
TMV035 Analysis and Linear Algebra A, 2005

LECTURE 1.1

In this lecture we present a brief introduction to the mathematics courses. Then we introduce
the number systems and functions. This covers AMBS Ch 5, 7, 9.

1. Introduction

You will have four obligatory mathematics courses:
• ALA-A. Goal: solve algebraic equation f(x) = 0.

Example.

x2 + 4x− 5 = 0
⇒ x = −1 or x = 5

• ALA-B. Goal: solve ordinary differential equation (ODE) u′(x)− f(x, u(x)) = 0.

Example.

u′(x) + u(x)2 = 0

⇒ u(x) =
1

x + c

• ALA-C and Applied Mathematics. Goal: solve partial differential equation (PDE) of the
form −∇ · (a∇u) = f .

The equations in the examples above are special equations for which there are explicit solution
formulas. For equations in the general forms, f(x) = 0, u′(x) − f(x, u(x)) = 0, −∇ · (a∇u) =
f , there are no solution formulas. In our courses we emphasize solution methods for general
equations, these methods construct solutions by means of algorithms that can also be implemented
in computer programs. We shall spend a lot of time writing such programs in the Matlab
environment. We shall also solve special equations with pencil and paper.

When we can solve general equations we can use them to model processes in chemical engineer-
ing. We shall do this together with the chemistry course.

In order to study algebraic equations, f(x) = 0, in ALA-A, we begin with the number systems
and functions.

2. The natural numbers

The natural numbers are

N = {1, 2, 3, . . . }
These are the numbers that we use for counting how many elements that are contained in a set.
We have two arithmetic operations (“räkneoperationer”): addition and multiplication. The sum
m + n is the number of elements of the set which is the union of a set with m elements and a set
with n elements. The product m · n is repeated addition:

m · n = n + n + · · ·+ n (m times)

They satisfy the following rules:

(1)

m + n = n + m, m · n = n ·m, commutative laws

m + (n + p) = (m + n) + p, m · (n · p) = (m · n) · p, associative laws

m · (n + p) = m · n + m · p, the distributive law

The associative laws mean that we may skip the parentheses and write m + n + p and m · n · p.
We usually skip the · and write mn instead of m · n.
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We also define the power (“potens”) by repeated multiplication:

(2) nm = n · n . . . n (m times)

It useful to represent the natural numbers by marking them on the number line.
There is also a natural order relation (“ordningsrelation”) between the natural numbers: we

know what is means to say that m is less than n, m < n. We may then introduce the related
notation m > n, m ≤ n, m ≥ n.

There is a concept of subtraction for m ≥ n: m−n is the number of elements that remain if we
remove a subset of n elements from a set of m elements, with zero being the number of elements
of the empty set, i.e., 0 = m−m.

Note the special roles played by the numbers 0 and 1:

(3) m + 0 = m, m · 1 = m.

In order to solve equations of the form m+x = n with solution x = n−m for arbitrary natural
numbers m,n we need to introduce negative numbers.

3. The integers

The integers (“de hela talen”) are

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }
Here we have invented new numbers as follows: 0 (zero) and for each n ∈ N a negative number
denoted −n. It useful to represent these numbers by marking them on the number line.

We extend the addition and the multiplication to these new numbers as follows: (here m,n ∈ N)

m + 0 = m, 0 + 0 = 0, m + (−n) =

{
m− n if m ≥ n,
−(n−m) if m > n,

m · 0 = 0, 0 · 0 = 0, m · (−n) = −(m · n), −(m) · (−n) = m · n.

Here we relate operations involving negative numbers to the corresponding operations for positive
numbers. In this way all the arithmetic rules in (1) hold also for the integers, i.e, for m,n, p ∈ Z.

The order relation, m < n, is also extended to all integers m,n ∈ Z. We define intervals of
integers:

(4)

(m,n) =
{
x ∈ Z : m < x < n

}
[m,n] =

{
x ∈ Z : m ≤ x ≤ n

}
(m,∞) =

{
x ∈ Z : m < x

}
(−∞, n) =

{
x ∈ Z : x < n

}
Note that

{
x ∈ Z : m < x < n

}
reads “the set of all x that belong to Z such that x is between m

and n”.

Example.

(−1, 3) =
{
0, 1, 2

}
[−1, 3) =

{
− 1, 0, 1, 2

}
[0,∞) = Z+ =

{
0, 1, 2, . . .

}
the nonnegative integers

We can now define subtraction for all integers:

m− n = m + (−n)

And we can solve the equation

m + x = n ⇒ m + x + (−m) = n + (−m) ⇒ x + m + (−m) = n + (−m)

⇒ x + 0 = n + (−m) ⇒ x = n + (−m) = n−m.

In order to solve equations of the form m · x = n with solution x = n/m for arbitrary integers
m,n, m 6= 0, we need to introduce rational numbers.
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4. The rational numbers

The rational numbers (“de rationella talen”) are

Q =
{

x =
p

q
: p, q ∈ Z, q 6= 0

}
Since we have not yet defined a fraction p/q, we should first define the rational numbers as the set
of all pairs x = (p, q) with p, q ∈ Z, q 6= 0. where p and q are supposed to represent the numerator
and denominator, respectively. We extend addition and multiplication, for x = (p, q), y = (r, s),

x + y = (s · p + r · q, q · s), x · y = (p · r, q · s)

which are suggested by the expected formulas

x + y =
p

q
+

r

s
=

s · p + r · q
q · s

, x · y =
p

q
· r

s
=

p · r
q · s

In this way all the arithmetic rules in (1) hold also for the rational numbers.
We also define the inverse of x:

x−1 = (q, p)−1 = (q, p) for x 6= 0

We can now define division:
y

x
= y · x−1 = (r · q, s · p) for x 6= 0

and we write the rational numbers in fractional form:

x = (p, q) =
p

q
=

p

1
· 1
q

We can now solve the equation, for a, b ∈ Z, a 6= 0,

a · x = b ⇒ a−1 · a · x = a−1 · b ⇒ 1 · x = a−1 · b ⇒ x = a−1 · b =
b

a

The order relation, x < y, can also be extended to rational numbers. We note (without proof)
the important implication (where a, b, c ∈ Z)

a < b ⇒

{
ca < cb if c > 0
ca > cb if c < 0

(5)

In order to measure the size of a rational number, irrespective of its sign, we define absolute
value (“absolutbelopp”)

|x| =

{
x if x ≥ 0
−x if x < 0

Note that |x| is the distance of x from zero, and |x−y| is the distance from x to y measured along
the number line.

Note the following:

| − x| = |x|(6)

|xy| = |x||y|(7)

|x|2 = x2(8)

x ≤ |x|(9)

Prove them!
The following inequality is very important.

Theorem. (The triangle inequality)

(10) |a + b| ≤ |a|+ |b|, a, b ∈ Z.
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Proof. If one of a, b is zero, then (10) holds with equality. So we may assume that both a, b 6= 0.
It is easier to compute with the square instead of the absolute value, so we use (8) and then (7)
and (9) to get

|a + b|2 = (a + b)2 = a2 + 2ab + b2 ≤ a2 + |2ab|+ b2 = |a|2 + 2|a||b|+ |b|2 = (|a|+ |b|)2

It follows that |a + b| ≤ |a|+ |b| if we use the next theorem with x = |a + b| and y = |a|+ |b|. �

Theorem. If x, y > 0 then

x2 ≤ y2 ⇒ x ≤ y.(11)

Proof. Let x, y > 0 and x2 ≤ y2. Assume that the conlusion is false, i.e., assume that y < x. Then
multiply this inequality by the positive numbers y and x and use (5) to get

y2 < xy, xy < x2.

It follows that y2 < x2, which is a contradiction (“motsägelse”) to our assumption that x2 ≤ y2.
Hence the assumption y < x leads to a contradiction and it must be false. We conclude that
x ≤ y. This kind of proof is called “proof by contradiction” (“motsägelsebevis”). �

So far we have discussed the basic properties of the integers and rational numbers. This should
be familiar to you: you know very well how to compute with these numbers.

You also know the real numbers, but we avoid to use them until later. We need some prepara-
tions before we can introduce the real numbers. For example, we need decimal expansions.

5. Periodic decimal expansion of rational numbers

If we perform a long division (“liggande stolen”) of a rational number, then two things can
happen: (i) the division stops after a finite number of decimals have been generated; or (ii) the
division does not stop but the decimals repeat themselves. See AMBS p. 77.

3
4

= 0.75

1
3

= 0.33333333333 . . .

16
7

= 2. 285714︸ ︷︷ ︸ 285714︸ ︷︷ ︸ 285714︸ ︷︷ ︸ 285714︸ ︷︷ ︸ . . .

In the first case we have a finite decimal expansion and the number can be expressed exactly in
terms of powers of 10, e.g., 3

4 = 7 · 10−1 + 5 · 10−2. In the second case we have a periodic decimal
expansion and the number cannot be expressed exactly with powers of 10. (Note, by the way
that also a finite decimal expansion can be considered to be periodic with trailing zeros repeated:
3
4 = 0.75000 . . . )

Suppose on the other hand that we have a periodic decimal expansion. Does it represent a
rational number? If so: which number is it? Take, for example,

0.1818181818181818 . . .

Let pm be the number that we get if we truncate it after m periods:

pm = 0.181818 . . . 18 (m times) = 18 · 10−2 + 18 · 10−4 + 18 · 10−6 + · · ·+ 18 · 10−2m

= 18 · 10−2(1 + 10−2 + 10−4 + · · ·+ 10−2m+2)

= 18 · 10−2(1 + 10−2 + (10−2)2 + · · ·+ (10−2)m−1)

= 18 · 10−2 1− (10−2)m

1− 10−2
=

18
102 − 1

(
1− (10−2)m

)
=

18
99

(
1− (10−2)m

)
=

2
11

(
1− (10−2)m

)
.

Here we used the formula for a geometric sum:

1 + a + a2 + · · ·+ am−1 =
1− am

1− a
, a 6= 1,
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with a = 10−2. We find that ∣∣∣ 2
11
− pm

∣∣∣ =
2
11
· 10−2m < 10−2m.

This means that the distance between the rational numbers pm and 2/11 is less than 10−2m. In
other words: pm is an approximation of 2/11 with 2m correct decimals. By taking m large enough
we can compute an decimal approximation of 2/11 correct to any number of decimals. This is
what we mean when we write

2
11

= 0.181818 . . .

Let

0. q1q2 . . . qn︸ ︷︷ ︸ q1q2 . . . qn︸ ︷︷ ︸ q1q2 . . . qn︸ ︷︷ ︸ . . .

be a periodic decimal expansion and let pm be the number that we get if we truncate it after m
periods. A similar calculation gives (see AMBS p. 80)∣∣∣q1q2 . . . qn

10n − 1
− pm

∣∣∣ < 10−2m

and we conclude that pm approximates the rational number

p =
q1q2 . . . qn

10n − 1

to 2m decimals. We write
q1q2 . . . qn

10n − 1
= 0. q1q2 . . . qn︸ ︷︷ ︸ q1q2 . . . qn︸ ︷︷ ︸ q1q2 . . . qn︸ ︷︷ ︸ . . .

Skip AMBS 7.9, 7.10, 8 on the first reading.

6. Functions

AMBS Ch. 9. We say that we have a function f if for each element x of one set Df we can find
exactly one element y = f(x) in some other set B. A function f therefore consists of three things:

(1) a rule: x 7→ f(x)
(2) a domain of definition (“definitionsmängd”):

D(f) = Df = {x : f(x) is defined}

(3) a target set (“målmängd”) B where the values of the function are found.

We then write

f : Df → B

We also define the range of f (“värdemängden”):

R(f) = Rf = {y ∈ B : y = f(x) for some x ∈ Df}

It is often very difficult (and sometimes not important) to determine exactly what Rf is. We can
always find a target set.

The sets Df and B are usually sets of numbers.

Example. f1(x) = x2, Df1 = Z, B = Z. Alternatively, we could have taken B = Z+ the
nonnegative integers. Then Rf1 = {0, 1, 4, 9, . . . } is the set of all squares. But it is not easy to
determine exactly which numbers are included in this set.

Example. f2(x) = x2, Df2 = Q, B = Q or B = Q+. Then Rf1 = {y ∈ Q : y = x2}. It is not
easy to determine exactly which numbers are included in this set.
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Note that these are different functions although the rule is y = x2 in both cases.
Often we only specify the rule y = f(x) but not Df . Then it is understood that the Df is the

largest possible set for which f is defined.
The graph of a function f is the set of pairs (x, y) where x ∈ Df and y = f(x). If these are

numbers then we can plot them in the xy-plane.

Example. f3(x) = x2, Df3 = [0, 3] ⊂ Z, B = Z+. The graph is

(0, 0), (1, 1), (2, 4), (3, 9)

Example. f4(x) = x2, Df4 = [0, 2] ⊂ Q, B = Q+. The graph now consists of infinitely many
points and we cannot compute all of them. Then we choose a stepsize h and compute the points
(nh, (nh)2), n = 0, 1, 2, . . . , as long as nh ≤ 2. For example, with h = .1

(0, 0), (0.1, 0.01), (0.2, 0.04), . . . , (2, 4)

This is easy to do with Matlab:
>>x=0:0.1:2
>>y=x.^2
>>plot(x,y)

A function may be considered as a mapping (“avbildning”) or an operator.
/stig


