
STUDIO 1

The tank reactor: mass balance.

Important: write a readable report of your work in each studio session. You will need this at
the end of the course when you prepare for the written exam; several exam questions will be based
directly on the studio work which is only documented in your own notes and the instructions.

Some exercises are called homework in order to save time in the studio classroom.

1. Linear di�erential equations of �rst order

(MA2 9.2) Recall that d
dt exp(t) = exp(t) and exp(0) = 1. This means that the exponential

function u(t) = exp(t) satis�es the initial-value problem

u′(t) = u(t), t > 0; u(0) = 1.(1)

Let a and u0 be real numbers and consider the initial-value problem

u′(t) = au(t), t > 0; u(0) = u0.(2)

The solution is u(t) = u0 exp(at). Check this!
Exercise 1. Solve (2) with Matlab. Write the following function �le funk1.m, which de�nes

the right-hand side of the di�erential equation.
function y=funk1(t,u)

global a

y=a*u;

Then write the following script �le data.m, which gives default values to the variables that are
used.

global a

a=1; T=1; u0=1;

Finally write the following script �le solve1.m, which solves (2) and plots the solution.
[t,u]=ode45('funk1', [0 T], u0);

plot(t,u);

Note how the value of a enters into the function via the command global a which is written both
in the function �le funk1.m and in the main program data.m. Start the computation by typing
the following on the Matlab command line:
>> data

>> solve1

>> a=-1

>> T=2

>> solve1

Compute and observe the solutions for various values of a, positive, negative, and zero. If you
type � hold on then Matlab will plot several curves in the same �gure.

Now let b be another real number and consider the initial-value problem

u′(t) = au(t) + b, t > 0; u(0) = u0.(3)
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2 1. THE TANK REACTOR: MASS BALANCE.

Remember (MA2 10.5) that the solution is given by u(t) = uh(t) + up(t), where uh(t) = A exp(at)
is a solution of the homogeneous equation u′ − au = 0 and up(t) = B is a particular solution of
the inhomogeneous equation u′ − au = b.

Homework 1. Determine the constants A and B and show that the solution is

u(t) = u0 exp(at) +
b

a
(exp(at)− 1) (if a 6= 0).(4)

What is the solution when a = 0? For which values of a does the solution approach an equilibrium
u(t)→ ū as t→∞? Determine ū.

Exercise 2. Solve (3) with Matlab. De�ne b in the �le data.m and change the global
command to global a b in both places. Observe what the solutions look like for a positive,
negative, and zero. For which values of a does the solution approach an equilibrium u(t) → ū as
t→∞?

Now we consider the situation when a = a(t), b = b(t) are not constant:

u′(t) = a(t)u(t) + b(t), t > 0; u(0) = u0.(5)

We use the method of integrating factor (MA2 9.2). Write the equation as u′ − a(t)u = b(t) and
multiply it by the integrating factor e−A(t), where A(t) =

∫ t
0
a(s) ds, so that A′(t) = a(t) and

A(0)=0. We get

d

dt

(
e−A(t)u(t)

)
= e−A(t)u′(t)− a(t)e−A(t)u(t) = e−A(t)b(t).

We integrate from 0 to T : [
e−A(t)u(t)

]T
0

=
∫ T

0

e−A(t)b(t) dt

and hence

e−A(T )u(T )− e−A(0)u(0) =
∫ T

0

e−A(t)b(t) dt.

Using A(0) = 0, u(0) = u0, multiplying by eA(T ), and replacing t by s, T by t, we �nally get

u(t) = u0e
A(t) +

∫ t

0

eA(t)−A(s)b(s) ds, where A(t) =
∫ t

0

a(s) ds.(6)

Exercise 3. Solve (5) with Matlab. Use, for example, a = ±1, b(t) = 1 + 0.1 sin(7t).

Homework 2. Use constant functions a(t) = a, b(t) = b in (6) and compute the integrals to
obtain (4).

2. The tank reactor

In a sequence of studio sessions we will study the ideal mixed tank reactor, see Figure 1.
The goal is to design the reactor so that it will operate in a stable way at (cf − c)/cf = 0.5 (�50
% omsättningsgrad�).

Figure 1. The tank reactor.
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We will use the following data:

V = 1.2 m3 volume of the tank
cp = 4.19 kJ/(kg K) heat capacity of the �uid

ρ = 1000 kg/m3 density of the �uid

qref = 3.0 · 10−4 m3/s reference �ux

cf = 5 kmol/m3 concentration at in�ow of the interesting substance
Tf = 70◦C temperature at in�ow
δH = −83.7 kJ/mol heat of reaction

AK = 1.0m2 area of the cooler

κ = 0.58 kJ/(m2 s K) heat transfer coe�cient of the cooler

We introduce the following variables:

c [mol/m3] concentration in the reactor of the interesting substance
T [K] temperature in the reactor

q [m3/s] �ux through the reactor
TK , TKf [K] temperatures in the cooler and at the cooler in�ow

qK [m3/s] �ux through the cooler

VK [m3] volume of the cooler

The reaction is exothermal and of �rst order with rate of reaction kc [mol/(m3s)]. The rate
coe�cient depends on the temperature according to the Arrhenius law:

k = k0 exp(−E/(RT )) [s−1](7)

where R [8.31 J/(mol K)] is the gas constant, E [J/mol] is the activation energy and k0 [s−1]

is the rate constant of the reaction. The following rates have been measured:

T [K] 343 353 363 373 383 393 403
k [s−1] 2.8 · 10−5 5.6 · 10−5 11.2 · 10−5 22.4 · 10−5 44.8 · 10−5 89.6 · 10−5 179.2 · 10−5

(Based on �Kemisk reaktionsteknik. Övningsuppgifter�, Kemisk reaktionsteknik, CTH 1993,
uppgift 7.1.)

2.1. Mass balance. When we build a mathematical model for the tank reactor it is impor-
tant not to consider all aspects at once. We therefore begin by making a big simpli�cation: we
assume that the rate coe�cient k is constant, for example, k =?? corresponding to T =?? (choose
a value from the table). Recall that k depends strongly on T , see (7), so this is not very realistic,
but it will be a good starting point for our investigation.

The mass balance equation is

V
dc

dt
= q(cf − c)− ckV. [mol/s]

This equation says that the rate of change of the total amount of the interesting substance is
equal to the in�ux minus the out�ux minus the reaction rate. In order to make the equation
dimensionless we divide by qrefcf [mol/s]. We get

V

qref

d

dt

( c
cf

)
=

q

qref

(
1− c

cf

)
− c

cf
k
V

qref
.(8)
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We introduce τ = V/qref [s] (�uppehållstid�) and the dimensionless variables
s = t/τ (dimensionless time) ,
X = c/cf (dimensionless concentration) ,
U = q/qref (dimensionless �ux).

Then, by the chain rule,
dX

ds
=
dX

dt

dt

ds
= τ

dX

dt
=

V

qref

d

dt

( c
cf

)
,

and (8) becomes
dX

ds
= U(1−X)−Xkτ,

that is,
dX

ds
= −(kτ + U)X + U ; X(0) = X0.(9)

Note that this is of the form (5) with a = −(kτ + U) and b = U .
Exercise 4. Change your Matlab programs from part 1 so that they solve (9). Let �rst U

be equal to a constant value Ū . Does the solution X(s) approach an equilibrium X̄ as s → ∞?
Hint: Begin the �le data.m by

global ktau Ubar

V=1.2; qref=3.0e-4;

k=?? ;

tau=V/qref; ktau=k*tau;

Ubar=1; % equilibrium value of U

Change also the function �le funk1.m to a �le tank.m beginning with
function y=tank(s,X)

global ktau Ubar

U=Ubar;

Exercise 5. Recall that we want the reactor to operate at (cf −c)/cf = 0.5, i.e., at X̄ = 0.5.
Determine Ū so that this is achieved. Hint: the equation for X̄, Ū is obtained by setting dX

ds = 0
in (9), i.e.,

− (kτ + Ū)X̄ + Ū = 0.(10)

Find a formula for Ū in terms of kτ and X̄. Explain what happens in the extreme cases X̄ = 0,
X̄ = 1. Insert the command Xbar=.5; in the �le data.m and the formula for Ubar in the �le
solve1.m.

Exercise 6. We now investigate if the operating point X̄ = 0.5 is stable with respect to
changes of the initial value X0. Set U = Ū and solve (9) with Matlab with several initial values
X0. Is it stable?

Exercise 7. We next investigate if the operating point X̄ = 0.5 is stable with respect
to changes of the �ux U . Set X0 = X̄ = 0.5 and solve (9) with Matlab with, for example,
U(s) = Ū + 0.1 sin(7s). Is it stable?

Exercise 8. Finally, compute the required �ux q̄ (in dimensional units [m3/s]).
Next week we will include the temperature dependence in k and we will see that the operating

point X̄ = 0.5 is not always stable then.



STUDIO 2

The tank reactor: heat balance.

Important: write a readable report of your work in each studio session. You will need this at
the end of the course when you prepare for the written exam; several exam questions will be based
directly on the studio work which is only documented in your own notes and the instructions.

Some exercises are called homework in order to save time in the studio classroom.

1. Systems of di�erential equations

Recall that d
dt cos(t) = − sin(t), d

dt sin(t) = cos(t), cos(0) = 1, and sin(0) = 0. This means
that the trigonometric functions u1(t) = cos(t) and u2(t) = sin(t) satisfy the initial-value problem

u′1(t) = −u2(t), t > 0,

u′2(t) = u1(t), t > 0,(11)
u1(0) = 1, u2(0) = 0.

This is a system of (linear) di�erential equations of �rst order.
Exercise 9. Solve (11) with Matlab. Hint: Write the following function �le trig.m, which

de�nes the right-hand side of the system of di�erential equations.
function y=trig(t,u)

y = zeros(2,1); % trig(t,u) must return a column vector

y(1) = -u(2);

y(2) = u(1);

Then write the following script �le trigdata.m, which gives default values to the variables that
are used.

T = 2*pi;

u0 = [1; 0];

Finally write the following script �le solve2.m, which solves (11) and plots the solution.
[t,u] = ode45('trig', [0 T], u0);

subplot(2,1,1) % breaks the figure into a 2-by-1 matrix; selects top half

plot(t, u(:,1)); % plots first component of u versus t

hold on

plot(t, u(:,2), '--'); % dashed line

hold off

title('Solid: u_1 Dashed: u_2'), xlabel('t')

subplot(2,1,2) % selects bottom half

plot(u(:,1), u(:,2)) % plots second versus first component of u

title('Phase portrait'), xlabel('u_1'), ylabel('u_2')

Start the computation by typing the following on the Matlab command line:
>> trigdata

>> solve2

>> T=pi

>> solve2

5



6 2. THE TANK REACTOR: HEAT BALANCE.

Compute and observe the solutions for various values of T . Consider in particular the phase plot

of u2 versus u1, where t can be viewed as a parameter along the curve. What point on the curve
corresponds to t = 0? t = π

2 ? t = 2π?

The hyperbolic functions , de�ned by cosh(t) = exp(t)+exp(−t)
2 and sinh(t) = exp(t)−exp(−t)

2 , have
the properties d

dt cosh(t) = sinh(t), d
dt sinh(t) = cosh(t), cosh(0) = 1, and sinh(0) = 0.

Homework 3. Verify these properties.
Exercise 10. Set u1(t) = cosh(t) and u2(t) = sinh(t). Derive an initial-value problem for

u1(t) and u2(t) similar to (11). Compute the hyperbolic functions by solving this problem with
Matlab. Hint: You need only slightly modify the trigonometric case above.

2. The tank reactor

Last week we considered the simpli�ed case where we assumed that the rate coe�cient k
is constant, i.e., we neglected the temperature dependence of the reaction rate. Today we will
include this dependence (the Arrhenius law) to improve our mathematical model of the tank
reactor. Therefore, we need to consider also the temperature, T , in the reactor, and start by
deriving an equation for it by considering heat balance in the tank reactor. In doing so we will
need to know the temperature, TK , in the cooler tank. Here we will once again make a simplifying
assumption, namely, that TK is constant. Physically, this can be expected to be the case when
the cooler tank is large compared to the reactor tank.

2.1. Heat balance. The heat balance equation is

ρcpV
dT

dt
= ρcpq(Tf − T ) + (−δH)V ck0 exp(−E/(RT ))− κAK(T − TK). [J/s](12)

Recall that ρ and cp are the density and the heat capacity of the �uid in the reactor, respectively.
Since V is the volume of the tank reactor, the left-hand side expresses the rate of change of the
internal energy of the �uid in the reactor. Three di�erent mechanisms contribute to this:

• The �rst term on the right-hand side expresses the net rate of change of the energy due
to the temperature di�erence , Tf − T , between the in�ow and the out�ow ( q is the �ux

through the tank).
• The second term on the right-hand side expresses the increase rate of the energy due to
heat released in the (exothermal) reaction. Recall that δH is the heat of reaction, c is
the concentration in the reactor of the reacting substance, and k = k0 exp(−E/(RT ))
is the rate coe�cient of the reaction. Note: since the reaction rate, ck, depends both
on the concentration and on the temperature, there is a (non-linear) coupling between
the equation for the concentration, that we studied last week, and the equation for the
temperature.

• The third term on the right-hand side expresses the decrease rate of the energy due
to heat transferred from the reactor to the cooler. This rate is proportional to the
temperature di�erence , T − TK , between the reactor and the cooler. Recall that κ and
AK are the heat transfer coe�cient and the area of the cooler, respectively.

Note that (12) is a non-linear di�erential equation for the temperature, T , in the tank reactor. In
order to make the equation dimensionless we divide by ρcpqrefTf [J/s]. We get

V

qref

d

dt

( T
Tf

)
=

q

qref

(
1− T

Tf

)
+

(−δH)cf
ρcpTf

c

cf

V

qref
k0 exp

(
− E

RTf

Tf
T

)
− κAK
ρcpqref

( T
Tf
− TK
Tf

)
.(13)

Recall that last week we introduced the dimensionless time s = t/τ , where τ = V/qref [s]. We
now also introduce

X1 = c/cf (dimensionless concentration) ,
X2 = T/Tf (dimensionless reactor temperature) ,
U1 = q/qref (dimensionless �ux),
U2 = TK/Tf (dimensionless cooler temperature) .
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Note that X1 is the quantity last week referred to as X, and U1 is the quantity last week referred
to as U . To express the left-hand side in (13) in the non-dimensional variables we note that, by
the chain rule,

dX2

ds
=
dX2

dt

dt

ds
= τ

dX2

dt
=

V

qref

d

dt

( T
Tf

)
.(14)

We also express the terms on the right-hand side in (13) in the non-dimensional variables:
• The �rst term on the right-hand side simply becomes

U1(1−X2).(15)

• For the second term on the right-hand side we introduce the three dimensionless numbers

α =
(−δH)cf
ρcpTf

, γ =
E

RTf
, δ = k0τ exp(−γ),

where γ is referred to as the Arrhenius number . This term then becomes

αX1τk0 exp
(
− γ

X2

)
= αX1k0τ exp(−γ) exp(γ− γ

X2
) = αX1f(X2),(16)

where

f(X2) = δ exp(γ− γ

X2
).

Note that we have re-written the Arrhenius law as kτ = f(X2) = δ exp(γ− γ
X2

). The
dimensionless numbers γ and δ can be thought of as non-dimensional counterparts to
the activation energy E and the rate constant k0. Next week we will estimate γ and δ
by �tting the function kτ = δ exp(γ− γ

X2
) to measured reaction rates, but as for today

you may use the values γ = 30 and δ = 0.1. The dimensionless number α, on the other
hand, can be directly computed from known data.
• Introducing the dimensionless number

β =
κAK
ρcpqref

the third term on the right-hand side becomes

− β(X2 − U2).(17)

From (14)�(17), (13) becomes

dX2

ds
= U1(1−X2) + αX1f(X2)− β(X2 − U2),(18)

and replacing X by X1, U by U1, and kτ by f(X2), in the equation for the concentration that we
derived last week, we arrive at the system of di�erential equations,

dX1

ds
= U1(1−X1)−X1f(X2), s > 0,

dX2

ds
= U1(1−X2) + αX1f(X2)− β(X2 − U2), s > 0,(19)

X1(0) = X1,0, X2(0) = X2,0.

Exercise 11. Extend your Matlab programs from last week so that they solve (19). Let �rst

U1 and U2 be equal to constant values Ū1 and Ū2. Does the solution X(s) =
[
X1(s)
X2(s)

]
approach

an equilibrium X̄ =
[
X̄1

X̄2

]
as s → ∞? In fact, you should be able to �nd two equilibrium points

by choosing di�erent initial values X0, say, X0 =
[
0.5
1

]
and X0 =

[
0.5
1.1

]
.

Hint: The �le data.m could for example look like
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global alpha beta gamma delta Ubar

dH = -83.7e3; % heat of reaction

cf = 5e3; % concentration at inflow

% here you initiate the rest of the variables needed to compute alpha

alpha = -dH*cf/(rho*cp*Tf);

% here you initiate the variables needed to compute beta

% you must choose a value for AK, for instance AK = 1

beta = ...; % insert the expression for beta

gamma = 30;

delta = 0.1;

Ubar = [1; 0.97];

S = 10; % final time

X0 = [0.5; 1]; % initial value

Change the function �le tank.m to a �le tank2.m beginning with
function y=tank2(s,X)

global alpha beta gamma delta Ubar

U(1) = Ubar(1);

U(2) = Ubar(2);

y = zeros(2,1);

y(1) = U(1)*(1-X(1)) - ... ; % complete the expression for dX1/ds

y(2) = ... ; % insert the expression for dX2/ds

(If you want, you can write a separate function �le f.m that implements the �Arrhenius function�
f(X2) = δ exp(γ− γ

X2
). Then you can call f from tank2. Just don't forget to declare the variables

gamma and delta as global inside f.)
You should �nally be able to use the �le solve2.m from Exercise 9 with obvious modi�cations.
In a later exercise we will look for an equilibrium at X̄1 = 0.5 and analyze the stability of this

desired operating point.



STUDIO 3

The tank reactor: Arrhenius' law.

Important: write a readable report of your work in each studio session. You will need this at
the end of the course when you prepare for the written exam; several exam questions will be based
directly on the studio work which is only documented in your own notes and the instructions.

Some exercises are called homework in order to save time in the studio classroom.

1. The method of least squares

(TLA 4.9) Consider the linear system of equations

(20) Ax = b,

where A ∈ Rm×n, x ∈ Rn, b ∈ Rm. If m > n (more equations than unknowns), then the system
is �overdetermined� and such a system has no solution in general. Geometrically, the reason for
this is that (in general) the vector b lies outside the range (�värderummet�) of A,

R(A) =
{
y ∈ Rm : y = Ax for some x ∈ Rn

}
.

Since the dimension of R(A) is ≤ n and m > n, we realize that the space R(A) does not ��ll out�
the whole space Rm. Therefore it is likely that a given vector b ∈ Rm will lie outside R(A), see
Figure 1, and then Ax cannot be equal to b and (20) has no solution.

Figure 1. Orthogonal projection onto the range of A.

In this situation we seek an approximate solution which makes the residual

b−Ax
as small as possible. More precisely, we seek a vector x̂ ∈ Rn, which minimizes the square of the
norm (length) of the residual:

(21) f(x̂) = min f(x), f(x) = ‖b−Ax‖2.

Recall the scalar product 〈x, y〉 = ytx and the norm ‖x‖ =
√
〈x, x〉 =

√
xtx of column vectors.

From (TLA 6.9) we know that there is a unique vector ŷ = Ax̂ ∈ R(A) such that the distance
‖b − Ax‖ is minimal, i.e., ‖b − Ax̂‖ ≤ ‖b − Ax‖ for all x. The vector ŷ = Ax̂ is the orthogonal

projection of b onto R(A), see Figure 1. It is characterized by the condition that b− ŷ = b−Ax̂
is orthogonal to all vectors Av ∈ R(A). This means that

0 = 〈b−Ax̂,Av〉 = (Av)t(b−Ax̂) = vtAt(b−Ax̂) = vt(Atb−AtAx̂).

Since this holds for all v ∈ Rn, we may take v = Atb−AtAx̂ to get

(22) AtAx̂−Atb = 0.

Thus, we can compute x̂ by solving the linear system

(23) AtAx = Atb.

Note that the coe�cient matrix AtA is n × n and symmetric. The system (23) has at least one
solution (namely x̂).

9
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In order to see that the minimization problem (21) is equivalent to solving the linear system
(23), we write x = x̂+ v, v = x− x̂, and compute

f(x) = f(x̂+ v) = ‖(b−Ax̂)−Av‖2 = 〈(b−Ax̂)−Av, (b−Ax̂)−Av〉
= 〈b−Ax̂, b−Ax̂〉 − 2〈b−Ax̂,Av〉+ 〈Av,Av〉
= ‖b−Ax̂‖2 + 2(Av)t(Ax̂− b) + ‖Av‖2

= f(x̂) + 2vtAt(Ax̂− b) + ‖Av‖2

= f(x̂) + 2vt(AtAx̂−Atb) + ‖Av‖2.

(24)

Taking (22) into account we get

f(x) = f(x̂) + ‖Av‖2 ≥ f(x̂).

This shows that x minimizes f(x), if and only if ‖Av‖ = 0, in which case Ax = Ax̂ + Av = Ax̂
and AtAx = AtAx̂ = Atb. Therefore, x minimizes f(x) if and only if x is a solution of (23).

We can also interpret this in terms of the general minimization problem in (MA3 2.9�10).
Recall Taylor's formula:

(25) f(x) = f(x̂+ v) = f(x̂) + vtf ′(x̂) + 1
2v
tf ′′(x̂)v +R(x).

Noting that ‖Av‖2 = 〈Av,Av〉 = (Av)t(Av) = vt(AtA)v, we re-write (24) as

(26) f(x) = f(x̂+ v) = f(x̂) + 2vt(AtAx̂−Atb) + vt(AtA)v.

Comparing (25) with (26), we identify the Jacobi matrix (gradient vector) f ′(x̂) = 2(AtAx̂−Atb),
the Hesse matrix f ′′(x̂) = 2AtA, and the remainder R(x) = 0. Recall that stationary points are
given by the system of equations f ′(x) = 2(AtAx − Atb) = 0, which is the same as (23). Note
also that the Hesse matrix is constant (with respect to x) and positive semide�nite: vtf ′′(x)v =
2vt(AtA)v = 2‖Av‖2 ≥ 0.

Exercise 12. Suppose that the variables y and x are related by y = kx + m. In order to
determine the coe�cients k and m we make measurements of y and x:

x 5 6 7 8 9 10
y 19.5888 23.4043 25.5754 29.1231 31.9575 35.8116

This leads to an overdetermined system of the form

kx1 +m = y1

...
kx6 +m = y6

or, in matrix form Av = y, x1 1
...

...
x6 1

[ k
m

]
=

y1

...
y6

 .
Solve this system by the least squares method in Matlab. Hint: set up the column vectors x, y and
the matrix A=[x ones(size(x))] , then form the matrices B=A'*A and g=A'*y. Solve the system
Bv = g by the command v=B\g.

Plot the data points (xi, yi) and the �tted function y = kx + m in the same �gure. The
following commands are useful: plot(x,y,'or') , fplot('ykxm',[x(1) x(6)]) . Here ykxm.m is
a function �le that implements the function y = kx+m. Don't forget to declare global k m both
inside the function �le and in the main program.

Actually, Matlab's backslash command v=A\y automatically uses the least squares method
when the system Av = y is overdetermined. Try this also!
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2. The tank reactor

The rate coe�cient depends on the temperature according to the Arrhenius law:
k = k0 exp(−E/(RT )) [s−1](27)

where R [8.31 J/(mol K)] is the gas constant, E [J/mol] is the activation energy and k0 [s−1]

is the rate constant of the reaction. The following rates have been measured:

T [K] 343 353 363 373 383 393 403
k [s−1] 2.8 · 10−5 5.6 · 10−5 11.2 · 10−5 22.4 · 10−5 44.8 · 10−5 89.6 · 10−5 179.2 · 10−5

The task is now to determine the coe�cients k0 and E by �tting the rate law (27) to these
data. Last week we wrote (27) in dimensionless form

(28) kτ = δeγ(1−1/X), where γ =
E

RTf
, δ = k0τe

−γ , X =
T

Tf
, τ =

V

qref
.

Introducing new variables r = kτ and ξ = 1− 1/X we get

(29) r = δeγξ.

The task is now to �t this function to the given data points (ξi, ri).
Exercise 13. (Linear least squares method.) Form the logarithm of (29) so that you get a

linear relation of the form y = kx+m, namely, (see also (TLA 5.2))
(30) log(r) = γξ + log(δ).

(Note that the natural logarithm is denoted log(x) in English and in Matlab, but ln(x) in Swedish.)
Solve for γ and δ by using the least squares method as in Exercise 12. Begin by forming column
vectors X, r, xi and so on. Plot the data points (Xi, ri) and the �tted function r = δeγ(1−1/X) in
the same �gure. Finally, determine k0 and E.

Homework 4. (A nonlinear least squares method.) Alternatively, we can form the residual
r − δeγξ from the nonlinear relation (29) and minimize the square of its norm

(31) g(δ, γ) =
∑
i

(
ri − δeγξi

)2

.

Write a Matlab function that implements this function and use Matlab's program fminsearch to
minimize it. Why does this method give a slightly di�erent result? Hint: the Matlab function
norm may be useful for computing the right side of (31).

Exercise 14. Insert the new values for δ and γ in your Matlab programs from Studio 2.
Repeat all the computations. Let U1 and U2 be equal to constant values Ū1 and Ū2. Does the

solution X(s) =
[
X1(s)
X2(s)

]
approach an equilibrium X̄ =

[
X̄1

X̄2

]
as s → ∞? In fact, you should be

able to �nd two equilibrium points by choosing di�erent initial values X0, say, X0 =
[
0.5
1

]
and

X0 =
[
0.5
1.1

]
.

Next week we will look for an equilibrium at X̄1 = 0.5 and analyze the stability of this desired
operating point.





STUDIO 4

The tank reactor: Stability.

Theory: S. Larsson, �Kompletterande föreläsningsanteckningar och övningar� (K).

1. Introduction

(K 1.1) Recall from Studio 2 the system of di�erential equations,

(32)

dX1

ds
= U1(1−X1)−X1f(X2) = F1(X,U), s > 0,

dX2

ds
= U1(1−X2) + αX1f(X2)− β(X2 − U2) = F2(X,U), s > 0,

X1(0) = X1,0, X2(0) = X2,0,

which is our mathematical model for the dynamics of the tank reactor. Recall, also, the state

variables X1 = X1(s) (dimensionless concentration) and X2 = X2(s) (dimensionless reactor tem-
perature), depending on s (dimensionless time). These two variables, that describe the state of
the tank reactor, are the ones that we compute by solving (32), i.e., X1 and X2 are output data.

There are two kinds of input data. First we have the initial data, X0 =
[
X1,0

X2,0

]
, then the control

variables U1 = U1(s) (dimensionless �ux) and U2 = U2(s) (dimensionless cooler temperature).
Recall, �nally, that kτ = f(X2) = δeγ(1−1/X2) is the dimensionless rate coe�cient given by

the Arrhenius law. In Studio 3 you determined the dimensionless numbers γ and δ, which can be
thought of as non-dimensional counterparts to the activation energy and the rate constant of the
reaction, by �tting the rate law to data. As for the other two dimensionless numbers appearing
in (32), α is also reaction dependent since it is proportional to the heat of reaction, whereas β is
proportional to the area and the heat transfer coe�cient of the cooler.

Our �nal goal is to design the tank reactor in such a way that it runs in a stable manner at

a speci�ed, desired, operating point X̄ =
[
X̄1

X̄2

]
. In order to achieve this goal, we �rst determine

corresponding values of the control variables Ū =
[
Ū1

Ū2

]
, for which X̄ is a stationary point. Then,

we analyze the stability of X̄ with respect to perturbations of input data and, if necessary, change
the value of one or more design parameters . This could, for instance, physically mean varying the
area of the cooler, i .e., varying the value of β in our mathematical model (32).

2. Stationary points

(K 1.2) Our �rst task is, given a desired operating (stationary) point X̄ =
[
X̄1

X̄2

]
, to determine

corresponding values of the control variables Ū =
[
Ū1

Ū2

]
by solving the system of equations,

(33)
0 = Ū1(1− X̄1)− X̄1f(X̄2),

0 = Ū1(1− X̄2) + αX̄1f(X̄2)− β(X̄2 − Ū2).

13
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Exercise 15. Show that the solution to (33) is given by,

(34)
Ū1 =

X̄1

1− X̄1
f(X̄2),

Ū2 = X̄2 −
1
β

( X̄1

1− X̄1
(1− X̄2)f(X̄2) + αX̄1f(X̄2)

)
.

We here stress a subtle point. Given X̄, clearly, Ū is uniquely de�ned by (34). On the other
hand, if we instead consider Ū as �xed, we know that X̄ is one solution to (33), however, it might
not be the only solution, i.e., there may exist more than one stationary point corresponding to Ū .
We will return to this later.

To concretize, let us now specify the values of the state variables at the desired operating point:
our objective is to design the tank reactor to operate in a stable manner at (cf− c̄)/cf = 0.5 (�50%

omsättningsgrad�) and at reactor temperature T̄ = 99◦C, i.e., at X̄ =
[
X̄1

X̄2

]
=
[

0.5
(99 + 273.15)/Tf

]
.

Exercise 16. Modify the �le data.m from Studio 2, so that, given X̄ (as above), Ū is
computed from (34). At the same time, check that you have changed the old values of γ (= 30)
and δ (= 0.1) that we used in Studio 2 to the new ones that you determined in Studio 3. Also,
check that you have set AK = 1 m2. Hint: You need to change the line

Ubar = [1; 0.97];

into
Xbar = [0.5; (99 + 273.15)/Tf]; % Tf = 70 + 273.15

Ubar = zeros(2,1); % initialize (column vector) Ubar

Ubar(1) = ...; % insert the expression for Ubar(1)

Ubar(2) = ...; % insert the expression for Ubar(2)

Exercise 17. Check data.m by calling tank2.m that you wrote in Studio 2:
>> data

>> Xprime = tank2(0, Xbar)

What should the result be? (Note that the value of the �rst argument may be given arbitrarily,
since there is no explicit time dependence in the right-hand side of (32).)

3. Instability of the operating point

We now perform a �rst stability check of the operating point X̄. We do this by introducing
small initial perturbations, i .e., small initial deviations from X̄, in X. In this test, we do not
consider perturbations in the control variables, i .e., we take U = Ū in tank2.m.

Exercise 18. Assuming that solve2.m is the name of your script �le from Studio 2, from
which the call to ode45 is made and the solution is plotted, solve (32) by giving the following
Matlab commands:
>> data

>> S = 20;

>> X0 = Xbar + [0; 0.05];

>> solve2

>> X0 = Xbar - [0; 0.05];

>> solve2

Is X̄ stable with respect to these perturbations? Also try some other initial perturbations.
As you have just seen, a small deviation from X = X̄ causes the tank reactor to depart

from the desired operating point. Since these kinds of perturbations are inevitable in practice,
the reactor will not remain in the desired state, which is therefore not stable. Rather, it will
(depending on the initial perturbation) reach one of two other equilibrium points, which seem
to be stable ones. These two are also stationary points, corresponding to Ū , i.e., they are also
solutions to (33). This is the non-uniqueness mentioned in Section 33.
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4. Linear stability analysis

(K 1.3) In order to learn how to �adjust� the tank reactor so that it will operate in a stable
way at X̄, we need to systematically study the stability of solutions to (32). We will perform a
linear stability analysis based on the assumption of small perturbations .

Let X(s) with input data X0, U(s) be a solution to (32) that is close to X̄. With

X(s) = X̄ + ∆X(s), X0 = X̄ + ∆X0, U(s) = Ū + ∆U(s),(35)

we may consider ∆X(s) as a perturbation in X(s) caused by the perturbations ∆X0 and ∆U(s)
in input data.

If ∆X(s) and ∆U(s) are small, we obtain the linear system

(36)
x′(s) = Ax(s) +Bu(s), s > 0,

x(0) = x0,

for the approximate perturbation x(s) ≈ ∆X(s) caused by the perturbations in input data x0 =
∆X0 and u(s) = ∆U(s). In (36),

(37) A =


∂F1

∂X1
(X̄, Ū)

∂F1

∂X2
(X̄, Ū)

∂F2

∂X1
(X̄, Ū)

∂F2

∂X2
(X̄, Ū)

 =

−Ū1 − f(X̄2) −X̄1f
′(X̄2)

αf(X̄2) −Ū1 + αX̄1f
′(X̄2)− β

 ,
where f ′(X̄2) =

γ

X̄2
2

f(X̄2), and

(38) B =


∂F1

∂U1
(X̄, Ū)

∂F1

∂U2
(X̄, Ū)

∂F2

∂U1
(X̄, Ū)

∂F2

∂U2
(X̄, Ū)

 =

1− X̄1 0

1− X̄2 β

 ,
are called Jacobi matrices of F (X,U) =

[
F1(X,U)
F2(X,U)

]
at X̄, Ū .

Homework 5. Verify (37) and (38).

5. Stability with respect to perturbations of initial data

(K 1.4) In this section we consider the case u(s) = 0, i.e., we only consider perturbations in
initial data. In this case, (36) simpli�es to

(39)
x′(s) = Ax(s), s > 0,

x(0) = x0,

with solution (we assume that A is diagonalisable)

(40) x(s) = c1e
λ1sg1 + c2e

λ2sg2,

where λi, gi are eigen-values and eigen-vectors of A, and the ci are constants depending on x0.
Clearly, the growth of x(s) (and accordingly the stability of X̄) depends on the eigen-values of A.

Exercise 19. Compute the eigen-values of A using Matlab. Hint: First write the function
�le jacobianA.m that computes A:

function A = jacobianA(Xbar)

global alpha beta gamma delta Ubar

A = zeros(2,2); % initialize (2x2 matrix) A

A(1,1) = ...; % insert the expression for A(1,1)
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A(1,2) = ...; % insert the expression for A(1,2)

A(2,1) = ...; % insert the expression for A(2,1)

A(2,2) = ...; % insert the expression for A(2,2)

Then you can compute the eigen-values of A by typing:
>> data

>> global A % we declare A as global because we will need this later

>> A = jacobianA(Xbar)

>> eig(A)

As you (hopefully!) noticed, A has two real eigen-values, one positive and one negative.
Because of the positive eigen-value one of the terms in (40) will grow exponentially with time, and
this explains the instability of X̄.

Exercise 20. Solve (39) with the same initial perturbations as in Exercise 18. Hint: First
write the function �le lineartank.m that computes the right-hand side of (39):

function y = lineartank(s,x)

global A % this is the reason we declared A as global

y = A*x;

Then modify solve2.m into linearsolve.m . (Just replace tank2 by lineartank in the call to
ode45, and X by x everywhere.) Now you can solve (39) by typing:
>> figure % opens a new figure

>> data

>> S = 1;

>> x0 = [0; 0.05];

>> linearsolve

>> x0 = [0; -0.05];

>> linearsolve

One clearly sees the perturbation growth. Note that (39) was derived on the basis of the
assumption of small perturbations and that it is not valid if x(s) becomes �too� large. So there is
no point in computing much further than to S = 1.

It is instructive to compare X(s), computed as in Exercise 18, to X̄+x(s), with x(s) computed
as in Exercise 20:

Exercise 21.
First solve (32), as in Exercise 18, with S = 1 and X0 = Xbar + [0; 0.05] . Then solve

(39), as in Exercise 20, with S = 1 and x0 = [0; 0.05]. Now compare the �rst solution, X, to
Xbar + x, where x is the second solution. You can do the comparison by writing and running the
following script:

clf % clear current figure

plot(X(:,1), X(:,2)) % plots second versus first component of X

hold on

plot(Xbar(1) + x(:,1), Xbar(2) + x(:,2), '--')

title('Phase portraits: Solid: X Dashed: Xbar + x')

xlabel('X_1, Xbar_1 + x_1')

ylabel('X_2, Xbar_2 + x_2')

hold off

Note how the two curves successively diverge, and how the linear approximation fails to �nd
the stable equilibrium point.

Next week we will conclude the exercise on the tank reactor by �adjusting� it in such a way
that the operating point X̄ becomes stable. The idea is to try to �move� the eigen-values of A
so that their real parts get the right (negative!) sign. We will also brie�y consider stability with
respect to perturbations in the control variables.


