t)−X(t)‖L2(Ω,H) ≤ Chβ
(
‖X0‖L2(Ω,Ḣβ) + ‖A−

1−β
2 Q

1
2 ‖HS

)
.

(In [7] there is an unnecessary restriction 0 ≤ β ≤ 1.)
In this work we prove weak convergence, that is, convergence of Eg(Xh(t)) for

all g in a suitable class of functions. We denote by C2
b(H,R) the set of all real-

valued, twice Fréchet differentiable functions g whose first and second derivatives
are continuous and bounded. To be more precise, by the Riesz representation
theorem, we may identify the first derivative Dg(x) at x ∈ H with an element
g′(x) ∈ H such that

Dg(x)y = 〈g′(x), y〉, y ∈ H,

and the second derivative D2g(x) with a linear operator g′′(x) ∈ B(H) such that

D2g(x)(y, z) = 〈g′′(x)y, z〉, y, z ∈ H.
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We say that g ∈ C2(H,R) if g, g′, and g′′ are continuous, that is, g ∈ C(H,R),
g′ ∈ C(H,H), and g′′ ∈ C(H,B(H)). Then we define

C2
b(H) :=

{
g ∈ C2(H,R) : ‖g‖C2

b(H) <∞
}
,

with the seminorm

‖g‖C2
b(H) := sup

x∈H
‖g′(x)‖H + sup

x∈H
‖g′′(x)‖B(H).

Note that we do not assume that the function g itself is bounded. One may construct
g ∈ C2

b(H) by the following procedure: Take v ∈ H and G ∈ C2(R,R) such that
G′ and G′′ are bounded. Then g, defined by g(u) := G(〈v, u〉), is in C2

b(H). Since
g′(u) = G′(〈v, u〉)v, (1.8) below is fulfilled if v ∈ Ḣβ . A more interesting example
is provided by g(u) = 〈G(u), v〉 =

∫
D
G(u(ξ))v(ξ) dξ, where g′(u) = G′(u)v satisfies

(1.8) if v ∈ Ḣβ ∩ L∞(D). A particular case is the linear functional g(u) = 〈u, v〉.
Our main result is the following.

Theorem 1.1. Let X and Xh be given by (1.3) and (1.5), respectively. Let r ≥ 3,
0 < β ≤ 1, and assume that W is a Q-Wiener process in H with ‖A−

1−β
2 Q

1
2 ‖HS <

∞ and X0 ∈ L2(Ω, Ḣβ). Assume that g ∈ C2
b(H,R) and, in addition,

(1.8) ‖g′(u)‖Ḣβ ≤ K(1 + ‖u‖Ḣβ ), u ∈ Ḣβ .

Then there are C > 0, h0 > 0, depending on g, X0, Q, but not on T, h, such that
for h ≤ h0, T ≥ 0, ∣∣E(g(Xh(T ))− g(X(T ))

)∣∣ ≤ Ch2β | log(h)|.

Note that the assumption on Q, ‖A−
1−β

2 Q
1
2 ‖HS < ∞, is the same as for the

strong convergence estimate (1.7). The rate of weak convergence is thus twice the
rate of strong convergence, except for the logarithmic factor.

Two special cases can be high-lighted:

• If Q is of trace class, then β = 1, because ‖Q 1
2 ‖2HS = Tr(Q) < ∞. Thus,

the rate of convergence is O(h2| log(h)|).
• If Q = I, which is space-time white noise, then we assume

‖A−
1−β

2 ‖2HS = Tr(A−(1−β)) <∞.

Since the eigenvalues of A behave like λk ∼ k2/d as k →∞, this is possible
if and only if d = 1 and β < 1

2 . Then the rate of convergence is almost
O(h).

The theorem has two unnatural restrictions which are due only to our proof,
namely r ≥ 3 and the extra assumption (1.8) on g′ (see also Remark 3.1). Indeed,
after this work was completed we learned that in [5] the same rate of convergence
(without logarithm) was proved without these assumptions. However, the estimate
in [5] blows up as T → 0, while ours is uniform in T (cf. (3.4) and (3.5) below). The
proof is also more complicated than ours and the condition ‖A−

1−β
2 Q

1
2 ‖HS <∞ is

replaced by a different, but essentially equivalent, one. Time stepping by the theta
method is also included in [5]. In a more recent work, [4], a similar result is proved
for a semilinear equation in 1-D.

In this light we may say that condition (1.8) means that our result has the
flavor of superconvergence. For example, when applied with a linear functional
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g(u) = 〈u, v〉, v ∈ Ḣ1, and β = 1, it essentially coincides with the following result
from [7]:

‖Xh(t)−X(t)‖L2(Ω,Ḣ−1) ≤ Ch
2
(
‖X0‖L2(Ω,Ḣ1) + | log(h)|‖Q 1

2 ‖HS

)
.

While the literature on strong convergence of numerical approximations of para-
bolic stochastic partial differential equations is abundant, there is very little on
weak convergence. Apart from [4, 5], we are only aware of [6], which proves a
similar result but under a much stronger restriction on the test function g, and [3]
which is concerned with the Schrödinger equation.

2. Preliminaries

In this section we collect some facts and make some preparations for the proof
of Theorem 1.1.

Let S, T be bounded linear operators on the Hilbert space H and assume that
T is of trace class. Then,

Tr(ST ) = Tr(TS), Tr(T ∗) = Tr(T ).(2.1)

If, instead, T is Hilbert-Schmidt, then by (1.6) and (2.1),

(2.2) ‖T‖HS = ‖T ∗‖HS, ‖TS‖HS = ‖S∗T ∗‖HS, ‖ST‖HS ≤ ‖S‖‖T‖HS.

Under the assumptions on the finite elements that we made in Section 1 we have
the following inequalities. We state them only for the ranges of parameters that we
need. First we have the inverse inequality,

‖Aγhuh‖ ≤ Ch
−2γ‖uh‖, uh ∈ Sh, γ ∈ [0, 1].(2.3)

We also have the following equivalence of norms in Sh:

‖Aγuh‖ ≤ C‖Aγhuh‖, uh ∈ Sh, γ ∈ [0, 1
2 ],(2.4)

and (by the H1-boundedness of Ph)

‖AγhPhu‖ ≤ C‖A
γu‖, u ∈ Ḣγ , γ ∈ [0, 1

2 ].(2.5)

Moreover, for 0 ≤ δ ≤ 1
2 , δ ≤ ρ ≤ 1, we have

‖Aδ(Ph − I)A−ρ‖ ≤ Ch2ρ−2δ.(2.6)

This is a well-known approximation property for Ph. Finally, the standard error
estimate for the linear elliptic finite element problem can be formulated as

‖(A−1 −A−1
h Ph)f‖ ≤ Chs‖A

s−2
2 f‖, s ∈ [2, 3].(2.7)

(This requires some assumptions on the polygonal domain D.) The above inequal-
ities are well-known in the special cases when the parameters γ, δ, ρ, s are at the
endpoints of the parameter intervals. For intermediate parameter values we use an
interpolation procedure. The error estimate (2.7) is the only place where we need
r ≥ 3.

It is also well known that there are positive numbers C, α such that

‖AγE(t)v‖ ≤ Ct−(γ−δ)e−αt‖Aδv‖, t > 0, 0 ≤ δ ≤ γ ≤ 1,(2.8)

and that ∫ T

0

‖A 1
2E(t)v‖2 dt ≤ 1

2‖v‖
2,

∫ T

0

‖A
1
2
hEh(t)Phv‖2 dt ≤ 1

2‖v‖
2.(2.9)
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We also recall Itô’s isometry, which takes the form

E
(∥∥∥∫ t

0

F (t− s) dW (s)
∥∥∥2)

=
∫ t

0

‖F (t− s)Q 1
2 ‖2HS ds,(2.10)

when the integrand is a deterministic operator as in (1.3) and (1.5).
Let

(2.11) Z(t, τ, ξ) = E(t− τ)ξ +
∫ t

τ

E(t− s) dW (s), 0 ≤ τ ≤ t ≤ T.

If ξ is Fτ -measurable, then Y (t) = Z(t, τ, ξ) is the unique mild solution to

dY (t) +AY (t) dt = dW (t), t > τ ; Y (τ) = ξ.

In particular, the solution of (1.2) is X(t) = Z(t, 0, X0). The following lemma
describes the spatial regularity of Z.

Lemma 2.1. If ‖A−
1−β

2 Q
1
2 ‖HS < ∞ and ξ ∈ L2(Ω, Ḣβ) for some β ∈ [0, 1], then

Z(T, t, ξ) ∈ L2(Ω, Ḣβ), for all 0 ≤ t ≤ T , and

‖Z(T, t, ξ)‖L2(Ω,Ḣβ) ≤ C
(
‖ξ‖L2(Ω,Ḣβ) + ‖A−

1−β
2 Q

1
2 ‖HS

)
.

Proof. This is proved in [7, Theorem 3.1]; see also [1, Section 5.4] and Lemma 2.2
below. �

We have the same regularity for Xh:

Lemma 2.2. Let β ∈ [0, 1], assume that ‖A−
1−β

2 Q
1
2 ‖HS < ∞, X0 ∈ L2(Ω, Ḣβ),

and let Xh be given by (1.5). Then

‖Xh(t)‖L2(Ω,Ḣβ) ≤ C
(
‖X0‖L2(Ω,Ḣβ) + ‖A−

1−β
2 Q

1
2 ‖HS

)
.

Proof. By taking norms in (1.5) and using (2.4) we have

‖Xh(t)‖2
L2(Ω,Ḣβ)

≤ CE
(
‖A

β
2
hXh(t)‖2

)
≤ CE

(
‖A

β
2
h Eh(t)PhX0‖2

)
+ CE

(∥∥∥∫ t

0

A
β
2
h Eh(t− s)Ph dW (s)

∥∥∥2)
= C

(
I1 + I2

)
.

By Itô’s isometry (2.10), (2.2), and selfadjointness, we obtain

I2 =
∫ t

0

‖A
β
2
h Eh(t− s)PhQ

1
2 ‖2HS ds =

∫ t

0

‖(Q 1
2 )∗(A

β
2
h Eh(s)Ph)∗‖2HS ds

=
∫ t

0

‖Q 1
2A

β
2
h Eh(s)Ph‖2HS ds.

Using (2.2) and (2.9) we calculate

I2 ≤ ‖Q
1
2A
− 1−β

2
h Ph‖2HS

∫ t

0

‖A
1
2
hEh(s)Ph‖2 ds

≤ 1
2‖Q

1
2A
− 1−β

2
h Ph‖2HS = 1

2‖Q
1
2A−

1−β
2 A

1−β
2 A

− 1−β
2

h Ph‖2HS.

Hence, using (2.4) and (2.2), we obtain

I2 ≤ 1
2‖Q

1
2A−

1−β
2 ‖2HS‖A

1−β
2 A

− 1−β
2

h Ph‖2 ≤ C‖A−
1−β

2 Q
1
2 ‖2HS.
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Finally, by (2.5),

I1 ≤ E
(
‖A

β
2
h PhX0‖2

)
≤ C E

(
‖A

β
2X0‖2

)
= C‖X0‖2L2(Ω,Ḣβ)

.

The proof is complete. �

For g ∈ C2
b(H,R) and with Z as in (2.11) we define

(2.12) u(x, t) = E
(
g(Z(T, t, x))

)
, x ∈ H, 0 ≤ t ≤ T.

If ξ is an Ft-measurable random variable, then by [1, Theorem 9.8],

u(ξ, t) = E
(
g(Z(T, t, ξ))

∣∣∣Ft).(2.13)

Therefore, by the law of double expectation,

(2.14) E
(
u(ξ, t)

)
= E

(
E
(
g(Z(T, t, ξ))

∣∣∣Ft)) = E
(
g(Z(T, t, ξ))

)
.

For a function f ∈ C2(H,R), by the Riesz representation theorem, we may
identify the bounded linear functional f ′(x) with an element in H and the bounded
bilinear functional f ′′(x) with a symmetric bounded linear operator on H. Hence,
using the explicit formula for Z in (2.11), we have

〈∂1u(x, t), y〉 = E
(
〈g′(Z(T, t, x)), E(T − t)y〉

)
, y ∈ H,

〈∂2
1u(x, t)y1, y2〉 = E

(
〈g′′(Z(T, t, x))E(T − t)y1, E(T − t)y2〉

)
, y1, y2 ∈ H,

so that

∂1u(x, t) = E
(
E(T − t)g′(Z(T, t, x))

)
,(2.15)

∂2
1u(x, t) = E

(
E(T − t)g′′(Z(T, t, x))E(T − t)

)
.(2.16)

The function u satisfies Kolmogorov’s equation (see [1, Chapter 9] for details),

(2.17)
∂2u(x, t)− 〈Ax, ∂1u(x, t)〉+ 1

2 Tr
(
∂2

1u(x, t)Q
)

= 0, x ∈ D(A), t ∈ (0, T ),

u(x, T ) = g(x), x ∈ H.

3. Proof of Theorem 1.1

Let u(x, t) be defined by (2.12) and apply (2.14) with ξ = X(0),

E
(
u(X(0), 0)

)
= E

(
E
(
g(Z(T, 0, X(0)))

∣∣∣F0

))
= E

(
g(Z(T, 0, X(0))

)
= E

(
g(X(T ))

)
,

and with ξ = Xh(T ),

E
(
u(Xh(T ), T )

)
= E

(
E
(
g(Z(T, T,Xh(T )))

∣∣∣FT)) = E
(
g(Xh(T ))

)
.

Hence,

E
(
g(Xh(T ))− g(X(T ))

)
= E

(
u(Xh(T ), T )− u(X(0), 0)

)
= E

(
u(Xh(0), 0)− u(X(0), 0)

)
+ E

(
u(Xh(T ), T )− u(Xh(0), 0)

)
.
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Using Itô’s formula (see, for example, [1]) for u(Xh(t), t), where Xh satisfies (1.4)
with covariance operator Qh = PhQhPh, and using the Kolmogorov equation (2.17)
to replace the term ∂2u, we have at least formally

E
(
u(Xh(T ), T )− u(Xh(0), 0)

)
= E

∫ T

0

(
∂2u(Xh(t), t)− 〈AhXh(t), ∂1u(Xh(t), t)〉+ 1

2 Tr(∂2
1u(Xh(t), t)Qh)

)
dt

= E
∫ T

0

(
− 〈Xh(t), (Ah −A)∂1u(Xh(t), t)〉+ 1

2 Tr
(
∂2

1u(Xh(t), t)(Qh −Q)
))

dt.

(3.1)

We note here that the use of Itô’s formula requires a function u : H × R+ → R
with uniformly continuous partial derivatives on bounded subsets of H× [0, T ]. The
above calculation can be made rigorous as follows. Define un in the same way as
u in (2.12) but with A replaced by the Yosida approximant An = nA(nI − A)−1.
Then un has continuous partial derivatives ([1, Theorem 9.16]) and, since Xh(t) ∈
Sh, we may consider un as a function Sh × R+ → R. Then the derivatives are
uniformly continuous on bounded subsets of Sh × [0, T ]. Writing Itô’s formula and
Kolmogorov’s equation for un we get (3.1) for un. Passing to the limit in (3.1)
using standard arguments (see, for example [1, Chapter 9] and [2, Chapter 7]) we
obtain (3.1) for u.

We therefore have

E
(
g(Xh(T ))− g(X(T ))

)
= E

(
u(Xh(0), 0)− u(X(0), 0)

)
−E

∫ T

0

〈(AhPh − PhA)∂1u(Xh(t), t), Xh(t)〉dt

+ 1
2E
∫ T

0

Tr
(
∂2

1u(Xh(t), t)(Qh −Q)
)

dt

= I1 + I2 + I3.

(3.2)

We estimate the three terms separately. For the first term we have, by the chain
rule and recalling Xh(0) = PhX0, X(0) = X0,

I1 = E
{∫ 1

0

〈∂1u(X0 + s(PhX0 −X0), 0), PhX0 −X0〉ds
}

= E
{∫ 1

0

〈(Ph − I)∂1u(X0 + s(PhX0 −X0), 0), (Ph − I)X0〉ds
}
,

so that, by (2.6) with ρ = β/2, δ = 0, and since X0 ∈ Ḣβ almost surely,

|I1| ≤ E
{∫ 1

0

Chβ‖∂1u(X0 + s(PhX0 −X0), 0)‖Ḣβ · Ch
β‖X0‖Ḣβ ds

}
≤ Ch2β

∫ 1

0

‖∂1u(X0 + s(PhX0 −X0), 0)‖L2(Ω,Ḣβ) ‖X0‖L2(Ω,Ḣβ) ds

≤ Ch2β‖X0‖L2(Ω,Ḣβ) sup
s∈[0,1]

‖∂1u(X0 + s(PhX0 −X0), 0)‖L2(Ω,Ḣβ).
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Now, by (1.8), (2.13), and (2.15),

‖∂1u(X0 + s(PhX0 −X0), 0)‖2
L2(Ω,Ḣβ)

= E‖∂1u(X0 + s(PhX0 −X0), 0)‖2
Ḣβ

= E{‖E (E(T )g′(Z(T, 0, X0 + s(PhX0 −X0)))|F0) ‖2
Ḣβ
}

≤ E{‖E(T )g′(Z(T, 0, X0 + s(PhX0 −X0)))‖2
Ḣβ
}(3.3)

≤ C(1 + E{‖Z(T, 0, X0 + s(PhX0 −X0))‖2
Ḣβ
})

≤ C(1 + ‖X0 + s(PhX0 −X0)‖2
L2(Ω,Ḣβ)

+ ‖A−
1−β

2 Q
1
2 ‖2HS),

where we used Lemma 2.1 for the last inequality. Thus,

sup
s∈[0,1]

‖∂1u(X0+s(PhX0−X0), 0)‖L2(Ω,Ḣβ) ≤ C(1+‖X0‖L2(Ω,Ḣβ)+‖A
− 1−β

2 Q
1
2 ‖HS),

and therefore,

|I1| ≤ Ch2β‖X0‖L2(Ω,Ḣβ).(3.4)

We remark that by using, instead, (2.8) with γ = β/2, δ = 0, in (3.3), we would
get

|I1| ≤ Ch2βT−β/2 sup
f∈Ḣβ

‖g′(f)‖ ‖X0‖L2(Ω,Ḣβ),(3.5)

where the assumption (1.8) is not needed.
For the second term, we use the identity

AhPh − PhA = AhPh(A−1 −A−1
h Ph)A,

to get

I2 = −E
∫ T

0

〈(AhPh − PhA)∂1u(Xh(t), t), Xh(t)〉dt

= −E
∫ T

0

〈AhPh(A−1 −A−1
h Ph)A∂1u(Xh(t), t), Xh(t)〉dt

= −E
∫ T

0

〈A1− β2
h Ph(A−1 −A−1

h Ph)A∂1u(Xh(t), t), A
β
2
hXh(t)〉dt.

Therefore,

|I2| ≤ E
∫ T

0

‖A1− β2
h Ph(A−1 −A−1

h Ph)A∂1u(Xh(t), t)‖ ‖Xh(t)‖Ḣβ dt

≤
∫ T

0

‖A1− β2
h Ph(A−1 −A−1

h Ph)A∂1u(Xh(t), t)‖L2(Ω,H) dt

× sup
t∈[0,T ]

‖Xh(t)‖L2(Ω,Ḣβ).

Using (2.15) (see also (2.13)) and (1.8) we have here

‖A1− β2
h Ph(A−1 −A−1

h Ph)A∂1u(Xh(t), t)‖L2(Ω,H)

= ‖A1− β2
h Ph(A−1 −A−1

h Ph)AE{E(T − t)g′(Z(T, t,Xh(t)))|Ft}‖L2(Ω,H)

≤ ‖A1− β2
h Ph(A−1 −A−1

h Ph)A1− β2E(T − t)E{A
β
2 g′(Z(T, t,Xh(t)))|Ft}‖L2(Ω,H)

≤ ‖A1− β2
h Ph(A−1 −A−1

h Ph)A1− β2E(T − t)‖K(1 + ‖Z(T, t,Xh(t))‖L2(Ω,Ḣβ)).
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Lemma 2.2 provides a bound ‖Xh(t)‖L2(Ω,Ḣβ) ≤ C, which inserted into Lemma 2.1
leads to a bound for ‖Z(T, t,Xh(t))‖L2(Ω,Ḣβ). Therefore,

|I2| ≤ C
∫ T

0

‖A1− β2
h Ph(A−1 −A−1

h Ph)A1− β2E(t)‖ dt.(3.6)

In view of (2.3) we have

(3.7)
∫ T

0

‖A1− β2
h Ph(A−1 −A−1

h Ph)A1− β2E(t)‖ dt

≤ Ch−2+β

∫ T

0

‖(A−1 −A−1
h Ph)A1− β2E(t)‖ dt.

Using (2.7) with s = 2 and s = 2 + β (this is the only place where we need r ≥ 3)
and (2.8), we obtain∫ T

0

‖(A−1 −A−1
h Ph)A1− β2E(t)‖ dt

=
∫ h2

0

‖(A−1 −A−1
h Ph)A1− β2E(t)‖ dt

+
∫ T

h2
‖(A−1 −A−1

h Ph)A−
β
2AE(t)‖ dt

≤ Ch2

∫ h2

0

t−1+ β
2 dt+ Ch2+β

∫ T

h2
t−1e−αt dt

≤ C

β
h2+β + Ch2+β | log(h)| ≤ Ch2+β | log(h)|,

for h ≤ h0 (C and h0 depend on β). Inserting this into (3.7), (3.6) shows that

|I2| ≤ Ch2β | log(h)|.(3.8)

For the third term in (3.2) we use the identity

Qh −Q = PhQPh −Q = PhQPh −QPh +QPh −Q = (Ph − I)QPh +Q(Ph − I).

Therefore,

2I3 = E
∫ T

0

Tr
(
∂2

1u(Xh(t), t)(Qh −Q)
)

dt

= E
∫ T

0

Tr
(
∂2

1u(Xh(t), t){(Ph − I)QPh +Q(Ph − I)}
)

dt.

Note that, since E(t) is trace class for t > 0, it follows from (2.16) that ∂2
1u(Xh(t), t)

is trace class as well, so that by (2.1) the above integrands are well defined. More-
over, it follows from (2.1) and selfadjointness that

Tr
(
∂2

1u(Xh(t), t)(Ph − I) (QPh)
)

= Tr
(

(QPh)∗ (Ph − I)∗ ∂2
1u(Xh(t), t)∗

)
= Tr

(
{PhQ(Ph − I)}{∂2

1u(Xh(t), t)}
)

= Tr
(
∂2

1u(Xh(t), t)PhQ(Ph − I)
)
.
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Therefore,

2I3 = E
∫ T

0

Tr
(
∂2

1u(Xh(t), t)(Ph + I)Q(Ph − I)
)

dt.

We bound the integrand. By (2.16) we have∣∣∣Tr
(
∂2

1u(Xh(t), t)(Ph + I)Q(Ph − I)
)∣∣∣

≤ sup
x∈Ḣβ

∣∣∣Tr
(
∂2

1u(x, t)(Ph + I)Q(Ph − I)
)∣∣∣

= sup
x∈Ḣβ

∣∣∣Tr
(
E
{
E(T − t)g′′(Z(T, t, x))E(T − t)

}
(Ph + I)Q(Ph − I)

)∣∣∣
≤ E

{
sup
x∈Ḣβ

∣∣∣Tr
(
E(T − t)g′′(Z(T, t, x))E(T − t)(Ph + I)Q(Ph − I)

)∣∣∣}
≤ sup
f∈Ḣβ

∣∣∣Tr
(
E(T − t)g′′(f)E(T − t)(Ph + I)Q(Ph − I)

)∣∣∣,
so that

(3.9) 2|I3| ≤ E
∫ T

0

sup
f∈Ḣβ

∣∣∣Tr
(
E(t)g′′(f)E(t)(Ph + I)Q(Ph − I)

)∣∣∣dt.
Let ε ∈ (0, β/2). Since E(t) is of trace class for t > 0, we may use (2.1) to obtain

Tr
(
E(t)g′′(f)E(t)(Ph + I)Q(Ph − I)

)
= Tr

(
A−

β
2 +εE(t/2)

×A
β
2−εE(t/2)g′′(f)E(t)(Ph + I)Q(Ph − I)

)
= Tr

(
A
β
2−εE(t/2)g′′(f)E(t)(Ph + I)Q(Ph − I)

×A−
β
2 +εE(t/2)

)
= Tr

(
A
β
2−εE(t/2)g′′(f)E(t)(Ph + I)Q

1
2

×Q 1
2 (Ph − I)A−

β
2 +εE(t/2)

)
,

so that, in view of Tr(AB) ≤ ‖A‖HS‖B‖HS,∣∣∣Tr
(
E(t)g′′(f)E(t)(Ph + I)Q(Ph − I)

)∣∣∣
≤ ‖A

β
2−εE(t/2)g′′(f)E(t)(Ph + I)Q

1
2 ‖HS ‖Q

1
2 (Ph − I)A−

β
2 +εE(t/2)‖HS

= J1 × J2.

For the first factor we use (2.2) to get

J1 = ‖{A
β
2−εE(t/2)}{g′′(f)E(t)(Ph + I)Q

1
2 }‖HS

= ‖{Q 1
2 (Ph + I)E(t)g′′(f)}{A

β
2−εE(t/2)}‖HS

≤ ‖Q 1
2 (Ph + I)E(t)‖HS ‖g′′(f)‖ ‖A

β
2−εE(t/2)‖.
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Using also (2.6) with δ = ρ = 1−β
2 , we have here

‖Q 1
2 (Ph + I)E(t)‖HS

= ‖Q 1
2A−

1−β
2 A

1−β
2 (Ph + I)A−

1−β
2 A

1−β
2 E(t)‖HS

≤ ‖Q 1
2A−

1−β
2 ‖HS ‖A

1−β
2 (Ph + I)A−

1−β
2 ‖ ‖A

1−β
2 E(t)‖

≤ C‖A−
1−β

2 Q
1
2 ‖HS ‖A

1−β
2 E(t)‖.

Therefore,

J1 ≤ C‖A−
1−β

2 Q
1
2 ‖HS ‖g′′(f)‖ ‖A

1−β
2 E(t)‖ ‖A

β
2−εE(t/2)‖.

For the other factor we have, by (2.2),

J2 = ‖Q 1
2A−

1−β
2 A

1−β
2 (Ph − I)A−

1+β
2 +εA

1
2E(t/2)‖HS

≤ ‖Q 1
2A−

1−β
2 ‖HS ‖A

1−β
2 (Ph − I)A−

1+β
2 +ε‖ ‖A 1

2E(t/2)‖.

Then, by (2.6) with δ = 1−β
2 ≤ ρ = 1+β

2 − ε,

J2 ≤ Ch2β−2ε‖A−
1−β

2 Q
1
2 ‖HS ‖A

1
2E(t/2)‖.

Inserting this into (3.9) and using (2.8), we obtain

|I3| ≤ Ch2β−2ε‖A−
1−β

2 Q
1
2 ‖2HS sup

f∈Ḣβ
‖g′′(f)‖

×
∫ T

0

‖A
1−β

2 E(t)‖ ‖A
β
2−εE(t/2)‖ ‖A 1

2E(t/2)‖ dt

≤ Ch2β−2ε‖A−
1−β

2 Q
1
2 ‖2HS sup

f∈Ḣβ
‖g′′(f)‖

∫ T

0

t−1+εe−3αt dt.

By estimating the integral we conclude

|I3| ≤ Cε−1h2β−2ε‖A−
1−β

2 Q
1
2 ‖2HS sup

f∈Ḣβ
‖g′′(f)‖.

Finally, we set ε = 1/| log(h)| < β/2 (for h ≤ h0 with h0 small enough) to get

ε−1h2β−2ε = h2βe−2ε log(h)ε−1 = e−2h2β | log(h)|.
Thus, there are C = C(β), h0 = h0(β) independent of g, T and h such that

|I3| ≤ Ch2β | log(h)| ‖A−
1−β

2 Q
1
2 ‖2HS sup

f∈Ḣβ
‖g′′(f)‖,

for h ≤ h0, t ∈ [0, T ]. Together with (3.4) and (3.8) this completes the proof.

Remark 3.1. It is important to note that the strong assumptions (2.7), where r ≥ 3,
and (1.8) are only needed in the estimate of the second term I2. For I3 we only use
(2.6) and

sup
f∈Ḣβ

‖g′′(f)‖ <∞.

For I1 we only use (2.6) and

sup
f∈Ḣβ

‖g′(f)‖ <∞

in order to get (3.5), while (2.6) and (1.8) are needed for (3.4).
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